CORRELACION Y REGRESION

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CORRELACION Y REGRESION"

Transcripción

1 CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple y múltiple. Los índices de correlación analizados seran los de Pearson, Spearman, Kendall y el coeficiente de correlación parcial. Dependiendo de las características de los datos a correlacionar, el coeficiente de correlación que debe aplicarse difiere. Las características principales de cada uno de ellos son las siguientes: Coeficiente de correlación de Pearson: es aplicable cuando la métrica de las variables correlacionadas es como mínimo de intervalo. Coeficiente de correlación de Spearman y coeficiente de correlación t de Kendall: son aplicables cuando la métrica de las variables es de ordinal. El coeficiente de Spearman es especialmente indicado en aquellos casos en que se de una violación del supuesto de normalidad y, en aquellos casos, en que aunque la métrica de las variables no sea de intervalo o razón, podemos suponer que la variable con la que trabajamos presenta dicha métrica. P.Ej. podemos recodificar las puntuaciones de un test de inteligencia en tres o cuatro categorías de tal forma que la variable resultante sea ordinal, no obstante la inteligencia tal y como se ha medido inicialmente mediante un test de CI está en una escala de intervalo. En el resto de casos es más apropiado utilizar el coeficiente de Kendall. Coeficiente de correlación parcial: es aplicable cuando se pretende estudiar la relación entre dos variables eliminando el efecto de una tercera variable. Los procedimientos de regresión, por su parte nos permitirán modelizar la relación existente entre uno o más predictores con una variable criterio. Correlación y Regresión Página 1

2 COEFICIENTE DE CORRELACION DE PEARSON Este coeficiente es un indicador de la relación lineal existente entre dos variables. El coeficiente de correlación de Pearson es aplicable cuando la métrica de las variables correlacionadas es, como mínimo, de intervalo, y supone que ambas variables se distribuyen en la población de forma normal. No obstante el coeficiente tan sólo presenta alteraciones destacables en aquellos casos en que se viole de forma considerable dicho supuesto. Los pasos recomendados en el cálculo del índice de correlación de Pearson son: Representar gráficamente los diagramas de dispersión entre variables. Si realmente existe relación lineal entre las variables, la dispersión de puntos se aproximará a una ojiva. Si no existe relación lineal entre las variables, la dispersión de puntos se aproximará a una circunferencia. Este diagrama nos permitirá por otra parte comprobar la posible existencia de algún tipo de relación no lineal entre las variables. Cálculo de la matriz de correlaciones de Pearson. Interpretación de resultados. Con el fin de ilustrar el modo en que podemos realizar estos análisis con el SPSS vamos a utilizar el fichero de ejemplo "coches.sav" que incluye el programa entre los ficheros de ejemplo. Obtención de los diagramas de dispersión Con el fin de obtener el diagrama de dispersión, seleccionaremos en el menú gráficos del menú principal la opción Cuadros de diálogo antiguos, a continuación seleccionaremos Dispersión/Puntos, seleccionamos Dispersión simple y Definición y finalmente introduciremos en los ejes X e Y el par de variables que nos interesa representar, en nuestro caso la aceleración de los vehículos y su potencia tal y como podemos observar en la siguiente figura: Correlación y Regresión Página 2

3 Pulsando el botón Aceptar, se inicia la construcción del diagrama de dispersión obteniendo un output como el siguiente: Podemos comprobar cómo el gráfico de dispersión nos da una primera idea de la relación existente entre ambas variables. De este modo, y a primera vista, parece existir una relación inversa entre ambas variables, dado que teniendo en cuenta la forma de la nube de puntos, parece ser que a mayor potencia, menor tiempo precisa el vehículo para alcanzar los 100 km/hora. Los gráficos de dispersión entre todas las parejas de variables que se correlacionen deberían ser representados. Cálculo de los coeficientes de Correlación Correlación y Regresión Página 3

4 Para el cálculo del coeficiente de correlación, es preciso seleccionar la opción Bivariadas del submenú Correlaciones Mediante dicha opción se activa el submenú Correlaciones bivariadas que aquí mostramos y en el que seleccionamos las variables. Por defecto, se halla seleccionada la opción Pearson, que indica que el coeficiente que se calculará es el coeficiente de correlación de Pearson. Por defecto también se hallan seleccionadas las opciones Bilateral (que indica que las pruebas de inferencia sobre la correlación se calcularan suponiendo que no realizamos ninguna hipótesis sobre su dirección) y Marcar las correlaciones significativas (marca que se realiza como veremos posteriormente con asteriscos sobre la matriz de correlación). Pulsando el botón Opciones se activa el submenú Correlaciones Bivariadas: Opciones. En el podemos pedir unos descriptivos mínimos y, lo que es más importante, definir como vamos a tratar los casos perdidos. Si lo hacemos según lista eliminará de los cálculos a todos los sujetos a los que les falte algún dato. Si en lugar de ello lo hacemos por pareja aunque a un sujeto le falte algún dato de una variable, utilizará aquellos de los que dispone para aquellas correlaciones en que no se vea implicada dicha variable, siendo esta opción más recomendable en la mayoría de los casos. Resultados del análisis En la siguiente tabla pueden observarse los resultados obtenidos. Cabe destacar que SPSS nos indicará de dos modos las correlaciones significativas. En primer lugar nos ofrece para cada correlación la probabilidad de equivocarnos si rechazamos la hipótesis nula. Así por ejemplo para la correlación entre aceleración y potencia nos informa de que dicha correlación es r=-0.71 y la probabilidad de equivocarnos si rechazamos la hipótesis nula es p= Es decir, dicha correlación es significativa si adoptamos un nivel de significación del 1% (p=0.01). Es preciso destacar que a pesar de que SPSS considere que la probabilidad de equivocarnos es un 0%, este resultado es una aberración desde el punto de vista estadístico dado que trabajamos con Correlación y Regresión Página 4

5 distribuciones de probabilidad asintóticas, lo cual implica la imposibilidad de obtener un valor cero de probabilidad. Este hecho es debido a que el programa efectúa un redondeo a partir del cuarto decimal y, como consecuencia ante probabilidades muy bajas nos muestra un valor de cero. En este caso particular, si pulsamos en navegador de resultados de SPSSdos veces sobre la matriz de correlaciones y dos veces a más sobre el valor de la probabilidad veremos que en realidad la probabilidad de equivocarnos es P=0, Además de este valor SPSS nos informa con un asterisco sobre el valor de la correlación en aquellos casos en que la probabilidad es inferior al 5% y con dos asteriscos cuando es inferior al 1%. Respecto al formato de la tabla, en muchas ocasiones presenta un tamaño excesivo para su inclusión en un informe, artículo, etc. en dichos casos es posible editarla para reducirla a un formato más práctico, para ello pulsaremos dos veces sobre la tabla para editarla y, a continuación, iremos editando aquellos elementos que queramos suprimir con una doble pulsación para eliminarlos mediante la tecla Supr. Editando la tabla de este modo, el formato que se podría obtener es el siguiente: Correlación y Regresión Página 5

6 REGRESIÓN SIMPLE SPSS incluye en el procedimiento regresión lineal tanto el análisis de regresión simple como el múltiple, no obstante dadas las diferencias entre ambos análisis, especialmente por lo que refiere a las opciones y métodos, las vamos a tratar de forma independiente. El análisis de regresión simple trata de modelar la relación lineal existente entre dos variables, asumiendo que la relación de las mismas puede representarse del siguiente modo: y = a + bx + e Siendo: y: La puntuación observada del sujeto a: Un término constante b: La pendiente de regresión de x sobre y. e: El término de error, es decir, la diferencia entre la puntuación predicha por el modelo y la observada. El procedimiento regresión lineal nos permitirá contrastar las hipótesis nulas referidas a los distintos componentes del modelo y, en el caso de que proceda, construir el modelo predictivo asociado. Para ello vamos a utilizar el fichero de ejemplo "Coches" de SPSS y vamos a ver si puede establecerse una relación lineal entre el peso de los vehículos y su consumo. Para ello, y tal como puede observarse en la ventana inferior, seleccionamos como variable independiente el peso del vehículo y como dependiente el consumo. Como Correlación y Regresión Página 6

7 método de cálculo SPSS ofrece por defecto el método "Introducir". En el caso que nos ocupa ello no tiene mayor importancia, dado que las repercusiones de la elección de uno u otro método son más importantes en la regresión múltiple y serán discutidos en su momento. En lo que refiere a los estadísticos, hemos seleccionado las estimaciones y el ajuste del modelo. La utilidad de la mayor parte de los mismos es específica de la regresión múltiple y serán vistos en el apartado correspondiente. En cualquier caso, si anteriormente no hemos utilizado las opciones del procedimiento descriptivos, podemos solicitarlos en esta ventana de captura de datos. La opción guardar nos permite generar nuevas variables en las que podremos obtener los valores pronosticados, residuales, etc. La opción gráficos nos permitirá diversas representaciones que pueden ser útiles para verificar la existencia de valores atípicos y el grado de cumplimiento de ciertos supuestos como puede ser el de homocedasticidad. Correlación y Regresión Página 7

8 Una vez introducidas todas las opciones que hemos descrito, el output que obtendríamos sería el siguiente: En primer lugar podemos observar el coeficiente de correlación entre ambas variables así como el coeficiente de determinación, es decir, el porcentaje de varianza del criterio explicado por el predictor. Dicho coeficiente es un estimador sesgado del coeficiente de determinación poblacional. Por este motivo, el programa nos ofrece un coeficiente corregido que soluciona este sesgo. En nuestro caso podemos ver como el peso del vehículo explica un 70% del consumo del mismo. Correlación y Regresión Página 8

9 A continuación, el programa nos facilita la tabla del análisis de la varianza que contrasta la hipótesis nula de que la proporción de varianza explicada por el predictor a nivel poblacional es igual a cero. En nuestro caso vemos como rechazamos dicha hipótesis nula, es decir, parece ser que el peso del vehículo incide en el consumo del mismo. Posteriormente, el programa nos facilita los distintos coeficientes de la ecuación de regresión, tanto en puntuaciones directas como en puntuaciones típicas. En este segundo caso el valor de la constante no se estima dado que la recta de regresión intercepta al criterio en el origen. Además de dichos coeficientes, el output nos proporciona las pruebas de inferencia necesarias para contrastar las hipótesis nulas referidas al término constante y a la pendiente. En nuestro caso podemos ver que tan solo rechazamos la hipótesis nula para la pendiente, de tal modo que podemos considerar que el término constante es igual a cero. Este hecho simplifica la predicción, de tal modo que la ecuación que describe la regresión sería la siguiente: consumo = 0,0167*peso A continuación, podemos observar los tres casos que presentan un residual estandarizado más alto. Podemos considerar que en aquellos casos en que el residual sea superior a 3 o inferior a -3 puede darse o bien un error en los datos, o bien un dato atípico. En dichos casos lo más aconsejable es verificar los datos y eliminar aquel caso con el mayor residual (10,845) para, posteriormente, volver a evaluar el modelo. Finalmente, los gráficos que hemos solicitado nos muestran tanto la distribución de los residuales como el gráfico de dispersión de los valores pronosticados / residuales. En ambos gráficos podemos observar el dato atípico al que hacíamos referencia así como el hecho que la variabilidad de error parece mantenerse similar para todos los niveles del pronóstico. Correlación y Regresión Página 9

10 Correlación y Regresión Página 10

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

SPSS Aplicación práctica: Base de datos del HATCO

SPSS Aplicación práctica: Base de datos del HATCO Aplicación práctica: Base de datos del HATCO Datos: observaciones de variables obtenidos desde encuentas a clientes de un distribuidor industrial. Variables de interés en la aplicación: Percepciones de

Más detalles

Distribuciones de Probabilidad.

Distribuciones de Probabilidad. Práctica núm. 3 1 Distribuciones de Probabilidad. 3.1. Distribuciones de Probabilidad en Statgraphics El estudio de las distribuciones de probabilidad en Statgraphics se puede realizar en el menú Descripción/Distribuciones/Distribuciones

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Objetivo: conocer la relación entre variables

Más detalles

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth ANÁLISIS DE DATOS 1 Tipos de Análisis en función de la Naturaleza de los Datos Datos cuantitativos Datos cualitativos Análisis cuantitativos Análisis cuantitativos de datos cuantitativos (Estadística)

Más detalles

SOLUCIÓN PRÁCTICA 3 de SPSS ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL

SOLUCIÓN PRÁCTICA 3 de SPSS ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL SOLUCIÓ PRÁCTICA 3 de SPSS ESTADÍSTICA DESCRIPTIVA BIDIMESIOAL Ejercicio 1. [PROCEDIMIETOS CORRELACIÓ Y REGRESIÓ] Abra el archivo Coches.sav, que contiene las 5 variables que se describen en el siguiente

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados. Bases de Estadística Licenciatura en Ciencias Ambientales Curso 2oo3/2oo4 Introducción al SPSS/PC Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

El Análisis de Correspondencias tiene dos objetivos básicos:

El Análisis de Correspondencias tiene dos objetivos básicos: Tema 8 Análisis de correspondencias El Análisis de Correspondencias es una técnica de reducción de dimensión y elaboración de mapas percentuales. Los mapas percentuales se basan en la asociación entre

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Una vez realizados estos procesos conviene verificar que han aparecido las dos nuevas variables (columnas) en el archivo de datos.

Una vez realizados estos procesos conviene verificar que han aparecido las dos nuevas variables (columnas) en el archivo de datos. ECONOMETRÍA 09 PRACTICA 1: REPASO DE SPSS 1. Cuántas variables hay en el fichero? Y cuántas observaciones? Qué representa cada observación? Distingue entre variables cualitativas y cuantitativas. El fichero

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

Prácticas de Introducción a los Computadores Curso Hoja Gráficos: Hoja Regresión: ESPESOR 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 ESPESOR COSTES fij

Prácticas de Introducción a los Computadores Curso Hoja Gráficos: Hoja Regresión: ESPESOR 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 ESPESOR COSTES fij Prácticas de Introducción a los Computadores Curso 2001-2002 1 EXCEL Introducción Excel es una hoja de cálculo. Su objetivo básico es proporcionar un entorno sencillo para generar tablas de números y aplicando

Más detalles

Diagramas de Dispersión simples

Diagramas de Dispersión simples Ayuda SPSS-Diagrama de Dispersión-Inserción Recta de Regresión -1- AYUDA SPSS DIAGRAMA DE DISPERSIÓN e INSERCIÓN DE LA RECTA DE REGRESIÓN Ruta Cuadros de Diálogos Autor: Prof. Rubén José Rodríguez 1 de

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Práctica 9 REGRESION LINEAL Y CORRELACIÓN

Práctica 9 REGRESION LINEAL Y CORRELACIÓN Práctica 9. Regresión lineal y Correlación 1 Práctica 9 REGRESION LINEAL Y CORRELACIÓN Objetivos: En esta práctica utilizaremos el paquete SPSS para estudiar la regresión lineal entre dos variables y la

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES Práctica 2 Estudios Descriptivos Bidimensionales Página 1 Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES En esta segunda práctica

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

Estadística Descriptiva. Poblaciones y muestras.

Estadística Descriptiva. Poblaciones y muestras. Estadística Descriptiva. Poblaciones y muestras. fgarcia@cipf.es CIPF s Research Development Programme Indice 1 Introducción 2 3 Análisis Estadístico Población y muestra Software estadístico CIPF s Research

Más detalles

ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura Créditos

ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura Créditos ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura 46497 Créditos 6 ECTS Carácter Básica Rama de Conocimiento Ciencias de la Salud Materia Fisiología Ubicación dentro del

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

Práctica 2: Regresión lineal

Práctica 2: Regresión lineal Prácticas de estadística con R Ingeniería Química Universidad de Cantabria Curso 2011 2012 Práctica 2: Regresión lineal R también permite trabajar conjuntamente con más de una variable. En particular esta

Más detalles

Definición de Correlación

Definición de Correlación Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del

Más detalles

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1 Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

DEPARTAMENTO DE ECONOMÍA GENERAL Y ESTADÍSTICA UNIDAD DOCENTE DE ESTADÍSTICA Y ECONOMETRÍA TEMA 6 CORRELACIÓN ASIGNATURA DE ESTADÍSTICA EMPRESARIAL

DEPARTAMENTO DE ECONOMÍA GENERAL Y ESTADÍSTICA UNIDAD DOCENTE DE ESTADÍSTICA Y ECONOMETRÍA TEMA 6 CORRELACIÓN ASIGNATURA DE ESTADÍSTICA EMPRESARIAL DEPARTAMETO DE ECOOMÍA GEERAL Y ESTADÍSTICA UIDAD DOCETE DE ESTADÍSTICA Y ECOOMETRÍA TEMA 6 CORRELACIÓ ASIGATURA DE ESTADÍSTICA EMPRESARIAL CURSO 2003-2004 FACULTAD DE CIECIAS EMPRESARIALES UIVERSIDAD

Más detalles

Tema: Análisis de valores faltantes con SPSS

Tema: Análisis de valores faltantes con SPSS Tema: Análisis de valores faltantes con SPSS 1.- Introducción Hemos de comenzar advirtiendo que el Procedimiento Valores perdidos no se incluye en el sistema Base de SPSS, por lo que solo estará disponible

Más detalles

I. TÉCNICAS DE ANÁLISIS MULTIVARIANTE

I. TÉCNICAS DE ANÁLISIS MULTIVARIANTE ÍNDICE Presentación y justificación................................................... 9 I. TÉCNICAS DE ANÁLISIS MULTIVARIANTE................................... 13 1. Introducción.................................................................

Más detalles

9.- Análisis estadísticos con R Commander

9.- Análisis estadísticos con R Commander Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No

Más detalles

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal.

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Excel: Regresión Lineal Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Como hacer la gráfica. Ejemplo Los datos de la tabla adjunta, x e y exacto, cumplen

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

Introducción IMADIL /17/2014. Tema 3. Características estadísticas fundamentales (Tercera parte)

Introducción IMADIL /17/2014. Tema 3. Características estadísticas fundamentales (Tercera parte) IMADIL 0 /7/0 Tema. Características estadísticas fundamentales (Tercera parte) Ignacio Martín y José Luis Padilla IMADIL 0. Introducción. Representación Gráfica. Correlación. Índice Introducción Uno de

Más detalles

Capítulo 4. Análisis de Regresión Múltiple. 1. Introducción. Capítulo 4

Capítulo 4. Análisis de Regresión Múltiple. 1. Introducción. Capítulo 4 Capítulo 4 1. Introducción El Análisis de Regresión Lineal Múltiple nos permite establecer la relación que se produce entre una variable dependiente Y y un conjunto de variables independientes (X1, X2,...

Más detalles

Sujeto Grupo C.I. 1 A B A 98 4 A B 99. Sujeto TCMañ TCtar

Sujeto Grupo C.I. 1 A B A 98 4 A B 99. Sujeto TCMañ TCtar Ignacio Martín Tamayo 20 Tema: CONTRASTE DE UNA Y DOS MEDIAS: PRUEBAS t ÍNDICE ------------------------------------------------------------------ 1.- Introducción. Organización de los datos 2.- Diferencia

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

Modelos linealizables.

Modelos linealizables. Modelos linealizables. 1.- Tras 10 años de funcionamiento, una empresa del sector de las telecomunicaciones, quiere estudiar el beneficio obtenido en dicho periodo en función al número de clientes que

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Psicometría Tema 6 VALIDEZ DE LAS INFERENCIAS I

Psicometría Tema 6 VALIDEZ DE LAS INFERENCIAS I Psicometría Tema 6 VALIDEZ DE LAS INFERENCIAS I Psicometría Mª Isabel García Barbero, UNED. Universidad Nacional de Educación a Distancia, 2006 1 La fiabilidad de un instrumento de medida es una condición

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes 1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos

Más detalles

Estadística descriptiva bivariante y regresión lineal.

Estadística descriptiva bivariante y regresión lineal. Estadística descriptiva bivariante y regresión lineal. 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en su libro Natural inheritance (1889) refiriéndose a la

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

El ejemplo: Una encuesta de opinión

El ejemplo: Una encuesta de opinión El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar

Más detalles

Cómo crear un histograma (con los polígonos de frecuencias) en Excel 2007 y 2010

Cómo crear un histograma (con los polígonos de frecuencias) en Excel 2007 y 2010 Cómo crear un histograma (con los polígonos de frecuencias) en Excel 2007 y 2010 www.funcionarioseficientes.es Índice Pág BREVE EXPLICACION TEÓRICA DEL HISTOGRAMA... 1 1) Preparamos la tabla de datos del

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS LECTURA OBLIGATORIA Capítulo 2: Preparación del Archivo de datos. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de

Más detalles

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---)

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---) Nivel de ansiedad Ansiedad INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 4. 4.1. Con los datos de la Tabla 1, el valor de es igual a: A) 7,17; B) 11,80 C) 16,8. Tabla 1. En un estudio se investigó

Más detalles

1. Valoración y análisis de EDAD AL DIAGNÓSTICO. Media (D.E.) Mediana Min Max Rango R.I. Edad diagnóstico (+19.7) años

1. Valoración y análisis de EDAD AL DIAGNÓSTICO. Media (D.E.) Mediana Min Max Rango R.I. Edad diagnóstico (+19.7) años Transformar y calcular variables 1. Calcular el IMC (peso/altura 2 ). Recordar que la altura ha de ser en metros y el peso en kg. Recalcular la altura si es necesario. 2. Recodificar la edad al diagnóstico

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

Estadística Descriptiva Bivariante e Intervalos de Confianza

Estadística Descriptiva Bivariante e Intervalos de Confianza Estadística Descriptiva Bivariante e Intervalos de Confianza Introducción En este guión se presenta el análisis conjunto de dos variables (análisis bivariante) y una introducción a los intervalos de confianza

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Práctica 5 Análisis de regresión

Práctica 5 Análisis de regresión Práctica 5 Análisis de regresión Contenido 1 Objetivos 1 2 Observando diagramas de dispersión 1 3 Modelo de regresión lineal 3 4 Modelo de regresión curvilíneo 8 5 Bibliografía 10 En esta práctica vamos

Más detalles

Regresión con variables independientes categóricas

Regresión con variables independientes categóricas Regresión con variables independientes categóricas 1.- Introducción... 2 2.- Regresión y contrate de medias... 2 2.1.- Contrate de medias... 2 2.2.- Regresión... 3 3.- Regresión y análisis de la varianza...

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Contraste de hipótesis con STATGRAPHICS

Contraste de hipótesis con STATGRAPHICS Contraste de hipótesis con STATGRAPHICS Ficheros empleados: Transistor.sf3, Estaturas.sf3 1. Introducción: Una forma habitual de hacer inferencia acerca de uno o más parámetros de una población consiste

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo

Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso 105. Tamaño de muestra y potencia de una prueba. Diseño de experimentos. Jesús López Fidalgo Caso Práctico El objetivo de este ejercicio es analizar diferentes tipos de pruebas estadísticas en las

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles