ORDEN DE LAS OPERACIONES y 3.1.2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ORDEN DE LAS OPERACIONES y 3.1.2"

Transcripción

1 ORDEN DE LAS OPERACIONES.. y.. Cuando a los estudiantes se les da una expresión como + por primera vez, algunos estudiantes piensan que la respuesta es y algunos piensan que la respuesta es. Por esta razón los matemáticos decidieron en un método para simplificar una expresión que usa más de una operación para que todos estuvieran de acuerdo en una respuesta. Hay un grupo de reglas que se deben seguir que establece una manera consistente para que todos puedan evaluar expresiones. Estas reglas se llaman Orden de las operaciones y se deben seguir para llegar a una respuesta correcta. Como indicada por el nombre, estas reglas declara en cual orden las operaciones matemáticas deben ser completado. Para más información vea el recuadro de Apuntes de matemáticas de la Lección.. del texto Core Connections en español, Curso. Para más ejemplos y práctica, vea los materiales del Punto de comprobación 5 en Core Connections en español, Curso. El primer paso es organizar la expresión numérica en partes llamadas términos, que son números singulares o productos de números. Una expresión numérica está formada de una suma o diferencia de términos. Ejemplos de términos numéricos:, (6), 6(9 ),, (5 + ) y 6 6. Para el problema arriba, +, los términos están circulados a la derecha. + Cada término es simplificado por separado, dando + 8. Y después en términos se suman: + 8 =. De este modo, + =. Ejemplo Para evaluar una expresión: + (6 ) + 0 Circule cada término en la expresión. Simplifique cada termino hasta que sea un solo número siguiendo los pasos a continuación: Simplifique la expresión entre paréntesis. Evalué cada parte exponencial (ej., ). Multiplique y divida de izquierda a derecha. Finalmente, combine los términos sumando o restando de la izquierda a la derecha. + (6 ) () () CPM Educational Program. All rights reserved. Core Connections en español, Curso

2 Ejemplo (5 + ) 5 a. Circule los términos. b. Simplifique lo entre paréntesis. c. Simplifique los exponentes. d. Multiplique y divida de izquierda a derecha. Por último, suma y reste de izquierda a derecha. a (5 + ) 5 b (9) 5 c (9) 5 d Ejemplo a. Circule los términos. b. Multiplique y divida de izquierda a derecha, incluyendo exponentes. Suma y reste de izquierda a derecha. a b Problemas Circule los términos, luego simplifique cada expresión (9 ) 7. 6(7 + ) (8 + ) ( 5) (7 7) + 8. (5 ) + (9 + ). + 9() 6 + (6 ) (7 ) (9 ) ( + ) 8. 6 (6 + ) + (5 ) 9. + ( 5 ) + (5 ) 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

3 Respuestas CPM Educational Program. All rights reserved. Core Connections en español, Curso

4 OPERACIONES CON NÚMEROS ENTEROS..,.. y..5 RESTAS DE NÚMEROS ENTEROS Las restas de números enteros también pueden ser representadas usando modelos concretos de las rectas númericas y azulejos (+) y ( ). La resta es lo opuesto de la suma, así que es obvio tener que seguir las instrucciones opuestas. Cuando use la recta númerica y se suma un número entero positivo, se mueve a la derecha. Así que cuando se reste un número entero positivo, se mueve hacia la izquierda. Para sumar números enteros negativos se mueve hacia la izquierda, así que cuando se resta un número entero negativo se mueve hacia la derecha. Cuando se usan los azulejos, la suma significa poner más piezas en la imagen y buscar ceros para simplificar. La resta significa que tiene que eliminar azulejos de la imagen. A veces tiene que poner pares de azulejos de suma cero en la imagen antes de tener suficientes números de las piezas deseadas para eliminar. Para más información vea el recuadro de Apuntes de matemáticas de la Lección.. del texto Core Connections en español, Curso. Ejemplo Ejemplo 6 6 ( ) ( ) = ( ) = Ejemplo Ejemplo 6 ( ) Estructure el primer número entero. Retire tres negativos. Quedan tres negativos. 6 ( ) = ( ) Estructure el primer número entero Es imposible retirar tres negativos, así que agregue ceros. Ahora retire tres negativos y circule los ceros. Queda un positivo ( ) = 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

5 Problemas Encuentre la diferencia. Use por lo menos uno de los modelos para las primeras cinco diferencias.. 6 ( ). ( ). 6 ( ) ( ) () 8. ( 0) ( 0). 6 ( ) 5. 6 ( ) 5. 8 ( 8) ( 9) Respuestas (y modelos posibles) CPM Educational Program. All rights reserved. Core Connections en español, Curso

6 OPERACIONES CON DECIMALES.. MULTIPLICANDO DECIMALES Y PORCENTAJES Entender cuántos lugares decimales se debe mover a un punto decimal al multiplicar está conectado a la multiplicación de fracciones y el valor del lugar. Las computaciones que se calculan al porcentaje de un número son simplificados por medio de cambiar el porcentaje a un decimal. Ejemplo Ejemplo Multiplique (0.) (0.). En fracciones esto es Sabiendo que la respuesta debe estar en el centésimo lugar le dice cuántos lugares tiene que mover el punto decimal (hacia la izquierda) sin usar fracciones. (décimo)(décimo) = centésimo Por esto, muévalo dos lugares Multiplique (.7) (0.0). En fracciones esto significa Sabiendo que la respuesta debe estar en el centésimo lugar le dice cuántos lugares tiene que mover el punto decimal (hacia la izquierda) sin usar fracciones. (décimo)(centésimo) = milésimo Por esto muévalos tres lugares Ejemplo Calcule 7% de.5 sin usar una calculadora. Ya que 7% = 7 00 = 0.7, 7% de.5 (0.7) (.5) CPM Educational Program. All rights reserved. Core Connections en español, Curso

7 Problemas Identifique el número de lugares que va a mover el punto decimal hacia la izquierda del producto. No debes calcular el producto.. (0.) (0.5). (.5) (0.). (.) (.6). (0.6) (.) 5. 7 (.06) 6. (.) (.6) Calcule sin usar una calculadora. 7. (0.8) (0.0) 8. (.) (0.) 9. (.75) (0.09) 0. (.5) (.). (.8) (0.0). (7.89) (6.). 8% de % de % de % de % de % de Respuestas CPM Educational Program. All rights reserved. Core Connections en español, Curso

8 DIVISIÓN POR FRACCIONES.. División por fracciones introduce tres métodos que ayudan a los estudiantes como se dividen por fracciones. En general, piense en la división 8 como, en 8, cuantos grupos de hay? Similarmente, significa, en, cuantos cuartos hay? Para más información vea el recuadro de Apuntes de matemáticas de la Lección.. del texto Core Connections en español, Curso. Los primeros dos ejemplos demuestran como dividir por fracciones usando un diagrama. Ejemplo Use el modelo rectangular para dividir:. Paso : Paso : Usando el rectángulo, primero tenemos que dividirlo en dos partes iguales. Cada parte representa la. Sombree la. Después divida el rectángulo original en cuatro partes iguales. Cada sección representa. En la sección sombreada,, hay cuartos. Paso : Escriba la ecuación. = Ejemplo En, cuantas hay? En hay una sombreada Es decir, qué es? y la mitad de la otra (es mitad de una mitad). Start Empiece with con.. Entonces: = (uno y mitad de la mitad) 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

9 Problemas Use el modelo rectangular para dividir Respuestas. 8 tercios sextos. mitades cuartos. uno cuartos 8 sextos tres cuartos cuartos. cuartos mitades 5. tercios novenos mitades novenos En los próximos dos ejemplos use denominadores comunes para dividir por una fracción. Exprese las dos fracciones con un denominador común, después divida el primer numerador por el segundo. Ejemplo Ejemplo o o 8 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

10 Otra manera de dividir fracciones es usar el Uno Gigante del trabajo previo con fracciones para crear el Uno Súper Gigante. Para usar el Uno Súper Gigante, escriba una división en forma de fracción, con una fracción como numerador y denominador. Use el recíproco del denominador para el numerador y denominador en el Uno Súper Gigante. Multiplique las fracciones y simplifique el resultado cuando sea posible. Ejemplo 5 Ejemplo 6 = = = = 8 = 9 = Ejemplo 7 Ejemplo 8 = = 8 9 = Comparado con: = 0 9 = 0 9 = 9 Problemas Complete cada división. Use cualquier método Respuestas CPM Educational Program. All rights reserved. Core Connections en español, Curso

11 PROPIEDADES DE SUMA Y MULTIPLICACIÓN.. En sumas y multiplicaciones, el orden de los números se puede cambiar: + 5 = 5 + y 5 = 5. Esto se llama Propiedad Conmutativa. En símbolos es: La Propiedad conmutativa de suma es : a + b = b + a y La Propiedad conmutativa de multiplicación es: a b = b a. Cuando se suman tres números o se multiplican tres números, el agrupamiento se puede cambiar: ( + ) + 5 = + ( + 5) y ( ) 5 = ( 5). Esto es la Propiedad asociativa. En símbolos es: La Propiedad asociativa de suma es: (a + b) + c = a + (b + c) y La Propiedad asociativa de multiplicación es: (a b) c = a (b c). La Propiedad distributiva distribuye una operación sobre otra. Hasta el momento los estudiantes solamente han visto multiplicaciones distribuidas sobre sumas. En símbolos es: Para todos los números a, b y c, a(b + c) = a b + a c. Por ejemplo: ( + 5) = + 5. Para más información vea el recuadro de los Apuntes de matemáticas en la Lección.. del texto en Core Connections en español, Curso. Las propiedades de multiplicación y suma permiten que las calculaciones sean reordenadas. Hacer esto ayuda cuando se hace la suma mentalmente. Nombre la propiedad o razón que justifica cada paso. Ejemplo Calcule mentalmente: (7 5) Paso = (5 7) Propiedad conmutativa de multiplicación Paso = ( 5) 7 Propiedad asociativa de multiplicación Paso = (00) 7 matemáticas mentales Paso = 700 matemáticas mentales Ejemplo Calcule mentalmente: 8(56) Paso = 8(50 + 6) renombre 56 como Paso = 8(50) + 8(6) Propiedad distributiva Paso = matemáticas mentales Paso = 8 matemáticas mentales 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

12 Problemas Abajo hay una lista de posibles pasos para calcular un problema mentalmente. De las razones que faltan para justificar los pasos.. 5(9) = 5(0 + ( )) renombre 9 como 0 + ( ) 5(0 ) = 5(0) + 5( ) a 50 + ( 5) = 50 + ( 0 + 5) renombre 5 como 0 + ( 5) 50 + ( 0) + ( 5) = (50 + ( 0)) + ( 5) b 0 + ( 5) = 5 matemáticas mentales = a = ( ) b = (586 + ) + 77 c = 777 matemáticas mentales. 9() = (9) a (9) = (50 ) renombre 9 como 50 (50 ) = (50) () b (50) = (6 )(50) renombre como 6 (6 )(50) = 6( 50) c 6( 50) = 6(00) matemáticas mentales 600 = 588 matemáticas mentales Respuestas. a. Distributiva b. Asociativa. a. Conmutativa b. Asociativa c. Asociativa. a. Conmutativa b. Distributiva c. Asociativa 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso

DIVISIÓN POR FRACCIONES

DIVISIÓN POR FRACCIONES DIVISIÓN POR FRACCIONES 6.. 6.. División por fracciones introduce tres métodos que ayudan a los estudiantes como se dividen por fracciones. En general, piense en la división 8 como, en 8, cuantos grupos

Más detalles

FRACCIONES EQUIVALENTES 3.1.1

FRACCIONES EQUIVALENTES 3.1.1 FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS

CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS CAPÍTULO 2: SUMA DE FRACCIONES Y ENTEROS Fecha: Lección: Título del Registro de aprendizaje: 12 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Capítulo 2: Suma

Más detalles

PROPIEDADES DE LA POTENCIA y 3.1.2

PROPIEDADES DE LA POTENCIA y 3.1.2 Capítulo PROPIEDADES DE LA POTENCIA.. y.. Por lo general, simplificar una epresión que contiene eponentes significa eliminar los paréntesis y eponentes negativos, de ser posible. A continuación se mencionan

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

TABLAS, GRÁFICOS Y REGLAS

TABLAS, GRÁFICOS Y REGLAS TABLAS, GRÁFICOS Y REGLAS 3.1.1 3.1.7 Tres maneras para escribir relaciones para datos son tablas, palabras (descripciones) reglas. El patrón en la tabla entre los valores de usualmente establece la regla

Más detalles

PROBABILIDAD SIMPLE 1.1.2,

PROBABILIDAD SIMPLE 1.1.2, PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un 5 en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado

Más detalles

DESCRIBIR Y EXTENDER PATRONES 1.1.3

DESCRIBIR Y EXTENDER PATRONES 1.1.3 DESCRIBIR Y EXTENDER PATRONES.. Los estudiantes han sido pedidos de usar sus observaciones para entender patrones y predecir el número de puntos que estarán en una figura muy grande de graficar. Después,

Más detalles

MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.2.2

MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.2.2 MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.. La multiplicación de fracciones es revisada usando un área de modelo rectangular. Las líneas que dividen el rectángulo para representar una

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

CAPÍTULO 4: VARIABLES Y RAZONES

CAPÍTULO 4: VARIABLES Y RAZONES Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational

Más detalles

Operaciones de enteros. Prof. Yaritza González Adaptado por: Yuitza T. Humarán Departamento de Matemáticas UPRA

Operaciones de enteros. Prof. Yaritza González Adaptado por: Yuitza T. Humarán Departamento de Matemáticas UPRA Operaciones de enteros Prof. Yaritza González Adaptado por: Yuitza T. Humarán Departamento de Matemáticas UPRA Suma de enteros: Reglas Suma de dos enteros negativos o dos enteros positivos El total es

Más detalles

REPRESENTACIONES GRAFICAS DE LOS DATOS Ejemplo 2

REPRESENTACIONES GRAFICAS DE LOS DATOS Ejemplo 2 REPRESENTACIONES GRAFICAS DE LOS DATOS.1. Los estudiantes representan distribuciones de datos numéricos de una variable utilizando diagramas de puntos, diagramas de tallo y hoja, diagramas de caja e histogramas.

Más detalles

EXPRESIONES VARIABLES

EXPRESIONES VARIABLES EXPRESIONES VARIABLES.1.1.1. Un variable es un símbolo que se usa para representar uno o más números. Es común usar letras del alfabeto como variables. El valor del variable que se usa varias veces en

Más detalles

Listo para seguir? Intervención de destrezas

Listo para seguir? Intervención de destrezas Listo para seguir? Intervención de destrezas 1-1 Variables y expresiones Busca estas palabras de vocabulario en la Lección 1-1 y el Glosario multilingüe. Vocabulario variable constante expresión numérica

Más detalles

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez 7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación

Más detalles

PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2

PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2 PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE 9.1.1 y 9.1.2 VOLUMEN DE UN PRISMA El volumen es un concepto tridimensional. Mide la cantidad de espacio interior de una figura tridimensional basado en una unidad

Más detalles

INTERESES SIMPLES Y COMPUESTOS

INTERESES SIMPLES Y COMPUESTOS INTERESES SIMPLES Y COMPUESTOS 8.1.1 8.1.3 En Curso 2 estudiantes son introducidos al interés simple, el interés se paga sólo sobre el importe inicial invertido. La fórmula para el interés simple es: I

Más detalles

CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD

CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD CAPÍTULO 1: INTRODUCCIÓN Y PROBABILIDAD Fecha: Lección: Título del Registro de aprendizaje: 2 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Capítulo 1: Introducción

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3 Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

ángulo agudo ángulo agudo ángulo agudo Un ángulo que mide menos de 90º

ángulo agudo ángulo agudo ángulo agudo Un ángulo que mide menos de 90º ángulo agudo ángulo agudo ángulo Un ángulo que mide menos de 90º agudo suma suma 2 + 3 = 5 suma Combinar, poner dos o más cantidades juntas 2 + 3 = 5 sumando sumando 5 + 3 + 2 = 10 sumando sumando 5 +

Más detalles

Math Basics. for the Health Care Professional. Decimales UNIT FOURTH EDITION. Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved

Math Basics. for the Health Care Professional. Decimales UNIT FOURTH EDITION. Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved Math Basics for the Health Care Professional FOURTH EDITION UNIT 3 Decimales Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved Repaso de Decimales El sistema decimal es un sistema basado

Más detalles

5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS

5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS Primeras Nueve Semanas Entienda el sistema de valor posicional 5.NBT.2 Explique patrones del numero cero del producto cuando se multiplica un numero por una potencia de 10 y explique patrones en el lugar

Más detalles

Semana 1: Números Reales y sus Operaciones

Semana 1: Números Reales y sus Operaciones Semana 1: Números Reales y sus Operaciones Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 04 Los números enteros y sus operaciones

Más detalles

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3.

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3. CILINDROS VOLUMEN Y ÁREA SUPERFICIAL VOLUMEN DE UN CILINDRO El volumen de un cilindro es el área de su base multiplicado por su altura: V = B h Dado que la base de un cilindro es un círculo de área A =

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved. 5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.

Más detalles

ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4

ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4 ECUACIONES CON MÚLTIPLES VARIABLES 5.1.1 Resolviendo ecuaciones con más de un variable se usa el mismo proceso que cuando se resuelve una ecuación con una variable. La única diferencia es que en lugar

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

Apuntes de matemáticas 2º ESO Curso

Apuntes de matemáticas 2º ESO Curso Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor

Más detalles

PROBABILIDAD SIMPLE 1.1.2,

PROBABILIDAD SIMPLE 1.1.2, PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

TEMA 4 NÚMEROS ENTEROS

TEMA 4 NÚMEROS ENTEROS TEMA 4 NÚMEROS ENTEROS 1 2 3 Recta numérica. -9-8 -7-6 -5-4 -3-2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Enteros negativos A la izquierda del 0 están los números enteros negativos Enteros positivos A la derecha

Más detalles

NUMEROS ENTEROS ( Z)

NUMEROS ENTEROS ( Z) NUMEROS ENTEROS ( Z) En N la resta sólo está definida si el minuendo es mayor o igual al sustraendo. Para que dicha operación no sea tan restringida se creó el conjunto de enteros negativos ( notado por

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

Materia: Matemática de séptimo Tema: El Concepto de Fracciones

Materia: Matemática de séptimo Tema: El Concepto de Fracciones Materia: Matemática de séptimo Tema: El Concepto de Fracciones Una mañana, en el barco de buceo, Cameron comenzó a hablar con otro niño llamado Chet. Chet y su familia eran de Colorado y Chet era apenas

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 05 Lic. Manuel

Más detalles

ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA

ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA 10.1.1 Los datos basados en medidas como altura, velocidad, y temperatura son numéricos. En el Capítulo 6, describiste asociaciones entre dos variables numéricas.

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

Operaciones con números racionales. SUMA/RESTA.

Operaciones con números racionales. SUMA/RESTA. http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)

Más detalles

SIMPLIFICACIÓN DE EXPRESIONES

SIMPLIFICACIÓN DE EXPRESIONES SIMPLIFICACIÓN DE EXPRESIONES.. Para simplificar epresiones racionales, halla factores iguales en el numerador y el denominador, y escríbelas como fracciones iguales a. Por ejemplo: 6 6 = = = 3 3 = Las

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

DESCRIBIR Y EXTENDER PATRONES 1.1.3

DESCRIBIR Y EXTENDER PATRONES 1.1.3 DESCRIBIR Y EXTENDER PATRONES 1.1.3 Los estudiantes han sido pedidos de usar sus observaciones para entender patrones y predecir el número de puntos que estarán en una figura muy grande de graficar. Después,

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I Fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b a denominador, indica el número de partes en que se ha dividido la unidad. numerador, indica

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

Conceptos claves de matemáticas de la escuela primaria

Conceptos claves de matemáticas de la escuela primaria Conceptos claves de matemáticas de la escuela primaria Glosario: Número Compuesto (1) Un número entero mayor que 1 con más de dos factores de números enteros. (2) Un número entero mayor que 1 que sea divisible

Más detalles

PARA ESTUDIANTES QUE HAN COMPLETADO LA MATEMÁTICA DE 5º GRADO. (Entrando Matemática 6 or Pre-Algebra)

PARA ESTUDIANTES QUE HAN COMPLETADO LA MATEMÁTICA DE 5º GRADO. (Entrando Matemática 6 or Pre-Algebra) PARA ESTUDIANTES QUE HAN COMPLETADO LA MATEMÁTICA DE 5º GRADO (Entrando Matemática 6 or Pre-Algebra) Nombre: Fecha: Period: Estimado Padre / Guardián y Estudiante de Matemáticas de 6º Grado, El próximo

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto? REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los

Más detalles

4º Grado. Slide 1 / 152. Slide 2 / 152. Slide 3 / 152. Conceptos de Fracción y Decimal. -Revisión de. Fracciones

4º Grado. Slide 1 / 152. Slide 2 / 152. Slide 3 / 152. Conceptos de Fracción y Decimal. -Revisión de. Fracciones New Jersey Centro para Enseñanza y Aprendizaje Slide 1 / 152 Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de

Más detalles

El siguiente paso es aislar el término con la variable ecuación. Dado que resta a, se debe sumar en los dos lados de la ecuación.

El siguiente paso es aislar el término con la variable ecuación. Dado que resta a, se debe sumar en los dos lados de la ecuación. Materia: Matemática de Octavo Tema: Ecuaciones en Q Alguna vez has tratado de resolver un problema relacionado con el millaje? Echa un vistazo a esta situación. El domingo, Leah caminó 4 millas. El lunes,

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3

USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3 USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3 El gráfico de una función cuadrática, una parábola, es una curva simétrica. Su punto más alto o más bajo recibe el nombre de vértice. El gráfico de una parábola

Más detalles

Aritmética: Fracciones

Aritmética: Fracciones Antes de comenzar la unidad de fracciones algebraicas es preciso tener muy bien cimentados los conocimientos relativos a fracciones aritméticas adquiridos en cursos anteriores. a. Si un objeto se divide

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2 RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE 9.1.1 9.1.2 Para resolver una desigualdad con una variable, debes convertirla primero en una ecuación (un enunciado matemático con un signo = ) resolverla.

Más detalles

4 ESO. Mat B. Polinomios y fracciones algebraicas

4 ESO. Mat B. Polinomios y fracciones algebraicas «El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

New Jersey Centro para Enseñanza y Aprendizaje. Iniciativa de Matemática Progresiva

New Jersey Centro para Enseñanza y Aprendizaje. Iniciativa de Matemática Progresiva Slide 1 / 152 New Jersey Centro para Enseñanza y Aprendizaje Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor? T P Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades Den ejemplos de acuerdo con cada caso posible Qué indica la expresión

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

Lo mismo pero más pequeño

Lo mismo pero más pequeño LECCIÓN CONDENSADA 0. Lo mismo pero más pequeño En esta lección aplicarás una regla recursiva para crear un diseño fractal usarás operaciones con fracciones para calcular áreas parciales de diseños fractales

Más detalles

UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN #1. Números Enteros, Números Racionales

UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN #1. Números Enteros, Números Racionales UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN # Números Enteros, Números Racionales y Orden de Operación Prof. Manuel Capella-Casellas, M.A.Ed. Agosto 006

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

" Sabías que se puede nadar 0,83 Km en un minuto?" le pregunta Víctor a Carlos.

 Sabías que se puede nadar 0,83 Km en un minuto? le pregunta Víctor a Carlos. NÚMEROS RACIONALES. Una mañana en el barco de buceo, Carlos comenzó a hablar con otro niño llamado Víctor. Víctor y su familia eran de Falcón y Víctor era apenas dos años mayor que Carlos. Los chicos entablaron

Más detalles

Que es la Aritmetica?

Que es la Aritmetica? Que es la Aritmetica? La Aritmética es una rama de las matemáticas que se encarga de estudiar las estructuras numéricas elementales, asi como las propiedades de las operaciones y los números en si mismos

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS 5 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

Pre-Universitario Manuel Guerrero Ceballos

Pre-Universitario Manuel Guerrero Ceballos Pre-Universitario Manuel Guerrero Ceballos Clase N 02 Operatoria Resumen de la clase anterior NÚMEROS Conjuntos numéricos Definiciones Orden Q Q* IN IN 0 R II C 9 número impar múltiplos {9, 18, 27, } divisores

Más detalles

Notación científica y prefijos métricos

Notación científica y prefijos métricos Capítulo1 Notación científica y prefijos métricos & INTRODUCCIÓN En una célula haploide humana hay aproximadamente 3.000.000.000 de pares de bases de ADN que conforman su genoma. Si se aísla el ADN de

Más detalles

En este grabado de Alberto Durero (Núremberg 1471 Núremberg 1528) titulado Melancolía I puedes ver un cuadrado mágico de constante

En este grabado de Alberto Durero (Núremberg 1471 Núremberg 1528) titulado Melancolía I puedes ver un cuadrado mágico de constante Tema 1 ENTEROS Y DECIMALES. REVISIÓN DE OPERACIONES En este grabado de Alberto Durero (Núremberg 1471 Núremberg 1528) titulado Melancolía I puedes ver un cuadrado mágico de constante 34. Es muy interesante

Más detalles

OBJETIVOS MATEMÁTICAS QUINTO DE PRIMARIA

OBJETIVOS MATEMÁTICAS QUINTO DE PRIMARIA CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 18001792.averroes@juntadeandalucia.es MATEMÁTICAS QUINTO DE PRIMARIA INDICE Contenido MATEMÁTICAS

Más detalles

PLAN DE UNIDAD _5.2. Actividades para el logro de los tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5. Indicador: 5.N.3.1

PLAN DE UNIDAD _5.2. Actividades para el logro de los tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5. Indicador: 5.N.3.1 Fecha: del al de de 201. PLAN DE UNIDAD _5.2 Duración: 7 Semanas Materia: Matemática Grado/Curso: Quinto Tema de Unidad : Conociendo las operaciones Maestro: Estrategia Reformadora: Objetivo general: En

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

REALIZAR OPERACIONES CON POTENCIAS

REALIZAR OPERACIONES CON POTENCIAS REALIZAR OPERACIONES CON POTENCIAS OBJETIVO 1 Nombre: Curso: echa: POTENCIA Un número a, llamado base, elevado a un exponente natural n es igual al resultado de multiplicar a por sí mismo n veces: a? a?

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Capítulo. Los Enteros. Copyright 2013, 2010, and 2007, Pearson Education, Inc.

Capítulo. Los Enteros. Copyright 2013, 2010, and 2007, Pearson Education, Inc. Capítulo 5 Los Enteros Representaciones de los Enteros El conjunto de los enteros se denota Z. Los enteros negativos son los inversos aditivos de los enteros positivos. 4 es el opuesto de 4 3 es el opuesto

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2 COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) 6.1.1 y 6.1.2 Combinando dos Tableros de epressions a un Tablero de comparación de epresiones crea un modelo concreto para simplificar (y después resolver)

Más detalles

ECUACIONES EN Q (NÚMEROS RACIONALES)

ECUACIONES EN Q (NÚMEROS RACIONALES) Echa un vistazo a esta situación. ECUACIONES EN Q (NÚMEROS RACIONALES) El domingo, Leonardo caminó 4 unidades. El lunes, Leonardo caminó un tercio de lo que caminó el martes. El caminó un total de 12 unidades

Más detalles

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS Capítulo 8 FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS 8.. 8..4 En el Capítulo 8, los alumnos aprenderán a reescribir epresiones cuadráticas y resolver ecuaciones cuadráticas. Las funciones cuadráticas son

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles