se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles."

Transcripción

1 TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias restricciones. Ejemplo: Una empresa siempre quiere maximizar su beneficio, pero está sujeto a una serie de restricciones: capital disponible, número de empleados, horas de trabajo, medios de producción, etc. Cuando la función que queremos optimizar es lineal f(x, y) = a x +b y + c; y las restricciones a las que está sometida son inecuaciones lineales de la forma d x + e y j j se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles. A la solución que hace que la función objetivo sea máxima o mínima se le llama solución óptima, y es precisamente la que nosotros buscamos. RESOLUCIÓN DE UN PROBLEMA DE PROGRAMACIÓN LINEAL 1º- Calculamos los puntos de corte de cada una de las restricciones con los ejes coordenados. Resolvemos el sistema de inecuaciones formado por las restricciones. 2º- Dibujamos el conjunto de soluciones factibles. 3º- Resolvemos el sistema de inecuaciones formado por las restricciones. 4º- Buscamos la solución óptima (el máximo o el mínimo) Método analítico: La solución óptima de un problema de programación lineal siempre estará en los vértices del conjunto de las soluciones factibles. 1

2 EJEMPLO Una fábrica produce chaquetas y pantalones y, para ello utiliza tres máquinas (una de cortar, otra de coser y otra de teñir) Fabricar una chaqueta representa utilizar la máquina de cortar una hora, la de coser, tres horas y la de teñir, una hora. Fabricar unos pantalones representa utilizar la máquina de cortar una hora, la de coser, una hora y la de teñir, ninguna hora. La máquina de teñir se puede usar durante tres horas, la de coser doce y la de cortar siete horas. Todo lo que se fabrica es vendido y se obtiene un beneficio de ocho euros por cada chaqueta y cinco por cada pantalón. Cómo emplearíamos las máquinas para conseguir el beneficio máximo? SOLUCIÓN CORTAR COSER TEÑIR X= CHAQUETAS Y= PANTALONES La función beneficio B(x,y) = 8.x + 5.y debe ser máximo. x +y 7 (1) x=0 A (0, 7) y=0 B (7, 0) 3x + y 12 (2) x=0 C (0, 12) y=0 D (4, 0) x 3 (3) x=0 E (0, y=0 F (,0) Vamos a representar gráficamente las inecuaciones (1), (2) y (3) 2

3 La zona que tienen en común es la delimitada por los puntos G (3,0); D (0,7); H; I Vamos a calcular las coordenadas de H, I Como H es el punto de corte de las rectas (1) y (2) e I el de las rectas (1) y (3); tendremos que resolver dos sistemas de ecuaciones: - H x + y =7 - x y = -7 x +y =7 3x + y =12-1.E 1 3x + y = y =7 Luego H (2 5,4 5) 2x = 5 y = x= 2' 5 2 y = 4 5 3

4 - I x + y =7 3 + y = 7 x = 3 y = 7-3 y = 4 Luego I (3,4) Sustituimos los puntos G (3,0); D (0,7); H (2 5,4 5); I (3,4) en la función beneficio y obtenemos: B (x, y) = 8.x + 5.y G (3, 0) B (H) = = = 24 D (0, 7) B (H) = = = 35 H (2 5, 4 5) B (H) = = = 42 5 I (3, 4) B (H) = = = 44 Como vemos el beneficio máximo es 44, que se corresponde para I (3, 4). Por lo tanto, para obtener un beneficio máximo debemos fabricar 3 chaquetas y 4 pantalones. 4

5 EJERCICIOS 1.- Un ganadero debe suministrar diariamente en el pienso de sus vacas un mínimo de, 4 mg de vitamina A y 6 mg de vitamina B. Para ello dispone de dos tipos de pienso P y Q, cuyos vitamínicos por kilogramo son: A B P 2 6 Q 4 3 Si el kilogramo de pienso P vale 0 4 y el de Q 0 6, cómo deben mezclarse los piensos para suministrar las vitaminas requeridas con un coste mínimo? 2.- Una confitería es famosa por sus dos especialidades en tartas: la tarta de lima y la tarta imperial. Para su elaboración, la tarta imperial requiere medio kilo de azúcar y 8 huevos, y su precio de venta es de 8 ; mientras que la tarta de lima necesita 1 kilo de azúcar y 8 huevos y tiene un precio de venta de 10. En el almacén quedan 10 kilos de azúcar y 120 huevos. Cuántas unidades de cada especialidad han de producirse para obtener el mayor ingreso posible? 3.- Un orfebre fabrica dos tipos de joyas. La unidad de tipo A se hace con 1 gramo de oro y 1 5 de plata, y se vende a 25. La unidad de tipo B se vende a 30 y lleva 1 5 gramos de oro y 1 de plata. Si solo se dispone de 750 gramos de cada metal, cuántas joyas se han de fabricar de cada tipo para obtener el máximo beneficio? 4.- Un autobús Madrid-París ofrece plazas para fumadores al precio de 10 y para no fumadores a 60. Al no fumador se le deja llevar 50 Kg de peso y al fumador 20 Kg. Si el autobús tiene 90 plazas y admite un equipaje de hasta 3000 Kg, cuál debería de ser la oferta de la compañía si se quiere obtener el máximo beneficio? 5.- Un pastelero fabrica dos tipos de tarta P y Q, para lo que dispone de tres ingredientes A, B, C. Dispone de 150 Kg de A, 90 Kg de B y 150 Kg de C. Para fabricar una tarta de tipo P debe mezclar 1 Kg de A, 1 Kg de B y 2 Kg de C. Para fabricar una tarta de tipo Q debe mezclar 5 Kg de A, 2 Kg de B y 1 Kg de C. Si las tartas de tipo P se venden a 10 y las de tipo Q a 23, qué cantidad debe fabricar de cada clase para maximizar sus ingresos? 5

6 6.- Un sastre tiene 80 metros de tela de algodón y 120 metros de tela de lana. Un traje de caballero requiere 1m de algodón y 3m de lana, y un vestido de señora necesita para su fabricación 2m de cada una de las telas. Calcular el número de trajes y vestidos que debe confeccionar el sastre para maximizar los beneficios, sabiendo que un traje y un vestido se venden al mismo precio. 6

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES

1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES La La ˆ PÁGINA 106, EJERCICIO 40 1º BACHILLERATO MATEMATICAS CCSS PROBLEMAS TEMA 5 - INECUACIONES Averigua qué números naturales verican que al sumarles los dos siguientes se obtiene un número superior

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

Análisis de componentes principales. a.k.a.: PCA Principal components analysis

Análisis de componentes principales. a.k.a.: PCA Principal components analysis Análisis de componentes principales a.k.a.: PCA Principal components analysis 1 Outline Motivación Derivación Ejemplos 2 Motivación general Tenemos un dataset X con n datos y p dimensiones, centrado (medias

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Tema 8 Los mercados de activos financieros

Tema 8 Los mercados de activos financieros Ejercicios resueltos de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

Ej TEMA 3: Producción y Empresa 2015/16

Ej TEMA 3: Producción y Empresa 2015/16 Ej TEMA 3: Producción y Empresa 2015/16 FUNCIÓN DE PRODUCCIÓN y LEY DE RENDIMIENTOS DECRECIENTES 1. Una fábrica de turrón utiliza una máquina y trabajo. La cantidad producida, medida en kilos de turrón

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL UN POCO DE HISTORIA. Programación Lineal

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL UN POCO DE HISTORIA. Programación Lineal Indicadores PROGRAMACIÓN LINEAL Analiza el conjunto solución de un sistema de inecuaciones lineales graficando la región relacionada al sistema. Calcula los vértices de una región poligonal resolviendo

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

4Soluciones a los ejercicios y problemas

4Soluciones a los ejercicios y problemas PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2015

PRUEBA ESPECÍFICA PRUEBA 2015 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2015 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria.

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria. La energía, el motor de la vida: La energía mecánica En este apartado vamos a retomar la energía mecánica que vimos al principio del bloque, pero con algo más de profundidad. Recuerda que la energía mecánica

Más detalles

NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS

NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS 1º ESO Curso 2013/2014 NOMBRE: Nº: NOTA: FALTAS: TILDES: NOTA FINAL: 1.- El domingo salí de casa con una cierta cantidad de dinero. Pagué 860 céntimos en la

Más detalles

EJERCICIOS PAU PROGRAMACION LINEAL

EJERCICIOS PAU PROGRAMACION LINEAL (J01) Una fábrica produce bombillas normales a 900 ptas cada una y focos halógenos a 1200 ptas cada uno. La capacidad máxima diaria de fabricación es de 1000, entre bombillas normales y focos halógenos,

Más detalles

POTENCIA. L TOTAL = 8.000 Joule

POTENCIA. L TOTAL = 8.000 Joule - 1 - Este tema a veces lo toman. Prestale atención que no es muy difícil. Supongamos que quiero levantar varias bolsas de arena hasta el piso de arriba. Pongamos algunos valores para que sea mas fácil

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Calendarización anual Programa de matemáticas 3º básico

Calendarización anual Programa de matemáticas 3º básico Calendarización anual Programa de matemáticas 3º básico Esta calendarización está pensada para un horario de 8 horas pedagógicas semanales. 1. Se basa en el trabajo de profesoras que han trabajado con

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

PLANIFICACIÓN DE ACTIVIDADES DEL MÓDULO (PRESUPUESTOS) PLAN PRESENCIAL

PLANIFICACIÓN DE ACTIVIDADES DEL MÓDULO (PRESUPUESTOS) PLAN PRESENCIAL No de clase 1 2 Fecha UNIDAD TEMÁTICA Introducción Presupuesto tradicional OBJETIVOS identifica los elementos del presupuesto y los clasifica Sabe reconocer las ventajas de la presupuestación en las tareas

Más detalles

EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE

EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE ANÁLISIS DE LOS ÍTEMS MÁS FÁCILES Y MÁS DIFÍCILES Autores Martha Castillo Grace Vesga Grupo Evaluación de la Educación Básica y Media Subdirección

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

Manual Gran Hotel. El inventario por destino nos da todas las existencias de los artículos en el destino seleccionado.

Manual Gran Hotel. El inventario por destino nos da todas las existencias de los artículos en el destino seleccionado. 11. Inventarios Desde esta pantalla obtenemos los inventarios. Aparecen los botones de los inventarios posibles: 11.1. Inventario por destino El inventario por destino nos da todas las existencias de los

Más detalles

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º)

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º) FICHA 1 NÚMEROS I Fecha límite de entrega: 3 de noviembre 1. Calcula el resultado de las siguientes sumas de enteros positivos y negativos: a) 5+(-)= b) 5+(-7)= c) (-)+5= d) (-7)+5= e) (-5)+(-7)=. Calcula

Más detalles

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas.

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas. Junio 94 a) Puede fabricar: 12/7 de modelo a y 12/7 del modelo B 10 del modelo A y 10 del B 20 del modelo A y 10 del B 20 del modelo A y 0 del B 4 del modelo A y 0 del B b) Debe vender 20 coches de tipo

Más detalles

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p)

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) Unidad 3 OPCIÓN A 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) La ecuación que relaciona Q p y Q v es: Q p =

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x. 2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

EL CALOR Y LA TEMPERATURA

EL CALOR Y LA TEMPERATURA EL CALOR Y LA TEMPERATURA Prof.- Juan Sanmartín 4º Curso de E.S.O. 1 INTERCAMBIO DEL CALOR COMO FORMA DE TRANSFERENCIA DE ENERGÍA Pese a que los cambios que pueden producirse en los sistemas son muy variados,

Más detalles

Contabilidad de Costos

Contabilidad de Costos Contabilidad de Costos 1 Sesión No. 4 Nombre: Control y Evaluación de los Elementos del Costo Contextualización Qué es la valuación de inventarios? Los inventarios es uno de los conceptos más importantes

Más detalles

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo.

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. Mediante el modelo de Hertz o Simulación de Montecarlo, trataremos

Más detalles

AUTOEVALUACIÓN TEMA 7 ANALISIS PATRIMONIAL

AUTOEVALUACIÓN TEMA 7 ANALISIS PATRIMONIAL AUTOEVALUACIÓN TEMA 7 ANALISIS PATRIMONIAL 1) La bodega de elaboración de cava navideño Codorñú presenta los siguientes elementos patrimoniales: Bancos 2.000.000 Proveedores 22.000.000 Obligaciones 10.000.000

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =... Proporcionalidad y porcentajes Esquema de la unidad Curso:... Fecha:... PROPORCIONALIDAD PROPORCIÓN Una proporción es la igualdad de...... a b = Los términos a y d se llaman... Los términos b y c se llaman...

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

FUNCIÓN LINEAL. Ejercicio nº 1.- Representa estas rectas: b) y x 2. Ejercicio nº 2.- Representa gráficamente estas rectas: Ejercicio nº 3.

FUNCIÓN LINEAL. Ejercicio nº 1.- Representa estas rectas: b) y x 2. Ejercicio nº 2.- Representa gráficamente estas rectas: Ejercicio nº 3. FUNCIÓN LINEAL Ejercicio nº.- Representa estas rectas: a) y x b) y x c) y 4 Ejercicio nº.- Representa gráficamente estas rectas: a) y x b) y x 4 c) y Ejercicio nº.- Representa gráficamente las siguientes

Más detalles

A l g o r i t m o s. Seguridad en Internet ALGORITMOS. www.upibi.net

A l g o r i t m o s. Seguridad en Internet ALGORITMOS. www.upibi.net ALGORITMOS Objetivos Introducir el concepto de algoritmo y sus características. Mostrar las diferentes técnicas para representar algoritmos. Introducir la programación estructurada y el diseño descendiente.

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

Buenos tiempos para el negocio ovino

Buenos tiempos para el negocio ovino Buenos tiempos para el negocio ovino Montevideo, 27 de abril de 2010 Visión de un productor: establecimiento El Chapadón Ricardo y Magela Pereda (Tambores, Paysandú) Características del establecimiento

Más detalles

1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES

1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES 1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES ˆ PÁGINA 131, EJERCICIO 32 Esteban tiene dos teléfonos, uno jo y uno móvil. Las curvas de la gura representan el gasto mensual en euros de cada

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 2. TRABAJO. UNIDADES Y EQUIVALENCIAS...2 3. FORMAS DE ENERGÍA...3 A) Energía. Unidades y equivalencias...3 B) Formas

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

PLANTILLA DOCUMENTO SIMPLE V6

PLANTILLA DOCUMENTO SIMPLE V6 PLANTILLA DOCUMENTO SIMPLE V6 1 Articulo 5 ATRIBUTOS DE UNA SOLUCIÓN DE PLANIFICACIÓN DINÁMICA 2 ATRIBUTO 1: CONECTIVIDAD VÍA API S La clave que diferencia una solución estándar de programación y una solución

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo:

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: EJEMPLO. Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: limento Calorías Proteínas (gr Precio (ptas B allar el coste mínimo de una dieta formada sólo por este tipo de alimentos

Más detalles