1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m"

Transcripción

1 Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula: a) El periodo de revolución de Venus. Datos: Distancia de la ierra al Sol: Distancia de Venus al Sol: Periodo de revolución de la ierra: 1, m 1, m 65 días R V De acuerdo con la ª ley de Kepler: V R = V = V R ( R ) =65 ( 1,08 11) 1011 =65 (1,08 1, ,49) =5,4 días b) Las velocidades orbitales de Venus y la ierra. Las velocidades orbitales se calculan sabiendo que en un intervalo de tiempo igual al periodo de revolución los planetas recorren una distancia igual al perímetro de la órbita circular: v V = π R V V = π 1, , =4869 m s 1 =4,9 km s 1 v = π R = π 1, =9686 m s 1 =9,7 km s 1. a) Determina cuál es el periodo de un satélite artificial que gira alrededor de la ierra en una órbita circular cuyo radio es un cuarto del radio de la órbita lunar. Dato: Periodo de la órbita lunar, L = 7, días. De acuerdo con la ª ley de Kepler: S R = L S = S L ( R S ) =7, ( R L/ 4 ) =7, (1 4 ) =,415 días b) Determina cuál es la relación entre la velocidad del satélite y la velocidad de la Luna en sus respectivas órbitas. Las velocidades orbitales se calculan sabiendo que en un intervalo de tiempo igual al periodo de revolución los planetas recorren una distancia igual al perímetro de la órbita circular: v S = π R / S S = R S L = R /4 L L = L = 7, v L π / L S S 4 S 4,415 = Raúl Corraliza 177

2 Física º Bachillerato 1.. Matematización del movimiento planetario. Un satélite de kg de masa describe una órbita circular de 1 10 km de radio alrededor de la ierra en,657 h. Calcula el módulo del momento lineal y el módulo del momento angular del satélite respecto del centro de la ierra. Cambian las direcciones de estos vectores al cambiar la posición del satélite en su órbita? La velocidad orbital del satélite se calcula sabiendo que en un intervalo de tiempo igual al periodo de revolución recorren una distancia igual al perímetro de la órbita circular: v= π R = π =577,08 m s 1, El módulo del momento lineal se calcula: p=m v= ,08=5, kg m s 1 Su dirección es igual a la de la velocidad, tangente a la trayectoria, por lo que cambia en cada punto de la órbita. El módulo del momento angular se calcula (teniendo en cuenta que el movimiento es circular uniforme): L=R m v= ,08=6, kg m s 1 su dirección es perpendicular al plano de la órbita, por lo que no cambia. 4. Un satélite que gira con la misma velocidad angular de la ierra (geoestacionario) de una masa m = 5 10 kg, describe una órbita circular de radio r =, m. Determina: a) La velocidad areolar del satélite. Dato: Periodo de rotación terrestre = 4 h. La velocidad areolar de un cuerpo en una órbita circular es constante, y se calcula sabiendo que en un intervalo de tiempo igual al periodo de revolución el radio vector de la posición del cuerpo barre un área igual a la de la órbita circular: v A = π R = π (,6 107 ) =4, m s 1 b) Suponiendo que el satélite describe su órbita en el plano ecuatorial de la ierra, determina el módulo, la dirección y el sentido del momento angular respecto de los polos de la ierra. Dato: Radio terrestre: R = 6 70 km. Sea r el vector que une el satélite con uno de los polos y α el ángulo que forma dicho vector respecto del que lo une con el centro de la ierra, tal como se representa en la figura: La distancia del satélite al polo se calcula mediante el teorema de Pitágoras: r= R +R = ( ) +(, ) =, m La velocidad orbital del satélite se calcula sabiendo que en un intervalo de tiempo igual al periodo de revolución recorren una distancia igual al perímetro de la órbita circular: v= π R π,6 107 = = 618 m s Raúl Corraliza

3 Física º Bachillerato eniendo en cuenta que r v, el módulo del momento angular del satélite se calcula: L=r m v=, =4, kg m s 1 Su dirección es perpendicular al plano determinado por los vectores r y v. Esta, así como el sentido, vienen dados en la figura anterior. El ángulo α que forma L con el eje de rotación terrestre se calcula: α=tan 1( R R ) =tan 1 ( ,6 10 ) =10,0º 7 5. Se considera el movimiento elíptico de la ierra en torno al Sol. Cuando la ierra está en el afelio (la posición más alejada del Sol) su distancia es de 1, m y su velocidad orbital es de, m/s. Halla: a) El momento angular de la ierra respecto al Sol. Dato: Masa de la ierra, M = 5, Kg. El vector velocidad es en todo momento tangente a la trayectoria y, en esta situación, es perpendicular al vector que une la ierra con el Sol, de tal forma que el módulo del momento angular se calcula: L=r A m v A =1, , , =, kg m s 1 Su dirección es perpendicular al plano de la órbita, hacia fuera en el dibujo.. b) La velocidad orbital en el perihelio (la posición más cercana al Sol), sabiendo que en este punto su distancia al Sol es de 1, m. En ausencia de momentos de fuerzas externas el momento angular se conserva. Así pues, es posible calcular la velocidad orbital en el perihelio: L=r P m v P v P = L r P m =, , , =, m s Astronomía newtoniana 6. Un planeta de igual masa que la ierra, describe una órbita circular de radio R, de un año terrestre de duración, alrededor de una estrella de masa M tres veces superior a la del Sol. a) Obtén la relación entre: el radio R de la órbita del planeta, su periodo de revolución, la constante de gravitación universal G, y la masa M de la estrella alrededor de la cual orbita. La fuerza de atracción gravitatoria es la fuerza centrípeta que produce el movimiento circular: G M M =M R v R ; G M R =v La velocidad orbital del planeta se determina sabiendo que en un intervalo de tiempo igual al periodo de revolución recorren una distancia igual al perímetro de la órbita circular: v= π R Sustituyendo en la expresión anterior: G M R = 4π R ; R = 4 π G M Raúl Corraliza 179

4 Física º Bachillerato b) Calcula el cociente entre los radios de las órbitas de este planeta y de la ierra. Se despeja el radio de la órbita en la expresión anterior, teniendo en cuenta que M = M S : R = 4 π G M R = G M S 4π En el caso de la ierra: R = 4π R G M = G M S S 4π Dividiendo ambas expresiones miembro a miembro: R R = R ; = 1,44 R 7. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales de 4 h y 171,6 h. A través de la observación directa, se sabe que el diámetro de la órbita que describe la luna más alejada del planeta es de, km. Despreciando el efecto gravitatorio de una luna sobre la otra, determina: a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. La velocidad orbital de la luna exterior se calcula sabiendo que en un intervalo de tiempo igual al periodo de revolución recorren una distancia igual al perímetro de la órbita circular: v ext = π R ext = π 1, =1, m s 1 ext 171,6 600 El radio de la órbita de la luna interior se calcula mediante la ª ley de Kepler: ext = int R int =R ext ( int ext) =1, ( 171,6 600) = R ext R int ( 4 =1, ,6) =4, m b) La masa del planeta y la aceleración de la gravedad sobre su superficie si tiene un diámetro de, km. Dato: Constante de gravitación universal, G = 6, N m kg -. La fuerza de atracción gravitatoria entre el planeta y la luna exterior es la fuerza centrípeta que produce el movimiento circular de esta: R =M ext vext ext R ext G M M ext De esta expresión es posible despejar la masa del planeta: M = v ext R ext =(1, ) 1, =1, kg G 6, La aceleración de la gravedad sobre la superficie del planeta se calcula: g= G M R P = 6, , (1, ) =879,6 m s 180 Raúl Corraliza

5 Física º Bachillerato 8. a) Expresa la aceleración de la gravedad en la superficie de un planeta en función de su masa M, de su radio R y de la constante de gravitación universal G. La fuerza de atracción gravitatoria sobre un cuerpo de masa m a una altura h R sobre la superficie del planeta viene dada por la expresión: M m F =G = (R+h) R+h R m G M R Igualando F =m g se obtiene la expresión para la aceleración de la gravedad: g= G M R b) Si la aceleración de la gravedad sobre la superficie terrestre vale 9,8 m s -, calcula la aceleración de la gravedad a una altura sobre la superficie terrestre igual al radio de la ierra. En estas condiciones la fuerza de atracción gravitatoria sobre el cuerpo viene dada por la expresión: M m F =G (R+R) =m G M 4 R Igualando F =m g h=r se obtiene la expresión para la aceleración de la gravedad a dicha altura: g h= R = G M 4 R = g 4 = 9,8 =,45 m s 4 9. a) Enuncia la tercera ley de Kepler y demuéstrala para el caso de órbitas circulares. La ª ley de Kepler establece que el cuadrado del periodo de revolución de cualquier planeta,, es proporcional al cubo de su distancia media al Sol, r : =k r En un movimiento circular la fuerza de atracción gravitatoria entre el planeta y el Sol es igual a la fuerza centrípeta: G M M P S =M r P v r En un tiempo igual al periodo el planeta describe una órbita completa, de longitud π r, luego la velocidad orbital se puede determinar: v= π r Sustituyendo en la expresión anterior y despejando: G M P M S r =M P 4π r ; = 4 π G M S r b) Aplica dicha ley para calcular la masa del Sol suponiendo que la órbita de la ierra alrededor del Sol es circular con un radio medio de 1, km. Dato: Constante de gravitación universal, G = 6, N m kg -. (qed) Es posible despejar la masa del Sol de la expresión anterior: M S = 4 π r G = 4 π (1, ) 6, (65, ) =1, kg Raúl Corraliza 181

6 Física º Bachillerato 10. Sabiendo que la aceleración de la gravedad en un movimiento de caída libre en la superficie de la Luna es un sexto de la aceleración de la gravedad en la superficie de la ierra y que el radio de la luna es aproximadamente 0,7 R (siendo R el radio terrestre), calcula la relación entre las densidades medias r Luna / r ierra. Las respectivas aceleraciones de la gravedad se determinan: = G M L ; g = G M R Se dividen ambas expresiones miembro a miembro: = M L R g M Las masas se calculan a partir de las densidades mediante la expresión: M =V ρ= 4 π R ρ Así pues el cociente de masas equivale a la expresión: M L = M R ρl ρ Sustituyendo en la expresión para el cociente de gravedades: = R L g R ρ L ρ R ; = ρ L g R ρ Sustituyendo las condiciones del enunciado: 1 ρl =0,7 6 ρ ρ L ρ = 1 6 0,7 =0, Dos masas iguales, M = 0 kg, ocupan posiciones fijas separadas una distancia de m, según indica la figura. Una tercera masa, m' = 0, kg, se suelta desde el reposo en un punto A equidistante de las dos masas anteriores y a una distancia de 1 m de la línea que las une (AB = 1 m). Si no actúan más que las acciones gravitatorias entre estas masas, determina: a) La fuerza ejercida (módulo, dirección y sentido) sobre la masa m' en la posición A. Dato: Constante de gravitación universal, G = 6, N m kg -. Las fuerzas de atracción gravitatoria de las masas M sobre la masa m' en el punto A se representan en la siguiente figura: La distancia entre el punto A y ambas masas es la misma, d= 1 +1 = m, por lo que ambas fuerzas tienen igual módulo: F A =G M m' 0 0, =6, =1, N d Cada una de las fuerzas tendrá la dirección y sentido que se indica en la figura. El ángulo que forman respecto de la línea AB se calcula: α=tan 1 ( 1 1 ) =45º 18 Raúl Corraliza

7 Física º Bachillerato Las componentes horizontales de ambas fuerzas son iguales en módulo y con sentidos opuestos, por lo que se cancelan. La componente vertical de cada una se calcula proyectando la fuerza sobre el eje vertical: 10 F A cos 45º=1,4 10 =9, N La fuerza total sobre la masa m' es la suma de las contribuciones de ambas fuerzas: 10 F A = F A cos 45º= 1,4 10 =1, N Con dirección vertical y sentido hacia abajo. b) Las aceleraciones de la masa m' en las posiciones A y B. De acuerdo con la ª ley de Newton, en la posición A: F A =m' a A a A = F A =1, =9, m s m' 0, Con igual dirección y sentido que la fuerza, vertical y hacia abajo. Las fuerzas de atracción gravitatoria de las masas M sobre la masa m' en el punto B se representan en la siguiente figura: Ambas fuerzas son iguales en módulo y con sentidos opuestos, por lo que se cancelan. La fuerza total sobre la masa m' en el punto B es nula, y consecuentemente la aceleración también lo será. Raúl Corraliza 18

GRAVITACIÓN (parte 1)

GRAVITACIÓN (parte 1) IES LOPE DE VEGA 2º de BACHILLERATO (a distancia) CUESTIONES, PROBLEMAS Y EJERCICIOS DE FÍSICA GRAVITACIÓN (parte 1) NIVEL BÁSICO 01 Halle las velocidades lineal, angular y areolar con que la Tierra gira

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Modelo 2014. Pregunta 1B.- Los satélites Meteosat son satélites geoestacionarios, situados sobre el ecuador terrestre y con un periodo orbital de 1 día. a) Suponiendo que la órbita que describen es circular

Más detalles

CAMPO GRAVITATORIO º bachillerato FÍSICA

CAMPO GRAVITATORIO º bachillerato FÍSICA Ejercicio 1. Modelo 2.014 La masa del Sol es 333183 veces mayor que la de la Tierra y la distancia que separa sus centros es de 1,5 10 8 km. Determine si existe algún punto a lo largo de la línea que los

Más detalles

INTERACCIÓN GRAVITATORIA MODELO 2016

INTERACCIÓN GRAVITATORIA MODELO 2016 INTERACCIÓN GRAVITATORIA MODELO 2016 1- Titania, satélite del planeta Urano, describe una órbita circular en torno al planeta. Las aceleraciones de la gravedad en la superficies de Urano y de Titania son

Más detalles

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER Ejercicio 1. Septiembre 2.011 a. Exprese la aceleración de la gravedad en la superficie de un planeta en función de la masa del pianeta, de su radio

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados. Revisado 22 septiembre Septiembre

Ejercicios Física PAU Comunidad de Madrid Enunciados. Revisado 22 septiembre Septiembre 2015-Modelo A. Pregunta 1.- Un planeta de igual masa que la Tierra, describe una órbita circular de radio R, de un año terrestre de duración, alrededor de una estrella de masa M tres veces superior a la

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

CAMPO GRAVITATORIO Septiembre Pregunta 1B.- a) b) Septiembre Pregunta 1A.- a) b) Junio Pregunta 1B.- a) b)

CAMPO GRAVITATORIO Septiembre Pregunta 1B.- a) b) Septiembre Pregunta 1A.- a) b) Junio Pregunta 1B.- a) b) CAMPO GRAVITATORIO Septiembre 2016. Pregunta 1B.- Una estrella gira alrededor de un objeto estelar con un periodo de 28 días terrestres siguiendo una órbita circular de radio 0,45 10 8 km. a) Determine

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio Gravitación Área Física Resultados de aprendizaje Comprender las leyes de Kepler y la ley de gravitación universal, para su aplicación en problemas de órbitas planetarias. Contenidos Debo saber Antes de

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Escriba y comente la Ley de Gravitación Universal. b) El satélite Jasón-2 realiza medidas de la superficie del mar con una precisión de pocos centímetros para estudios oceanográficos.

Más detalles

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados. Revisado 22 septiembre Septiembre

Ejercicios Física PAU Comunidad de Madrid Enunciados. Revisado 22 septiembre Septiembre 2018-Modelo A. Pregunta 1.- Dos partículas puntuales de masas m 1 = 2 kg y m 2 = 10 kg se encuentran situadas a lo largo del eje X. La masa m 1 está en el origen, x 1 = 0, y la masa m 2 en el punto x 2

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER 8 03 FUERZAS CENRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER j Actividades. La masa m de la figura siguiente describe una trayectoria circular situada en un plano horizontal. Cuántas fuerzas actúan

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Revisión de conceptos 2. La fuerza gravitatoria 3. El peso y la aceleración de la gravedad

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

EL CAMPO GRAVITATORIO

EL CAMPO GRAVITATORIO EL CAMPO GRAVITATORIO 1. A qué altura el valor de la gravedad se reduce a la mitad del valor que tiene en la superficie terrestre? S: h = 0,41 R T 2. Si la densidad de la Tierra fuese tres veces mayor,

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

MECÁNICA E INTERACCIÓN GRAVITATORIA

MECÁNICA E INTERACCIÓN GRAVITATORIA MECÁNICA E INTERACCIÓN GRAVITATORIA Cuestiones 1 Una partícula de masa m está describiendo una trayectoria circular de radio R con velocidad lineal constante v. a) Cuál es la expresión de la fuerza que

Más detalles

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años)

Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años) Campo gravitatorio 1 Campo gravitatorio Planeta 1. A partir de los siguientes datos del Sistema Solar: Distancia al Sol (U.A.) Periodo orbital (años) R Planeta /R T M Planeta /M T Venus 0,723 0,6152 0,949

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Momento de una fuerza, Leyes de Kepler,Ley de Gravitación Rev 01 Universal, Movimiento de satélites. Ley de Gravitación Universal

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO I.E.S. Pablo Gargallo Departamento de Física y Química Curso 2008-09 FÍSICA DE 2º DE BTO Campo Gravitatorio 1.- La Tierra tarda un año en realizar su órbita en torno al Sol. Esta órbita es aproximadamente

Más detalles

II - CAMPO GRAVITATORIO

II - CAMPO GRAVITATORIO 1. La masa de la Luna es aproximadamente, 7,36.10 22 kg y su radio 1,74.10 6 m. Calcula el valor de la distancia que recorrería una partícula en un segundo de caída libre si se abandona en un punto próximo

Más detalles

Î R. j Actividades Î (19,13)

Î R. j Actividades Î (19,13) LEY DE LA GAVIACIÓN UNIVESAL. APLICACIONES 0 9 j Actividades. Enuncia la segunda ley de Kepler. Explica en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y en cuáles es mínima.

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

Gravitatorio PAU Andalucía

Gravitatorio PAU Andalucía Andalucía AND 01. Un meteorito de 1000 kg colisiona con otro, a una altura sobre la superficie terrestre de 6 veces el radio de la Tierra, y pierde toda su energía cinética. a) Cuánto pesa el meteorito

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

FA FCP m k d d T d T d

FA FCP m k d d T d T d Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

M. I. Yahvé Abdul Ledezma Rubio

M. I. Yahvé Abdul Ledezma Rubio M. I. Yahvé Abdul Ledezma Rubio Contenido 1. Leyes de movimiento de Kepler 2. Leyes de Newton, ley de la gravitación universal 3. Cantidad de movimiento lineal, cantidad de movimiento angular 4. Conservación

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

CAMPO GRAVITATORIO. JUNIO

CAMPO GRAVITATORIO. JUNIO CAMPO GRAVITATORIO. JUNIO 1997: 1.- La Tierra, en su órbita elíptica alrededor del Sol, presenta dos puntos, el afelio y el perihelio, en los que su velocidad es perpendicular a su vector de posición respecto

Más detalles

Seminario de Física. 2º Bachillerato LOGSE. Unidad 1: Campo Gravitatorio

Seminario de Física. 2º Bachillerato LOGSE. Unidad 1: Campo Gravitatorio A) Interacción Gravitatoria 1.- La distancia media de Marte al Sol es 1,468 veces la de la Tierra al Sol. Encontrar el número de años terrestres que dura un año marciano. Sol: T M = 1,78 T T 2.- El periodo

Más detalles

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d Campo graitatorio Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un alor de esa magnitud en un instante

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 9 RESUMEN DE FÍSICA - 2º BACH. PARTE IIA - GRAVITACIÓN/CAMPO ELÉCTRICO Emiliano G. Flores egonzalezflores@educa.madrid.org Resumen Este documento contiene un resumen de los conceptos y expresiones

Más detalles

FÍSICA de 2º de BACHILLERATO

FÍSICA de 2º de BACHILLERATO FÍSICA de 2º de BACHILLERATO ENUNCIADOS Y SOLUCIONES DE LOS EJERCICIOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO

Más detalles

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 1) (P Jun94) Se lanza verticalmente un satélite de masa m = 2000 kg desde la superficie de la Tierra, y se pide: a)energía total

Más detalles

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos La teoría de gravitación universal. Breve introducción sobre la evolución de los modelos del movimiento planetario. Desde el principio de los tiempos, los Hombres han tratado de explicar el movimiento

Más detalles

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones:

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones: Cuestiones: 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. 2. a) Enuncie la ley de gravitación universal y

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

física física conceptual aplicada MétodoIDEA La gravedad Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA La gravedad Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz Entre la y la física física conceptual aplicada MétodoIDEA La gravedad 4º de eso Félix A. Gutiérrez Múzquiz Contenidos 1. LA LEY DE LA GRAVITACIÓ DE EWTO 2. I TE SIDAD DEL CAMPO GRAVITATORIO 3. MOVIMIE

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

Movimiento circular y gravitación (RC-87)

Movimiento circular y gravitación (RC-87) Movimiento circular y gravitación (RC-87) J. A. Montiel tosso (ies antonio galán acosta, córdoba) MOVIMIENTO CIRCULAR UNIFORME (MCU) DESCRIPCIÓN DEL MOVIMIENTO CIRCULAR UNIFORME Podemos decir que el movimiento

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG-UCLM)

Ejercicios de Interacción Gravitatoria (PAEG-UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms -2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

( 2d. j Actividades. j Ciencias, tecnología y sociedad

( 2d. j Actividades. j Ciencias, tecnología y sociedad 6 0 EL CAMPO GRAVIAORIO j Actividades 1. Por qué introduce la Física el concepto de campo? Qué otros campos de fuerzas utiliza la Física además del campo gravitatorio? La Física introduce el concepto de

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

P A = 3 (Pa) P B = 8 (Pa) P B = 11(Pa) P C = 12 (Pa) P C = 15 (Pa) Aplicación industrial para el Principio de Pascal en una presa hidráulica:

P A = 3 (Pa) P B = 8 (Pa) P B = 11(Pa) P C = 12 (Pa) P C = 15 (Pa) Aplicación industrial para el Principio de Pascal en una presa hidráulica: Física y Química Tema 2: Las fuerzas. Principios de la dinámica Fuerzas y presiones en los líquidos: Densidad: d = m/vol (Kg/m 3 ) -Densidad del agua: d H2O = 1000 (Kg/m 3 ) = 1 (Kg/dm 3 = Litro) = 1 (g/cm

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

v m 2 d 4 m d 4 FA FCP m k

v m 2 d 4 m d 4 FA FCP m k Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

LA FÍSICA Y LA GRAVEDAD EQUIPO MESA 4: CARLOS ARTURO RAMÍREZ JOHAN DAVID MORENO JHOAN STIVEN ROJAS

LA FÍSICA Y LA GRAVEDAD EQUIPO MESA 4: CARLOS ARTURO RAMÍREZ JOHAN DAVID MORENO JHOAN STIVEN ROJAS LA FÍSICA Y LA GRAVEDAD EQUIPO MESA 4: CARLOS ARTURO RAMÍREZ JOHAN DAVID MORENO JHOAN STIVEN ROJAS RELACIÓN DE LA GRAVEDAD EN NUESTRO SISTEMA PLANETARIO La gravedad es un concepto misterioso en el universo,

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

Cuestiones de Campo Gravitatorio propuestas para Selectividad

Cuestiones de Campo Gravitatorio propuestas para Selectividad 1 a) Explique el concepto de escape y deducir razonadamente su expresión. b) Qué ocurriría en la realidad si lanzamos un cohete desde la superficie de la Tierra con una velocidad igual a la velocidad de

Más detalles

AP Física B de PSI Gravitación Universal

AP Física B de PSI Gravitación Universal AP Física B de PSI Gravitación Universal Preguntas de Multiopción 1. La fuerza gravitacional entre dos objetos es proporcional a A) la distancia entre los dos objetos. B) el cuadrado de la distancia entre

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. a) Qué criterio puedes aplicar para saber si una fuerza dada es conservativa o no? b) Demuestra que la fuerza elástica F = - kx (Ley de Hooke) es conservativa. Res. a) En general, una fuerza F -> que

Más detalles

Campo Gravitatorio (PAU-PAEG)

Campo Gravitatorio (PAU-PAEG) Campo Gravitatorio (PAU-PAEG) 1.- En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms -2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria

Más detalles

Tema 7. Fuerzas gravitatorias y elásticas

Tema 7. Fuerzas gravitatorias y elásticas 1 Tema 7 Fuerzas gravitatorias y elásticas Una fuerza una magnitud vectorial (módulo, dirección y sentido) capaz de modificar el estado de reposo o movimiento de un cuerpo o de producir deformaciones.

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Interacción Gravitatoria. PAU PAEG

Interacción Gravitatoria. PAU PAEG 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

1 La fuerza gravitacional entre dos objetos es proporcional a

1 La fuerza gravitacional entre dos objetos es proporcional a Slide 1 / 43 1 La fuerza gravitacional entre dos objetos es proporcional a la distancia entre los dos objetos. el cuadrado de la distancia entre los dos objetos. el producto de los dos objetos. el cuadrado

Más detalles

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición, Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de

Más detalles

Campo gravitatorio Ejercicios de la PAU Universidad de Oviedo Página 1

Campo gravitatorio Ejercicios de la PAU Universidad de Oviedo Página 1 Página 1 Junio 1998 1. Un astronauta, con 100 kg de masa (incluyendo el traje) está en la superficie de un asteroide de forma prácticamente esférica, con 2,4 km de diámetro y densidad media 2,2 g cm 3.

Más detalles

TEMA 3. MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL FÍSICA Y QUÍMICA 4º ESO

TEMA 3. MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL FÍSICA Y QUÍMICA 4º ESO TEMA 3. MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL FÍSICA Y QUÍMICA 4º ESO ÍNDICE 1. Movimiento circular. 1.1. Posición, desplazamiento angular y desplazamiento lineal. 1.2. Velocidad angular. 1.3. Velocidad

Más detalles

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la Opción A. Ejercicio Una partícula de masa m describe, sobre el eje x, un M.A.S. de amplitud A y frecuencia angular ù. En t = 0 pasa por la posición de equilibrio, donde tomamos x = 0. [a] Escriba las ecuaciones

Más detalles

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección lección 7 1 sumario 2 Introducción. Tipos de. Resolución espacial. Resolución espectral. Resolución radiométrica. Resolución temporal. Relación entre las distintas resoluciones. introducción 3 Resolución

Más detalles

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco.

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco. Antecedentes Dinámica Los griegos hicieron modelos del sistema solar. Aristarco Tolomeo Antecedentes La Europa medieval hizo sus contribuciones. Copérnico Primera Ley de Kepler Los planetas se mueven en

Más detalles

UD 11. Aplicaciones de la dinámica

UD 11. Aplicaciones de la dinámica UD 11. Aplicaciones de la dinámica 1- Leyes de Kepler. 2- Momento angular. 3- Dinámica del movimiento circular. 4- Definición de fuerza central, campo. 5- La interacción gravitatoria. 6- La interacción

Más detalles

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas.

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas. 1. Leyes de Kepler En 1609, como resultado de una serie de observaciones y del análisis de los datos recibidos, Kepler enuncia sus tres famosas leyes empíricas que rigen el movimiento de los planetas.

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Tema 9.2 Rev 01 Ley de Gravitación Universal Ley de Gravitación Universal 1 El Movimiento de los Planetas. Leyes de Kepler Johannes

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

HOJA SELECTIVIDAD GRAVITACIÓN

HOJA SELECTIVIDAD GRAVITACIÓN HOJA SELECTIVIDAD GRAVITACIÓN 1.- La Estación Espacial Internacional (ISS) describe alrededor de la Tierra una órbita prácticamente circular a una altura h = 390 km sobre la superficie terrestre, siendo

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

MOVIMIENTO CIRCULAR UNIFORME.

MOVIMIENTO CIRCULAR UNIFORME. Física y Química 4 ESO MOVIMIENTO CIRCULAR Pág. 1 TEMA 4: MOVIMIENTO CIRCULAR UNIFORME. Un móvil posee un movimiento circular uniforme cuando su trayectoria es una circunferencia y recorre espacios iguales

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

BACHILLERATO FÍSICA 01. MOVIMIENTO DE LOS CUERPOS CELESTES. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 01. MOVIMIENTO DE LOS CUERPOS CELESTES. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 01. MOVIMIENTO DE LOS CUERPOS CELESTES R. Artacho Dpto. de Física y Química ÍNDICE 1. El movimiento de los planetas a través de la Historia 2. Nociones actuales sobre el sistema solar

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MATERIA: FÍSICA La prueba consta de dos partes: Curso 2006-2007 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles