FUNCIÓN. La Respuesta correcta es D

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIÓN. La Respuesta correcta es D"

Transcripción

1 FUNCIONES

2 FUNCIÓN La Respuesta correcta es D

3 FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión.

4 FUNCIÓN Función Discontinua: Es aquella que no es continua, es decir, presenta separaciones y/o saltos en su gráfica.

5 FUNCIÓN Función Periódica: Es aquella en la que su gráfica se repite cada cierto intervalo, llamado período.

6 FUNCIÓN Conceptos Fundamentales: Si tenemos una relación f entre dos conjuntos A y B, f se dirá función si a cada valor del conjunto de partida A le corresponde uno y sólo un valor en el conjunto de llegada B. A f B a x b = f(a) f(x) f(x)

7 FUNCIÓN Conceptos Fundamentales: La variable x corresponde a la variable independiente y la variable cuyo valor viene determinado por el que toma x, se llama variable independiente. Se designa generalmente por y o f(x) [se lee f de x ]. Decir que y es función de x equivale a decir que y depende de x. A f B a x b = f(a) f(x)

8 FUNCIÓN Rango o Recorrido de f: Es aquel subconjunto del codominio en el cual todos sus elementos son imagen de alguna preimagen del dominio o conjunto de partida. Se denota por Rf. A a b c d e f B Se puede ver que para todo elemento de A, existe sólo una imagen en B.

9 Luego para la función f denotada: A a b c d e f B Dominio de f = Dom f = A = {a, b, c, d, e} Codominio = B = {1, 2, 3, 4, 5, 6, 7} Rango o Recorrido de f = Rf = {1, 2, 3, 4, 7} Los elementos {5, 6} no son imagen de ninguna preimagen en A, luego no pertenecen al rango de f.

10 CLASIFICACIÓN a) Función Inyectiva: Una inyección de A en B es toda f de A en B, de modo que a elementos distintos del dominio A le corresponden imágenes distintas en el codominio B. Cada elemento de A tiene una única imagen en B (y sólo una), de tal forma que se verifica que # A # B. A a b c d f B Como se ve, 4 B y no es imagen de ningún elemento de A

11 b) Función Sobreyectiva: Una sobreyección de A en B, de modo que todo elemento del codominio B es imagen de, al meno, un elemento del dominio A. Cada elemento de B es imagen de por lo menos un elemento de A. Se verifica que # A # B. Es decir, que en este caso el codominio es igual al recorrido. A a b c d f 1 2 B

12 c) Función Biyectiva: una función f es biyectiva de A en B si y sólo si la función f es tanto Inyectiva como a la vez, por lo que se verifica que #A = #B y que a cada elemento de A le corresponde una única imagen en B y que cada imagen de B le corresponde una pre imagen en A. A f B a B 1 2 3

13 FUNCIÓN La Respuesta correcta es E

14 I. FUNCIÓN LINEAL Es de la forma f(x) = mx + n con m : Pendiente n : Ordenada del punto de intersección entre la recta y el eje Y (coeficiente de posición). Ejemplo: La función f(x) = 5x 3, tiene pendiente 5 e intersecta al eje Y en la ordenada -3.

15 I. FUNCIÓN LINEAL Análisis de la Pendiente Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente. Si m < 0, entonces la función es decreciente. Si m = 0, entonces la función es constante. Si m > 0, entonces la función es creciente.

16 I. FUNCIÓN LINEAL Y I) II) n m > 0 n > 0 Y n m < 0 n > 0 X X Y Y III) m > 0 n < 0 IV) m < 0 n < 0 X X n n

17 I. FUNCIÓN LINEAL Tipos de funciones especiales: a) La función de forma f(x) = x, se reconoce como función identidad y su gráfica es: f(x) x

18 I. FUNCIÓN LINEAL Tipos de funciones especiales: b) La función de la forma f(x) = c, con c: Constante Real, se conoce como función constante y su gráfica es: f(x) c con c > 0 f(x) con c < 0 x x c

19 I. FUNCIÓN LINEAL Propiedades: El dominio de la función lineal son todos los números IR. Las rectas que tienen la misma m serán paralelas. Las rectas que al multiplicar sus pendientes el producto es -1 serán perpendiculares. Evaluación de una función lineal: Dada la función f(x) = mx + n, si se busca el valor de la función para un valor cualquiera de x, basta reemplazar dicho valor, así como también si se busca el valor de x conociendo el valor de la función.

20 I. FUNCIÓN LINEAL Gráficamente

21 II. FUNCIÓN CUADRÁTICA Son de la forma: f(x) = ax² + bx + c Gráfica: Siempre es una parábola, dependiendo su forma y la ubicación de sus coeficientes a, b y c.

22 II. FUNCIÓN CUADRÁTICA Concavidad: El coeficiente a de la función cuadrática indica si la parábola es abierta hacia arriba o hacia abajo. y y 0 x 0 x a > 0, Abierta hacia arriba a < 0, Abierta hacia abajo

23 II. FUNCIÓN CUADRÁTICA Eje de simetría y vértice: El eje de simetría es aquella recta paralela al eje Y y que pasa por el vértice de la parábola. El vértice está dado por: Vértice = -b, f -b = -b, 4ac b² 2a 2a 2a 4a

24 II. FUNCIÓN CUADRÁTICA Además, la recta x = -b 2a, corresponde al Eje de simetría. y y -b 2a a > 0 a < 0 _ b² - 4ac 4a -b 2a _ b² - 4ac 4a x 0 x

25 II. FUNCIÓN CUADRÁTICA Intersección con los ejes Intersección con el eje Y El coeficiente c nos da el punto en el cual la parábola corta al eje Y. Sus coordenadas son (0, c) y c 0 x

26 II. FUNCIÓN CUADRÁTICA Intersección con el eje X para determinar el o los puntos donde la parábola corta al eje X, es necesario conocer el valor del discriminante de la función cuadrática. Se define el discriminante como: D = b² - 4ac

27 II. FUNCIÓN CUADRÁTICA b) Si el D > 0, la parábola corta en dos puntos al eje X Y a > 0 (x,0) y (x, 0) X

28 II. FUNCIÓN CUADRÁTICA c) Si el D < 0, la parábola no corta al eje X. Y a > 0 0 X

29 II. FUNCIÓN CUADRÁTICA Naturaleza de las raíces de una ecuación de 2º grado Si f(x) = 0, tendremos que ax² + bx + c = 0, llamada Ecuación de 2º grado en su forma general. Toda ecuación de 2º grado posee dos soluciones, pudiendo ser reales o imaginarias, las que vienen dadas por la expresión: x = -b ± b²- 4ac 2a x 1 = -b ± b²- 4ac 2a x = -b ± b²- 4ac 2 2a Estas soluciones, raíces o ceros de la ecuación corresponden gráficamente a los puntos donde la función f (x) = ax² + bx + c corta al eje X. Estos puntos tienen como coordenadas (x,0) y (x, 0) 1 2

30 II. FUNCIÓN CUADRÁTICA Ejemplo: Sea la ecuación de 2º grado: x² + 2x 15 = 0. Cuáles son las soluciones de esta ecuación? Sabemos que las soluciones de una ecuación de 2º grado vienen dadas por x = -b ± b²- 4ac 2a En este caso a = 1 b = 2 c = -15 Luego, x = -2 ± 2²- 4 1 (-15) 2 1 x = -2 ± x = -2 ± 64 2 x = -2 ±8 2 Luego, x = x = x = 3 x =

31 FUNCIONES ESPECIALES

32 III. FUNCIÓN PARTE ENTERA Su valor, para cada número x IR, es la parte entera de x y se designa por [x]. Ésta se escribe: f(x) = [x] Dado un número real x, la función parte entera le asigna el mayor entero que es menor o igual a x, es decir: Ejemplos: [x] x < [x+1] [2,9] = 2 ;[-7/2] = -4 ;[5] = 5 ;[ 2] = 1 Todo número real está comprendido entre dos números enteros, la parte entera de un número es el menor de los números enteros entre los que está comprendido.

33 III. FUNCIÓN PARTE ENTERA Obsérvese que esta función es constante en los intervalos semiabiertos (semicerrados) de la forma [n, n + 1[ con n Z. Por tanto, los segmentos horizontales contienen sus extremos izquierdos, pero no los derechos

34 IV. FUNCIÓN VALOR ABSOLUTO El valor absoluto de un número x IR, denotado por x, es siempre un número real no negativo que se define: f(x) = x = x si x 0 -x si x < 0 Ejemplo: -3 = 3 12 = = 18-5,3 = 5,3 Si los números reales están representados geométricamente en el eje real, el número x se llama distancia de x al origen.

35 IV. FUNCIÓN VALOR ABSOLUTO a indica el punto de traslación en el eje de las coordenadas.

36 IV. FUNCIÓN VALOR ABSOLUTO b indica el punto de traslación en el eje de las abscisas.

37 IV. FUNCIÓN VALOR ABSOLUTO Propiedades: a. Si x a entonces -a x a; con a 0 b. Si x a entonces x a ó -x a c. xy = x y d. x + y x + y (Desigualdad Triangular)

38 IV. FUNCIÓN VALOR ABSOLUTO La última propiedad se llama desigualdad triangular, pues, cuando, se generaliza a vectores indica que la longitud de cada lado de un triangulo es menor o igual a la suma de las longitudes de los otros dos.

39 IV. FUNCIÓN VALOR ABSOLUTO Ejercicios: Determinar el intervalo solución de las siguiente inecuación: a. x 3 2 Aplicando la primera propiedad: -2 x x x 5 x [1, 5]

40 IV. FUNCIÓN VALOR ABSOLUTO La Respuesta correcta es B

41 IV. FUNCIÓN VALOR ABSOLUTO La Respuesta correcta es D

42 FUNCIONES A TROZOS Algunas veces se describen funciones en términos de varias expresiones, tales funciones se llaman funciones definidas por trozos o por partes. Veamos el siguiente ejemplo: Se debe tomar en consideración que se trata de una sola función, sino que ésta está definida por intervalos o partes, y dependerá del valor del dominio, el valor del rango.

43 FUNCIONES PARES E IMPARES. Es muy importante saber si una función dada es par o impar, pues proporciona un auxiliar útil para hacer la gráfica; además, ciertos problemas de cálculo y matemáticas mas avanzados se simplifican cuando se sabe que la función es par o impar. Para saber si una función es par o impar se debe cumplir lo siguiente:

44 Una función par es simétrica respecto al eje vertical y; una función impar es simétrica con respecto al origen. Para determinar si una función es par se reemplaza en la ecuación original la variable independiente por su negativo y se analiza el resultado comparándolo con la función original. Si el resultado es una ecuación equivalente, entonces concluimos que la función es par.

45 Para determinar si una función es impar se reemplaza en la ecuación original la variable independiente por su negativo y se analiza el resultado comparándolo con la función original. Si el resultado de reemplazar, resulta la función original cambiada de signo, concluimos que la función es impar.

46 Una función es par si satisface la ecuación: Ejemplos: es par porque: es par porque: No es par porque:

47 es una función par porque: Ejercicio: Determine si las funciones dadas son o no pares 1. 2.

48 Sea I un intervalo del dominio de una función ƒ, entonces: 1.- ƒ es creciente en I sí ƒ(b) >ƒ(a) siempre que b > a en I 2.- ƒ es decreciente en I sí ƒ(b) < ƒ(a) siempre que b > a en I 3.- ƒ es constante en I sí ƒ(b) = ƒ(a) para todo a y b de I

49 FUNCIÓN CRECIENTE. UNA FUNCIÓN F ES CRECIENTE EN UN INTERVALO SI Y SOLO SI Al recorrer la gráfica de f de izquierda a derecha, los valores de función aumentan conforme la abscisa aumenta en todo el intervalo f(x 1 ) < f(x 2 ) siempre que x 1 <x 2, donde x 1 y x 2 son dos números cualesquiera del intervalo y f(x 1 ) f(x 2 ) f Las pendientes de las rectas tangentes a la gráfica de f son positivas en todo el intervalo f (x) > 0 para toda x en el intervalo 0 a x 1 x 2 b x

50 FUNCIÓN DECRECIENTE. UNA FUNCIÓN F ES DECRECIENTE EN UN INTERVALO SI Y SOLO SI Al recorrer la gráfica de f de izquierda a derecha, los valores de función disminuyen conforme la abscisa aumenta en todo el intervalo f(x 1 ) > f(x 2 ) siempre que x 1 <x 2, donde x 1 y x 2 son dos números cualesquiera del intervalo y f(x 1 ) f(x 2 ) f Las pendientes de las rectas tangentes a la gráfica de f son negativas en todo el intervalo f (x) < 0 para toda x en el intervalo 0 a x 1 x 2 b x

51 Con las funciones es posible realizar las cuatro operaciones fundamentales es decir, sumar, restar, mulmplicar y dividir funciones. Esto se resume así:

52 COMPOSICIÓN DE FUNCIONES. La función composición por: (que se lee g o f ) es la función definida para toda x en el Observemos el siguiente gráfico: Dominio f g x f(x) f(g(x)) D E K Se puede aprovechar las operaciones sobre funciones para trasladar gráficas básicas.

53 Si f es una función uno a uno con Dominio en X y Rango en Y, y g es una función con Dominio en Y y Rango en X, entonces g es la función inversa de f si y solo si: (f o g)(x) = x, para toda x en el Dominio de g (g o f)(x) = x, para toda x en el Dominio de f La función inversa g también se puede denotar como f -1

54 Cómo saber si dos funciones son inversas observando sus gráficas cartesianas? Las gráficas de dos funciones inversas son simétricas respecto de la recta y = x

55 EJEMPLOS f y y = x y f -1 y = x 0 x f f -1 0 x

56 POR QUÉ UNA FUNCIÓN TIENE QUE SER UNO A UNO PARA QUE TENGA INVERSA? y f y = x 0 x Por no ser uno a uno la función f, al trazar la gráfica simétrica respecto de la recta y=x, resulta que ya no es una función

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f).

Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f). Funciones Definición Sean A y B conjuntos no vacíos. Una función de A en B es una relación que asigna a cada elemento x del conjunto A uno y sólo un elemento y del conjunto B. Se expresa como: Notación:

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

INTERVALOS ENTORNOS FUNCIONES

INTERVALOS ENTORNOS FUNCIONES INTERVALOS DE EXTREMOS a y b INTERVALO ABIERTO (a,b) =, es decir el conjunto de números reales comprendidos entre a y b, excluyendo a a y b. ( ) recta real R a b INTERVALO CERRADO, luego son los números

Más detalles

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA FUNCIÓN Y RELACIÓN RELACION Dados los conjuntos A =

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES

CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES CÁLCULO DIFERENCIAL E INTEGRAL I FUNCIONES 1. Funciones Una función consta de dos conjuntos, llamados dominio y contradominio, y de una regla de correspondencia que permite asociarle a cada elemento del

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8.

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8. Funciones I Una función es una regla que relaciona los elementos de dos conjuntos y, es decir a todos los elementos del conjunto, que llamaremos dominio se le asigna por medio de alguna regla, uno y sólo

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,

( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Guía de Funciones Cuadráticas

Guía de Funciones Cuadráticas Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no

Más detalles

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada.

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada. Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada Habilidad: 4 E.M. 8 Racionamiento Matemático/ Comprensión, Aplicación/ A.S.E. Valores/

Más detalles

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:. EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

LA INTERCEPCIÓN DE LA PARABOLA CON EL EJE X, depende del signo del Discriminante. >0, la parábola intercepta al eje OX en dos puntos.

LA INTERCEPCIÓN DE LA PARABOLA CON EL EJE X, depende del signo del Discriminante. >0, la parábola intercepta al eje OX en dos puntos. AX +BX+C=0, representa la ecuación general de segundo grado, a la cual se asocia la función de segundo grado representada por: F(x)= AX +BX+C En ella se define: : Aquel o aquellos que toma x para el cual

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

Factorización. 1) Al factorizar 6x 2 x 2 uno de los factores es. A) 2x + 2. B) 3x + 2. C) 2x 2. D) 3x 2

Factorización. 1) Al factorizar 6x 2 x 2 uno de los factores es. A) 2x + 2. B) 3x + 2. C) 2x 2. D) 3x 2 www.matematicagauss.com Factorización 1) Al factorizar 6x x uno de los factores es A) x + B) x + x x ) Al factorizar a b 4 + 4b uno de los factores es A) 1 + b B) a b a b + a b ) En la factorización completa

Más detalles

Una curva del plano correspondiente a la gráfica de una función si y sólo si ninguna recta vertical intercepta a la curva más de una vez

Una curva del plano correspondiente a la gráfica de una función si y sólo si ninguna recta vertical intercepta a la curva más de una vez Función Una función f de un conjunto D a un conjunto E, es una regla de correspondencia que asigna a cada elemento x de D un elemento único y de E. Características de las funciones Dominio de una función:

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x Gráfico Exponencial, Polinominal y Cuadrático Grafico de la funcion exponencial F(x)=a^ x, con a > 1 F(x)= 2^x Rec: R+ F(x):creciente en su recorrido ( la curva crece de izquierda a derecha) Asintótica

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS.- Son aquellas cuya expresión algebraica es un polinomio. El grado del polinomio es el grado de la función polinómica. Ejemplos.- f ( x) = 3 g ( x) = x + 1 h

Más detalles

Álgebra y trigonometría: Gráficas de ecuaciones y funciones

Álgebra y trigonometría: Gráficas de ecuaciones y funciones Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia

Más detalles

Ejercicios de funciones

Ejercicios de funciones Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

TEMA 7. FUNCIONES ELEMENTALES

TEMA 7. FUNCIONES ELEMENTALES TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica

Más detalles

TEMA FUNCIONES 4º ESO

TEMA FUNCIONES 4º ESO TEMA FUNCIONES 4º ESO 1) Definiciones: Concepto de función. Dominio y recorrido de una función. Función inyectiva. Gráfica de una función. (pág. 158) 2) Cálculo del dominio de una función 3) Cálculo de

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

, x es la variable independiente e y es la variable dependiente.

, x es la variable independiente e y es la variable dependiente. INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN

Más detalles

INSTITUCIÓN EDUCATIVA SANTA TERESA DE JESÚS IBAGUÉ - TOLIMA GUIA No.4 ALGEBRA DOCENTE: EDGARD RODRIGUEZ USECHE GRADO : NOVENO

INSTITUCIÓN EDUCATIVA SANTA TERESA DE JESÚS IBAGUÉ - TOLIMA GUIA No.4 ALGEBRA DOCENTE: EDGARD RODRIGUEZ USECHE GRADO : NOVENO TEMA: ECUACIÓN DE LA LÍNEA RECTA Las coordenadas cartesianas o coordenadas rectangulares son un ejemplo de coordenadas ortogonales usadas en espacios euclídeos caracterizadas por la existencia de dos ejes

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II C u r s o : Matemática 3º Medio Material Nº MT-11 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II INTERSECCIÓN CON EL EJE Y La parábola asociada a la función = a + b + c siempre intersecta al eje de

Más detalles

Curso Propedéutico de Cálculo Sesión 1: Funciones

Curso Propedéutico de Cálculo Sesión 1: Funciones Curso Propedéutico de Cálculo Sesión 1: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 Esquema 1 2 El cálculo se basa en las propiedades de los

Más detalles

Clase 3 Funciones lineal y cuadrática

Clase 3 Funciones lineal y cuadrática Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Función lineal Definición Una relación de la forma f(x) = mx+n, donde m, n R, se llama función lineal

Más detalles

Lección 50. Funciones II. Plano cartesiano

Lección 50. Funciones II. Plano cartesiano Lección 50 Funciones II Plano cartesiano Un sistema de coordenadas rectangulares o cartesianas, llamado también plano cartesiano o plano xy, está formado por dos rectas coordenadas perpendiculares (rectas

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

Funciones cuadráticas: valor mínimo, valor máximo y el vértice

Funciones cuadráticas: valor mínimo, valor máximo y el vértice Funciones cuadráticas: valor mínimo, valor máximo y el vértice Definiciones Si la gráfica de una función sube en el plano de izquierda a derecha, se dice que es creciente en ese intervalo. Definiciones

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1

EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f(2) y f(-3) de las siguientes funciones: 1 EJERCICIOS DE REFUERZO FUNCIONES 1) Calcula f(0), f(1), f(-1), f() y f(-3) de las siguientes funciones: 1 a) f () b)f () 3 c) f () ) Calcula f(3) f(-1) f(4) y f(-4) 4º ESO B d) f () 3) Cuáles de las siguientes

Más detalles

Capitulo VI: Funciones.

Capitulo VI: Funciones. Funciones o Aplicaciones: Capitulo VI: Funciones. Ejemplo de función: Sean: A = {, 2, 3 } B = { a, b, c, d, e } F = { (;a) (2;b) (3;e) } es una función de A en B, porque a cada elemento de A, le corresponde

Más detalles

2.4 Analizando gráficas de funciones cuadráticas

2.4 Analizando gráficas de funciones cuadráticas 2.4 Analizando gráficas de funciones cuadráticas Definiciones Si la gráfica de una función sube de izquierda a derecha, se dice que es creciente en ese intervalo. Una función f se dice que es creciente

Más detalles

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general

Más detalles

Este trabajo debe realizarce después de haber trabajado el taller virtual

Este trabajo debe realizarce después de haber trabajado el taller virtual Este trabajo debe realizarce después de haber trabajado el taller virtual qué se encuentra en la http://ceciba.escuelaing.edu.co/mre página bajo la pestaña de Talleres Virtuales.. Para las guientes funciones:

Más detalles

Universidad de Costa Rica Proyecto MATEM Curso Precálculo Décimo 2017 Guía para los exámenes parciales ÁLGEBRA Y GEOMETRÍA ANALÍTICA

Universidad de Costa Rica Proyecto MATEM Curso Precálculo Décimo 2017 Guía para los exámenes parciales ÁLGEBRA Y GEOMETRÍA ANALÍTICA Universidad de Costa Rica Proyecto MATEM Curso Precálculo Décimo 2017 Guía para los exámenes parciales I PARCIAL SÁBADO 22 DE ABRIL, 8:00 a.m. ÁLGEBRA Y GEOMETRÍA ANALÍTICA 1 2 Objetivos Contenidos Observaciones

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

Bloque 3. Análisis. 2. Tipos de funciones

Bloque 3. Análisis. 2. Tipos de funciones Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

9 Funciones. Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. Unidad 9: Funciones

9 Funciones. Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. Unidad 9: Funciones 9 Funciones LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. G. W. Leibniz Busca en la web El

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( ( A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

Fundación Uno. 1. Función valor absoluto (modular). Gráfica y propiedades.

Fundación Uno. 1. Función valor absoluto (modular). Gráfica y propiedades. ENCUENTRO # 30 TEMA: Funciones de variable real. CONTENIDOS: 1. Función valor absoluto (modular). Gráfica y propiedades. 2. Función cúbica. Gráfica y propiedades. 3. Función inversa. 4. Función raíz cuadrada.

Más detalles

CAPÍTULO III RELACIONES Y FUNCIONES

CAPÍTULO III RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES 41 CAPÍTULO III RELACIONES Y FUNCIONES 3.1 RELACIONES 1 Una relación R de un conjunto A a un conjunto B asigna a cada par (a,b) en A x B exactamente uno de los enunciados siguientes:

Más detalles

La gráfica de la ecuación y = x 2

La gráfica de la ecuación y = x 2 INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a

Más detalles

Capítulo 4 FUNCIONES Versión Beta 1.0

Capítulo 4 FUNCIONES Versión Beta 1.0 Capítulo 4 FUNCIONES Versión Beta 1.0 mathspace.jimdo@gmail.com www.mathspace.jimdo.com Tabla de contenido Capítulo 4...1 FUNCIONES...1 4.1. ALGUNAS APLICACIONES...2 4.2. FUNCIÓN...2 4.2.1. Funciones reales...3

Más detalles

que asocia a cada número entero su triple menos dos:

que asocia a cada número entero su triple menos dos: Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina

Más detalles

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS. Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

Funciones elementales: polinómica, racional y con radicales

Funciones elementales: polinómica, racional y con radicales 8 Funciones elementales: polinómica, racional y con radicales LECTURA INICIAL Las parábolas y las hipérbolas son elementos muy utilizados en las representaciones artísticas o arquitectónicas, para medir

Más detalles

Universidad de Costa Rica Instituto Tecnológico de Costa Rica

Universidad de Costa Rica Instituto Tecnológico de Costa Rica Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO DÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL 2016 I PARCIAL ÁLGEBRA Y GEOMETRÍA ANALÍTICA

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I

REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I FUNCIONES Instructivo de trabajo Autor: Ing. Roger J. Chirinos S., MSc. Ciudad Ojeda,

Más detalles

Funciones algebraicas.

Funciones algebraicas. UNIDAD 9: UTILICEMOS LAS FUNCIONES ALGEBRAICAS. Funciones algebraicas..1 Funciones polinomiales. Estudiaremos las funciones siguientes: constante, lineal, cuadrática y cúbica. Función constante. Las funciones

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL 2016 I PARCIAL ÁLGEBRA Y GEOMETRÍA ANALÍTICA

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

SOLUCIONARIO Composición de funciones y función inversa

SOLUCIONARIO Composición de funciones y función inversa SOLUCIONARIO Composición de funciones y función inversa SGUICES04MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Composición de funciones y función inversa Ítem Alternativa E Comprensión A 3 D 4 B 5 C 6 D 7 A

Más detalles

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0) 1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango

Más detalles

Función inversa. ExMa-MA0125 W. Poveda 1

Función inversa. ExMa-MA0125 W. Poveda 1 Función inversa. ExMa-MA01 W. Poveda 1 Objetivos. Interpretar y aplicar los conceptos de función inyectiva, función sobreyectiva función biyectiva, función invertible Función Inyectiva De nición. Sea una

Más detalles

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Probabilidad. Habilidad: Valores/ Actitudes:

4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Probabilidad. Habilidad: Valores/ Actitudes: Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Probabilidad Habilidad: Racionamiento Matemático/ Comprensión, Aplicación/ A.S.E. 4 E.M. 7 Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y

Más detalles

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III Colegio Raimapu Departamento de Matemática GUIA Nº. FUNCIONES º MEDIO 1. Si f(x)= x + 10 y f(b)= 0, entonces b es igual a: A) 0 B) 0 C) 10 D) 0 E) -10. Si f(x) = x ; Cuál(es) de las siguientes afirmaciones

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

4) Se dispusieron los números del 1 al 36 en el siguiente cuadrado:

4) Se dispusieron los números del 1 al 36 en el siguiente cuadrado: TRABAJO PRÁCTICO Módulo : Funciones Función. Dominio. Codominio. Imagen. Representación gráfica de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas y biyectivas. Funciones especiales

Más detalles

INDICE Capitulo 1. Ecuaciones Fundamentos Teóricos Capitulo 2. Polinomios

INDICE Capitulo 1. Ecuaciones Fundamentos Teóricos Capitulo 2. Polinomios INDICE Prólogo X Introducción XI Capitulo 1. Ecuaciones 1 Revisión de Álgebra Elemental 1 1. Conceptos Básicos 1 1.a. Expresión algebraica 1, 1.b. Valor numérico de un polinomio 2 2. Operaciones con Polinomios

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cuadráticas Qué es una Función Cuadrática? Es una función cuya regla de correspondencia está dada por un polinomio cuadrático, tal como Es una función cuya regla puede escribirse en la forma

Más detalles