EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:"

Transcripción

1 EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n = ( P y 2 ) /n = ( P x ) /n = ( P x 2 ) /n = ( P x y ) /n = ( P y /x ) /n = ( P y 2 /x 2 ) /n = ( P x 4 ) /n = a) Obtener la estmacón MCO de β yladesvacón típca del estmador MCO de β cuando se cumplen los supuestos habtuales. b) S la varanza del térmno de perturbacón u fuese conocda y tal que σ 2 u =0.25 x 2, cuál sería la verdadera desvacón típca del estmador MCO de β? Interpretar Ejercco 2.- Se ha estmado el modelo y = βx + ε y, para medr la bondad de ajuste, se ha calculado el R 2 y se ha obtendo un valor gual a A qué sedebe este resultado? Ejercco 3.- Para estmar el modelo y = β 0 +β 1 x +u se dspone de dos muestras, AyB.Justfca para cada uno de los sguentes casos, qué muestra sería más deseable: a) la únca dferenca entre ambas muestras es que el número de observacones de la muestra A es menor que el de la muestra B. b) la únca dferenca entre ambas muestras es que P n =1 (x A x A ) 2 < P n =1 (x B x B ) 2 1

2 Ejercco 4.- Los sguentes sumatoros se obtenen a partr de 16 observacones de las varables x e y y 2 = 526 y = 64 x 2 = 657 x =96 x y = 492 a) Calcula P (y ȳ) 2, P (x x) 2 y P (x x)(y ȳ) b) Encuentra las estmacones MCO de la regresón y = β 0 + β 1 x + u. c) Calcula el coefcente de determnacón R 2 y comenta los resultados. Ejercco 5.- Dado el modelo de regresón smple y = β 1 + β 2 x + u, demostrar Var(y) que b 2 = r xy donde r xy es el coefcente de correlacón lneal (muestral) entre Var(x) x e y. Ejercco 6.- En el modelo de regresón smple y = α + βx + ε, =1,..., n bajo las hpótess usuales se han obtendo los sguentes valores: ˆβ = 1.1 y el coefcente de correlacón lneal r =0.89. S se multplcan todos los valores x, por 5 y todos los y por (-10): a) el valor de r sgue sendo 0.89 pero el de ˆβ 1 pasaaser2.2. b) tanto el valor de r como el de ˆβ 1 permanecen constantes. c) camban tanto el valor de r como el de ˆβ 1. d) el valor de r pasa a ser -0.89, pero el de ˆβ 1 permanece constante. Ejercco 7.- La dreccón de una empresa quere estudar la rentabldad de su nversón en publcdad. Para ello ha recogdo datos del volumen de ventas y del gasto en publcdad referdos a los años noventa, en mles de euros 2

3 Año Ventas Gasto publcdad a) Especfca y estma el modelo lneal que explque las ventas de la empresa en funcón de la nversón publctara. Interpreta los parámetros estmados. b) En el año 2003, la empresa va a nvertr euros en publcdad. Calcula el volumen de ventas esperado. c) Se plantea el modelo Y = β + ε =1,...n Halla el estmador mínmo cuadrátco de β. d) Aplca el resultado del apartado anteror para explcar el volumen de ventas en funcón de los gastos en publcdad. Comprueba que la meda de los resduos no es nula. Ejercco 8.- DadoelmodeloY = β 0 + β 1 + ε y realzada su estmacón por mínmos cuadrados ordnaros para una muestra de 6 observacones, se obtene el vector de resduos que aparece en la tercera columna de la tabla sguente, 3

4 Observacón e ? ? Apartrdeestanformacón, recuperar los datos desconocdos en la tabla anteror. Ejercco 9.- En una empresa el salaro anual de cada ndvduo, Y, se determna por la fórmula Y = S +200T donde S es el número de años de estudos del ndvduo y T es el número de años que ha estado empleado. Sea la edad del ndvduo. Calcule Cov(, Y ), Cov(, S) y Cov (, T) para la muestra de ndvduos que fgura en la tabla de abajo y compruebe que yademás Cov (, Y ) = 500Cov (, S) + 200Cov (, T) V (Y )= V (S) V (T ) Cov (S, T ) Deduzca analítcamente estas expresones. Indvduo Edad Años Estudo Años Empleo Salaro

5 Ejercco 10.- La tabla de abajo muestra la tasa meda de crecmento del PIB, g, y del empleo, e, para 25 países de la OCDE para el perodo Adconalmente se presentan los resultados de realzar la regresón de e frente a g : 3.1) Realce un gráfco entre la tasa de empleo y la tasa de crecmento del PIB. 3.2) Descrba cada uno de los conceptos de la salda de ordenador de la regresón, hallando los resultados que faltan e nterprete los coefcentes de la regresón Tasas de crecmento medo del Empleo y PIB Empleo PIB Empleo PIB Australa Corea Austra Luxemburgo Bélgca Holanda Canadá Nueva Zelanda Dnamarca Noruega Fnlanda Portugal Franca España Alemana Sueca Greca Suza Islanda Turquía Irlanda RU Itala EEUU Japón e Coef. Std.Err. t P> t g ? cons ?

6 Ejercco 11.- Usando el conjunto datos de EEUU, un ndvduo realzó laregresón del ngreso por hora, EARNINGS, meddo en dólares, frente a años de educacón, S, y obtuvo el sguente resultado EARNINGS c = S Unsegundondvduoajustalamsmaregresón pero se equvoca y estma la regresón de S frente a EARNINGS y obtene bs = EARNINGS ydeésta derva EAR c NINGS = S Explque por qué exste esta dscrepanca entre esta ecuacón y la que ajustó elprmer ndvduo. Ejercco 12.- Se llama curva de aprendzaje a las mejoras que expermenta un ndvduo en la realzacón de una actvdad cuando éste la repte. Las curvas de aprendzaje se utlzan, por ejemplo, para analzar el coste de ncorporacón de un nuevo trabajador a una cadena de montaje. Supongamos que el número de pezas correctas que hace un operaro en una máquna está determnada por la sguente curva de aprendzaje Y = u donde Y es el número de pezas sn fallos, es el número de veces que ha repetdo la operacón en el mes de ncorporacón a la empresa y u es un térmno de perturbacón. La tabla sguente da los resultados de las prmeras 20 veces que el operaro trabajó en la cadena: va de 0 a 19; los valores de la perturbacón - que a pror son nobservables- se obtuveron de muestrear en una normal con meda cero y varanza 1 y multplcar el valor obtendo por 400; el valor de Y se obtuvo de los valores de y u aplcados a la curva de aprendzaje 6

7 Observacón u Y La regresón de Y frente a se estmó con los datos de esta tabla by =369 (190) (17.1) donde los errores standard están entre paréntess. (a) Explque con sus palabras el sgnfcado de la tabla anteror. 7

8 (b) Porqué el valor estmado de la constante no es gual a 500 y el coefcente de no es gual a 100? (c) Cuál es el sgnfcado del error standard y para qué se utlza? (d) El msmo proceso de aprendzaje se ha repetdo con otros 10 operaros nuevos, generando nuevamente el térmno de perturbacón a partr de una normal, y los resultados de las regresones fueron las sguentes Operaro Constante St.error Coef. de St.error (d.1) Por qué laconstante,elcoefcente de ysuerrorstandardvarían de operaro a operaro? (d.2) Realce un gráfco donde en el eje de abcsas fgure el número de operaro y en el de ordenadas el valor del coefcente de. Qué observa en dcho gráfco? Realce la meda matemátca de los coefcentes de y dscuta su resultado. (d.3) La varanza de es y la de u es Usando la expresón de abajo, demostrar que la desvacón típca del coefcente de es Cree que los errores standard presentados en la tabla son buenas estmacones de la desvacón típca? 8

9 Justfque su respuesta. σ 2 b 2 = σ 2 u nv ar () Ejercco 13.- Un nvestgador cree que la verdadera relacón entre dos varables está dada por la ecuacón Y = β 1 + β 2 + u Dada una muestra de n observacones, el nvestgador estma β 2 como la meda de Y dvdda por la meda de. Dscuta las propedades de este estmador. Qué dferencas habría s hubéramos supuesto β 1 =0? 9

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Estadística con R. Modelo Probabilístico Lineal

Estadística con R. Modelo Probabilístico Lineal Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

X R = R Y. Aproximación del sesgo del estimador de la razón, (N n) 2 y S xy. NnY 2 ( (N n) y s xy

X R = R Y. Aproximación del sesgo del estimador de la razón, (N n) 2 y S xy. NnY 2 ( (N n) y s xy 1 Estmadores de razón Estmadores de los parámetros usuales, Para el total de X, Para la meda de X, X R = R Y X R = R Y Aproxmacón del sesgo del estmador de la razón, B R N n NnY que podemos estmar a partr

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación Tema 5: Incumplmento de las Hpótess sobre el Térmno de Perturbacón TEMA 5: INCMPLIMIENTO DE LAS HIPÓTESIS SOBRE EL TÉRMINO DE PERTRBACIÓN 5.) Introduccón 5.) El Modelo de Regresón Lneal Generalzado 5.3)

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Material Docente de. Econometría. Curso Primera parte. Problemas y cuestiones

Material Docente de. Econometría. Curso Primera parte. Problemas y cuestiones Materal Docente de Econometría Curso 011-01. Prmera parte Problemas y cuestones Cuarto curso de Economía Cuarto curso de Admnstracón y Dreccón de Empresas Cuarto curso de Derecho y A.D.E Profesores: Jesús

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

TODO ECONOMETRIA. Variables cualitativas

TODO ECONOMETRIA. Variables cualitativas TODO ECONOMETRIA Varables cualtatvas Índce Defncón de las varables dummy (o varables fctcas) Regresón con varables explcatvas dummy Varables dummy S queremos estudar s los hombres ganan más que las mujeres,

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

EL MODELO DE REGRESIÓN LINEAL SIMPLE

EL MODELO DE REGRESIÓN LINEAL SIMPLE Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico

Econometría de corte transversal. Pablo Lavado Centro de Investigación de la Universidad del Pacífico Econometría de corte transversal Pablo Lavado Centro de Investgacón de la Unversdad del Pacífco Contendo Defncones báscas El contendo mínmo del curso Bblografía recomendada Aprendendo econometría Defncones

Más detalles

1.Variables ficticias en el modelo de regresión: ejemplos.

1.Variables ficticias en el modelo de regresión: ejemplos. J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Tema 8: Heteroscedasticidad

Tema 8: Heteroscedasticidad Tema 8: Heteroscedastcdad Máxmo Camacho Máxmo Camacho Econometría I - ADE+D / - Tema 8 Heteroscedastcdad Bloque I: El modelo lneal clásco r Tema : Introduccón a la econometría r Tema : El modelo de regresón

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Consumo de un estudiante granadino

Consumo de un estudiante granadino Consumo de un estudante granadno Trabajo de Econometría 3º de GADE, grupo C María Teresa Penado García Ana Isabel Béjar Pérez Marna Herrero López ÍNDICE Introduccón y varables escogdas para realzar el

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles

El subestimado problema de la confusión residual. Héctor Lamadrid-Figueroa; Alejandra Montoya; Gustavo Ángeles El subestmado problema de la confusón resdual Héctor Lamadrd-Fgueroa; Alejandra Montoya; Gustavo Ángeles El objetvo de la estmacón del efecto Establecer s exste una relacón causal entre una exposcón y

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Economía Aplicada. Estimador de diferencias en diferencias. Ver Wooldridge cap.13. Departamento de Economía Universidad Carlos III de Madrid 1 / 19

Economía Aplicada. Estimador de diferencias en diferencias. Ver Wooldridge cap.13. Departamento de Economía Universidad Carlos III de Madrid 1 / 19 Economía Aplcada Estmador de dferencas en dferencas Departamento de Economía Unversdad Carlos III de Madrd Ver Wooldrdge cap.13 1 / 19 Análss de Polítca: Dferencas-en-Dferencas En muchos casos la varable

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacón de varos tratamentos o grupos Muchas preguntas de nvestgacón en educacón, pscología, negocos, ndustra y cencas naturales tenen que ver con la comparacón de varos grupos o tratamentos.

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica

RMV FUNDEVAL, Bolsa Nacional de Valores, S.A. y Universidad Interamericana de Costa Rica San José, Costa Rica RV-2005-03 DETERINACIÓN DE LA TASA LIBRE DE RIESGO IPLÍCITA PARA EL ERCADO DE VALORES EN COSTA RICA: UNA PROPUESTA * RODRIGO ATARRITA VENEGAS ** FUNDEVAL, Bolsa Naconal de Valores, S.A. y Unversdad Interamercana

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

Métodos cuantitativos de análisis gráfico

Métodos cuantitativos de análisis gráfico Métodos cuanttatvos de análss gráfco Método de cuadrados mínmos Regresón lneal Hemos enfatzado sobre la mportanca de las representacones gráfcas hemos vsto la utldad de las versones lnealzadas de los gráfcos

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL el blog de mate de ada CI: Estadístca bdmensonal Pág. 1 ETADÍTICA BIDIMEIOAL La estadístca bdmensonal es la cenca que se ocupa de determnar s este relacón o no entre dos varables. Ejemplos: - Horas de

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Modelos para más de una variable

Modelos para más de una variable 1 Modelos para más de una varable Hasta ahora se han vsto dferentes modelos estadístcos para el caso de una sola magntud bológca medda. Pero en los expermentos es frecuente tratar el caso donde hay más

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Apuntes sobre el Diseño del Impuesto a la Renta de Personas Naturales

Apuntes sobre el Diseño del Impuesto a la Renta de Personas Naturales Apuntes sobre el Dseño del Impuesto a la Renta de Personas Naturales Fernando Vásquez S. Encuentro de Economstas del BCRP Contendo 1. Elementos de Teoría Económca 2. Tendencas Internaconales 3. Evolucón

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

6 Impacto en el bienestar de los beneficiarios del PAAM

6 Impacto en el bienestar de los beneficiarios del PAAM 6 Impacto en el benestar de los benefcaros del PAAM Con el fn de evaluar el efecto del PAAM sobre sus benefcaros, se consderó como hpótess que el Programa ha nfludo en el mejoramento de la caldad de vda

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES) ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de

Más detalles

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia GUÍA 5 Dego Lus Arstzábal R., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal de Colomba Roberto Fabán Retrepo A., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal

Más detalles