Clases Frec. (100, 115] 5 (115, 130] 9 (130, 145] 3 (145, 160] 2 (160, 175] 1 Total 20

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clases Frec. (100, 115] 5 (115, 130] 9 (130, 145] 3 (145, 160] 2 (160, 175] 1 Total 20"

Transcripción

1 Unidad 1: Estadística descriptiva 1) a) Diámetro de la tubería (pulgadas): Variable cuantitativa continua b) Material de la tubería: Variable cualitativa nominal c) Edad (Año de instalación): Variable cuantitativa continua d) Longitud de la tubería: Variable cuantitativa continua e) Estabilidad del suelo: Variable cualitativa ordinal f) Corrosividad del suelo circundante: Variable cualitativa nominal 2) Variables: Ubicación, Cualitativa nominal Nivel de PCB, Cuantitativa continua 3) a) X = Tiempo de vida de cierto tipo de baterías Rec X = [0, ). Variable Cuantitativa continua b) Distribución de Frecuencias para el tiempo de vida de cierto tipo de batería: Clases Frec. (100, 115] 5 (115, 130] 9 (130, 145] 3 (145, 160] 2 (160, 175] 1 Total 20 c) 30% de las baterías duraron más de 130 horas. d) 25% 4) a) V = tiempo en minutos que tarda una persona en dormirse Variable cuantitativa continua C = Condición de fumador Variable cualitativa nominal b) Distribución de Frecuencia para el tiempo en minutos que tarda un Fumador en quedar dormido: Clases Frec. (10, 25] 3 (25, 40] 1 (40, 55] 5 (55, 70] 3 Total 12 1

2 Distribución de Frecuencia para el tiempo en minutos que tarda un NO Fumador en quedar dormido: Clases Frec. (20, 25] 1 (25, 30] 5 (30, 35] 4 (35, 40] 3 (40, 45] 1 Total 14 c) Para el Grupo de Fumadores el 66% tardó más de 40 minutos para quedarse dormido y en el grupo de los NO Fumadores el 7%. d) Según los datos analizados, los Fumadores tardan mas en dormirse que los NO Fumadores. 5) T = Causas subyacentes por las que fracasan empresas Variable cualitativa nominal. Distribución de Frecuencias porcentual de las causas subyacentes por las que fracasan las empresas. Causas Subyacentes Porcentaje (%) Incompetencia 48 Experiencia desequilibrada 22 Falta de experiencia gerencial 16 Falta de experiencia de línea 8 Causas desconocidas 6 Otras causas 0.1 b) El 6 % de las empresas fracasaron debido a causas desconocidas c) La causa que más fracasos ha producido fue la incompetencia. 8) 2

3 b) Distribución de Frecuencias de la duración de baterías (en horas). Duración de baterías presentada en ejercicio 8 Clases Frecuencia (100, 115] 5 (115,130] 9 (130, 145] 3 (145, 160] 2 (160, 175] 1 Fuente: Datos del Ejercicio 8 Duración de las baterías Frequency Datos c) X = 126, X ~ = 119 d) Para eso analizamos el coeficiente de Asimetría: 100 = 40 Por lo que la diferencia se debe a que la muestra no es simétrica (Asimétrica positiva). 9) a) Distribución de Frecuencias del tiempo (en segundos) que 20 trabajos estuvieron en control en un CPU: Clases frecuencia [0, 1) 6 [1, 2) 6 [2, 3) 4 [3, 4) 3 [4, 5) 1 3

4 Histograma del tiempo (en segundo), que 20 trabajos estuvieron en control en un CPU 6 5 Frecuencia tiempo (en segundos) 4.5 b) Datos redondeados: 1.2, 1.6, 1.2, 3.5, 1.2, 3.8, 1.9, 4.8, 2.4, 0.8, 0.8, 0.5, 2.2, 2.0, 0.9, 0.7, 2.6, 3.1, 1.4, 1. Ordeno y calculo Q 1 y Q 3. Se debe analizar si hay valores alejados para realizar el diagrama de tallo y hojas: Q 1 = 0.95, Q 3 = 2.5 Q (Q 3 - Q 1 ) = no hay valores alejados por defecto Q (Q 3 - Q 1 ) = no hay valores alejados por exceso Diagrama de Tallo y Hoja del tiempo en segundos, que 20 trabajos estuvieron en control en un CPU: Tiempo [seg] Unidad c) Obtenido de los datos sin redondear: x = 1.871, x~ = 1.505, en los datos sin redondear no hay moda. Obtenido de los datos redondeados: x = 1.9, x~ = 1.5, Moda = 1.2 d) σ ˆ 2 = 1.30, σ ˆ = s 2 = 1.37, s = 1.17 Estas medidas de dispersión están asociadas a la media, ya que la utilizan como centro de la distribución. 4

5 RI= 1.55 Meda = 0.7 Estas medidas de dispersión están asociadas a la mediana, ya que la utilizan como centro de la distribución. e) Para esto analizamos la simetría de los datos: 100 = 35 Por lo tanto es asimétrica, con lo que la mediana y la meda o el Rango intercuartil, describen mejor este conjunto de datos, porque sabemos que la mediana no se ve afectada por asimetría. 10) a) Tiempo que tardan en quedarse dormido fumadores y no fumadores Condicion No f umadores Fumadores tiempo en quedarse dormido b) Para Fumadores: x = 43.7, x~ = 48, = 16.18, Meda: = 26 Asimetría. Las medidas que describen mejor este conjunto de datos son Mediana y Meda. No hay valores alejados. Para NO Fumadores: x = x~ = 30.50, = 5. 65, 100 = 19 con este valor, y observando el gráfico decimos que es simétrica. No hay valores alejados. Por lo tanto las medidas que describen mejor este conjunto de datos son Media y. 5

6 c) INFORME: Se estudió el tiempo que tardan en quedarse dormido un grupo de 12 personas fumadoras y 14 personas no fumadoras, con el objetivo de investigar el efecto del hábito de fumar sobre los patrones de sueño. En el grupo de fumadores se observaron tiempos entre 14 y 69 minutos, mientras que en el grupo de no fumadores los tiempos estuvieron entre 21 y 42 minutos. El 50% de los tiempos en el grupo de fumadores fue mayor o igual a 48 minutos, y en el grupo de no fumadores solo a 30.5 Observamos entonces que los datos en el grupo fumador están centrados en un valor mayor que en el grupo de no fumadores y que están además más dispersos. En el grupo de no fumadores los datos se encuentran simétricamente distribuidos alrededor del valor central, mientras que en el grupo de fumadores los tiempos menores a 48 minutos están más dispersos que los mayores. 11) a) Para realizar los diagrama tipo caja se debe analizar si hay valores alejados: Para la ubicación antigua: Q 1 =9.91; Q 3 =10.135; Q (Q 3 - Q 1 ) = 9.57 no hay valores alejados por defecto Q (Q 3 - Q 1 ) = no hay valores alejados por exceso Para la ubicación nueva: Q 1 =8.98 ; Q 3 = 9.93 Q (Q 3 - Q 1 ) = 7.55 no hay valores alejados por defecto Q (Q 3 - Q 1 ) = no hay valores alejados por exceso Lecturas de Voltaje de un proceso: LECTURAS N = UBIC Ubicación 1: Corresponde a Antigua y Ubicación 2 a Nueva. 6

7 b) Para la ubicación antigua: x = , x~ = 10.03, = =6 Simétrica, y no hay valores alejados, por lo tanto la media y describen mejor el conjunto de datos. Para la ubicación nueva: x = 9.45, x~ = 9.63 = 0. 54, Meda = 0.44, Q 1 = 8.98, Q 3 = 9.93, por lo tanto RI = =33 Asimétrica, por lo tanto la mediana y la meda o el rango intercuartil describen mejor el conjunto de datos c)cv ANTIG = = CV NUEVA = = d) El proceso nuevo no es tan bueno como el anterior ya que tiene media más baja y variabilidad más alta, y el coeficiente de variación también es mayor. 12) Porcentajes de Hierro de 25 muestras de mineral recolectados en cierta zona: x = 62.64, x~ = 61 = 10.07, Q 1 = 53, Q 3 = 72, x ± 2σ = (42.4,82.8) 100=16 Del valor coeficiente y observando el gráfico decimos que es simétrica, por lo tanto la media y el desvío estándar describen mejor el conjunto de datos. De nuevo debemos analizar primero la presencia de valores alejados: Q 1 = ; Q 3 = 71.01; Q (Q 3 - Q 1 ) = no hay valores alejados por defecto Q (Q 3 - Q 1 ) = no hay valores alejados por exceso datos

8 INFORME: Se estudió el porcentaje de hierro de 25 muestras de mineral recolectados en determinada zona. Se observaron que los porcentajes varían entre 45 y 80 %. El porcentaje promedio de hierro encontrado en la muestra es de 62.6%. Los porcentajes observados se encuentran muy concentrados y en forma simétrica alrededor de ese valor promedio. 14) a) Trabajadores de la fábrica XX en el año XX clasificados de acuerdo a la tasa de defectos Tasa de Defectos Cantidad de trabajadores Alta 24 Baja 76 Total 100 Trabajadores de la fábrica XX en el año XX clasificados de acuerdo a sus años de experiencia Años de Exp. Cantidad de trabajadores [0, 2) 22 [2, 6) 36 [6,10) 42 Total 100 b) 42% c) 7% d) 32% e) 19% Para responder e) y d) calculamos los porcentajes en el sentido apropiado: Tasa de def./años de exp. [0,2) [2,6) [6,10) Alta 32% 25% 19% Baja 68% 75% 81% 100% 100% 100% Por lo que se puede decir que existe relación ya que a mayor años de experiencia disminuye el porcentaje de trabajadores con tasa alta de defectos, y por ende aumenta el porcentaje con tasa baja de defectos. 15) a) Empresas de la Provincia XX en el año XX clasificados según el nivel de Tecnología: Tecnología Cantidad de Empresas Alta 161 No alta 596 Total 757 8

9 Empresas de la Provincia XX en el año XX clasificadas según la conversión al sistema métrico de medición: Convirtió Cantidad de Empresas Si 377 No 380 Total 757 b) Convirtió/Nivel Alta No alta Tecnolog. Si 50% 50% No 50% 50% 100% 100% Por lo que podemos decir que las empresas de alta tecnología no presentan una mayor tendencia a convertirse que las empresas de baja tecnología, en otras palabras no influye el nivel de tecnología en la decisión de convertir al sistema métrico de medición. 9

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

ÁREAS DE LA ESTADÍSTICA

ÁREAS DE LA ESTADÍSTICA QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *.

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2.1. Ejemplos. Ejemplo 2.1 Se ha medido el grupo sanguíneo de 40 individuos y se han observado las siguientes frecuencias absolutas

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. 2) Math. 298 Prof. Gaspar Torres Rivera

Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. 2) Math. 298 Prof. Gaspar Torres Rivera Medidas de Tendencia Central, Medidas de Dispersión & Otros Estadísticos (Cap. ) Math. 98 Prof. Gaspar Torres Rivera Un hombre promedio Roberto tiene 31 años de edad, una estatura de 68.8 pulgadas, pesa

Más detalles

Estadística Descriptiva Métodos descriptivos visuales y medidas resumen

Estadística Descriptiva Métodos descriptivos visuales y medidas resumen 6 Estadística Descriptiva Métodos descriptivos visuales y medidas resumen Las técnicas de la estadística descriptiva pueden aplicarse tanto a datos muestrales como a datos poblacionales. Tipos de datos.

Más detalles

Unidad Temática 1 Estadística descriptiva y análisis de datos

Unidad Temática 1 Estadística descriptiva y análisis de datos Unidad Temática 1 Estadística descriptiva y análisis de datos Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.

Más detalles

PRÁCTICA 2: ANÁLISIS DESCRIPTIVO DE UNA VARIABLE CON SPSS

PRÁCTICA 2: ANÁLISIS DESCRIPTIVO DE UNA VARIABLE CON SPSS 2ª práctica: Análisis descriptivo de una variable con SPSS (Capítulo 3) Pag. 1 PRÁCTICA 2: ANÁLISIS DESCRIPTIVO DE UNA VARIABLE CON SPSS En esta práctica vamos a comenzar a obtener resultados estadísticos

Más detalles

Estadística I. Profesor de teoría: Profesores de práctica: Andrés M. Alonso

Estadística I. Profesor de teoría: Profesores de práctica: Andrés M. Alonso Estadística I Profesor de teoría: Andrés M. Alonso Despacho 10.1.32 E. Mail: andres.alonso@uc3m.es Web: www.est.uc3m.es/amalonso Web docente: http://www.est.uc3m.es/amalonso/esp/docencia.html Profesores

Más detalles

Estadística descriptiva y métodos diagnósticos

Estadística descriptiva y métodos diagnósticos 2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS

PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS 3ª práctica: Análisis por grupos de SPSS (Capítulos 4 y 5) 1 PRÁCTICA 3: ANÁLISIS POR GRUPOS de SPSS En esta práctica vamos a realizar estudios estadísticos por grupos con diversos procedimientos, observando

Más detalles

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN EN CIENCIAS SOCIALES. Unidades de análisis. Base de datos. Variables. Estadística univariada. Gráficos.

METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN EN CIENCIAS SOCIALES. Unidades de análisis. Base de datos. Variables. Estadística univariada. Gráficos. Eduardo Donza METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN EN CIENCIAS SOCIALES Titular: Agustín Salvia Unidades de análisis. Base de datos. Variables. Estadística univariada. Gráficos. Proceso de operacionalización

Más detalles

GUIA N 1: Estadistica descriptiva.

GUIA N 1: Estadistica descriptiva. UNIVERSIDAD DE VALPARAÍSO Ingeniería Civil, primer semestre 2016 GUIA N 1: Estadistica descriptiva. EJERCICIO 1 Clasificar cada una de las siguientes variables: si es cualitativa (nominal u ordinal) o

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

PRINCIPIOS DE GENÉTICA CUANTITATIVA

PRINCIPIOS DE GENÉTICA CUANTITATIVA PRINCIPIOS DE GENÉTICA CUANTITATIVA CARACTERES ANALIZADOS POR MENDEL Pisum sativum CARACTERES CUALITATIVOS CARACTERES QUE SE PUEDEN DESCRIBIR LOS INDIVIDUOS SE CLASIFICAN CLARAMENTE EN CATEGORIAS EL ESTUDIO

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO MODULO 3: Medidas de tendencia central Haga clic para modificar el estilo de subtítulo del patrón Docentes: Mariana Cabrera - Laura Noboa - Verónica Curbelo

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Análisis exploratorio de datos. Análisis Exploratorio de Datos - Claudia Jiménez R

Análisis exploratorio de datos. Análisis Exploratorio de Datos - Claudia Jiménez R Análisis exploratorio de datos 1 Métodos de recolección de datos Censo Muestreo Diseño de experimentos Muestra Población Etdíti Estadística descriptiva Inferencia inductiva 2 Variables Son aquellas características

Más detalles

Metodología II: Análisis de Datos. Prof. Reinaldo Mayol Derecho

Metodología II: Análisis de Datos. Prof. Reinaldo Mayol Derecho Metodología II: Análisis de Datos Prof. Reinaldo Mayol Derecho Por donde vamos? Luego de obtenidos los datos, el siguiente paso es realizar el análisis de los mismos. Aunque ha sido presentado en este

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA I

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA I DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA I PRACTICA 2 Problema 1.- En una determinada investigación sobre un colectivo de emigrantes tenemos la siguiente distribución de frecuencia por nacionalidades:

Más detalles

Algunas nociones básicas sobre Estadística

Algunas nociones básicas sobre Estadística Escuela de Formación Básica - Física 1 Laboratorio - 10 Semestre 2010 Comisiones 15 Y 16 (Docentes: Carmen Tachino - Graciela Salum) ntroducción Algunas nociones básicas sobre Estadística Como se ha explicado

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

Bioestadística y uso de software científico TEMA 1 INTRODUCCIÓN. ESTADÍSTICA DESCRIPTIVA

Bioestadística y uso de software científico TEMA 1 INTRODUCCIÓN. ESTADÍSTICA DESCRIPTIVA Bioestadística y uso de software científico TEMA 1 INTRODUCCIÓN. ESTADÍSTICA DESCRIPTIVA Población y muestra Tipos de variable Representación gráfica Medidas que resumen una muestra o una población Medidas

Más detalles

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 3 del texto básico, págs. 71 86 y capítulo 4 en las páginas

Más detalles

PLANIFICACIÓN SEMESTRAL

PLANIFICACIÓN SEMESTRAL PLANIFICACIÓN SEMESTRAL Asignatura: ESTADISTICA DESCRIPTIVA (PSI-098) Carrera: TRABAJO SOCIAL Profesor: CARLOS CHOW HO Fecha: Agosto 2014 Unidad N horas Contenidos Bibliografía UNIDAD I: Conceptos Básicos

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Se quiere medir la dispersión de una muestra a través de su localización. En primer lugar, definimos una medida relacionada con la media.

Se quiere medir la dispersión de una muestra a través de su localización. En primer lugar, definimos una medida relacionada con la media. Medidas de dispersión Se quiere medir la dispersión de una muestra a través de su localización. En primer lugar, definimos una medida relacionada con la media. Ya habiendo calculado la media, x de una

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciencias Sociales Tema 6. Descripción numérica (2) Capítulo 5 del manual Tema 6 Descripción numérica (2) Introducción 1. La mediana 2. Los cuartiles 3. El rango y el

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

Nada en esta maravillosa vida es 100% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios,

Nada en esta maravillosa vida es 100% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios, Nada en esta maravillosa vida es 1% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios, en la medicina, en el clima y principalmente en los juegos

Más detalles

Tema 12. Estadística

Tema 12. Estadística Variable cuantitativa Cuando toma valores numéricos Ej: Número de hijos por familia Tema 12. Estadística Variables estadísticas Frecuencias Variable cualitativa Cuando toma valores no numéricos Ej: Medios

Más detalles

Los estadísticos descriptivos clásicos (Robustez)

Los estadísticos descriptivos clásicos (Robustez) Los estadísticos descriptivos clásicos (Robustez) MUESTRA 0 0 4 6 8 9 MUESTRA 0 0 4 6 8 57 Nº CASOS Media Mediana Moda Desviación Simetría Curtosis MUESTRA,85 4,74 0, -0.688 MUESTRA 6,77 4.8.7.77 Ambas

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES MÁLAGA, 2004 15 CASOS PRÁCTICOS DE ESTADÍSTICA APLICADA A LAS CIENCIAS DEL TRABAJO ANTONIO FERNÁNDEZ MORALES

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

Seminari 1. Estadística CP

Seminari 1. Estadística CP Seminari 1. Estadística CP Problema 1. Exercici 1.29 (pàgina 37 capítul 1 Moore 2a edició) Els més rics. A EEUU la distribució dels ingressos individuals és molt esbiaixada cap a la dreta. En 1997 la mitja

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Datos y Estadísticas. Profesor: alberto alvaradejo

Datos y Estadísticas. Profesor: alberto alvaradejo Datos y Estadísticas Profesor: alberto alvaradejo Estadística La estadística se define como el arte y la ciencia de reunir datos, analizarlos, presentarlos e interpretarlos Especialmente en los negocios

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

Bioestadística: Estadística Descriptiva

Bioestadística: Estadística Descriptiva Bioestadística: M. González Departamento de Matemáticas. Universidad de Extremadura Bioestadística 1 2 Bioestadística 1 2 Coneptos Básicos ESTADÍSTICA Ciencia que estudia el conjunto de métodos y procedimientos

Más detalles

Medidas de Distribución

Medidas de Distribución Medidas de Distribución Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

UNLaM. Estadística. Secretaría de Extensión Universitaria. Trabajo Practico N 4. Medidas de Posición. Agente de Propaganda Médica

UNLaM. Estadística. Secretaría de Extensión Universitaria. Trabajo Practico N 4. Medidas de Posición. Agente de Propaganda Médica Medidas de Posición Trabajo Practico N El percentil k (P k ) es el valor de la variable tal que el k por ciento de los valores de la muestra son menores o iguales que él. Ej. Si P 35 (el percentil 35)

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

Precio de la gasolina regular (colones por litro, promedio anual)

Precio de la gasolina regular (colones por litro, promedio anual) CATÁLOGO MATERIALES DE APOYO PARA BACHILLERATO POR MADUREZ Educación Abierta 800 700 600 500 400 300 200 100 0 Pantallazo Precio de la gasolina regular (colones por litro, promedio anual) 2009 2010 2011

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 1: ESTADÍSTICA DESCRIPTIVA Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Determinar el

Más detalles

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Primera prueba parcial (B) Alumno: Grupo: Fecha: Ejercicio. La Encuesta de Pobreza y Desigualdades Sociales (EPDS) realizada por el Gobierno Vasco tiene como objetivo

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Ejercicios rouestos 1. Los datos originales a menudo necesitan ser codificados (transformados) ara facilitar el cálculo. Qué consecuencias tienen en el cálculo de la media

Más detalles

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo.

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. UNIDAD: ESTADISTICA La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. La estadística puede ser descriptiva o inferencial. La estadística

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

ESTADÍSTICA Hoja 1

ESTADÍSTICA Hoja 1 Estadística 1 ESTADÍSTICA 09-10. Hoja 1 1. Completar la siguiente tabla, en la cual se han resumido las calificaciones medias de 60 estudiantes de 2 o curso de bachillerato de un instituto: (L i 1, L i

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN - -U.N.T. FACULTAD DE EDUCACIÓN FÍSICA -F.A.C.D.E.F. - LICENCIATURA EN EDUCACIÓN FÍSICA ESTADÍSTICA I

UNIVERSIDAD NACIONAL DE TUCUMÁN - -U.N.T. FACULTAD DE EDUCACIÓN FÍSICA -F.A.C.D.E.F. - LICENCIATURA EN EDUCACIÓN FÍSICA ESTADÍSTICA I UNIVERSIDAD NACIONAL DE TUCUMÁN - -U.N.T. FACULTAD DE EDUCACIÓN FÍSICA -F.A.C.D.E.F. - LICENCIATURA EN EDUCACIÓN FÍSICA ESTADÍSTICA I PERÍODO LECTIVO 2012 LICENCIATURA EN EDUCACIÓN FÍSICA (PLAN 1993) LICENCIATURA

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

I. Identificadores de la asignatura Instituto: Ciencias Sociales Y Administrativas Departamento: Ciencias Sociales Créditos: 8

I. Identificadores de la asignatura Instituto: Ciencias Sociales Y Administrativas Departamento: Ciencias Sociales Créditos: 8 Técnicas de Investigación Social Cuantitativa I CARTA DESCRIPTIVA I. Identificadores de la asignatura Instituto: Ciencias Sociales Y Administrativas Departamento: Ciencias Sociales Créditos: 8 Materia:

Más detalles

HERENCIA CUANTITATIVA

HERENCIA CUANTITATIVA HERENCIA CUANTITATIVA Pisun sativum CARACTERES ANALIZADOS POR MENDEL CARÁCTER DETERMINADO POR UN GEN CON DOS ALELOS A: Alto a: Bajo P AA X aa G A a F1 Aa X Aa A a A a 1/2 1/2 1/2 1/2 A a A AA Aa a Aa aa

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010

Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Medidas de Tendencia Central Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Objetivos de Lección Conocer cuáles son las medidas de tendencia central más comunes y cómo se calculan

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1

Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1 Tema 7. Otras medidas descriptivas usuales Ejercicios resueltos 1 Ejercicio resuelto 7.1 Los siguientes datos se corresponden con los retrasos (en minutos) de una muestra de 30 vuelos de cierta compañía

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera Asignatura: Método Cuantitativo Empresarial CLAVE: PDF-421 Prerrequisitos: Licenciatura No. de Créditos: 03 I. PRESENTACION El método

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS. Laboratorio Clínico del Hospital Voz Andes Lugar

CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS. Laboratorio Clínico del Hospital Voz Andes Lugar CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. TABULACIÓN DE DATOS DATOS INFORMATIVOS Establecimiento Laboratorio Clínico del Hospital Voz Andes Lugar Provincia de Pastaza, Cantón Mera Parroquia

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4 M.Sc. JIMMY DELGADO VILLCA 1. PARAMETRO Y ESTADIGRAFO Se entiende por parámetro a una característica o atributo de la población, en otras palabras se la puede entender

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

COMPARACIÓN Y REPRESENTACIÓN DE DATOS

COMPARACIÓN Y REPRESENTACIÓN DE DATOS COMPARACIÓN Y REPRESENTACIÓN DE DATOS C.1.1 C.1.3 Las distribuciones de datos pueden representarse gráficamente con histogramas y diagramas de caja. Los diagramas de caja se describen en el recuadro de

Más detalles