Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV"

Transcripción

1 Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos, Joseyvis Gruber, Luindy Sección 01 Marzo, 2010

2 Deflexión de vigas Una buena cantidad de estructuras se construyen a base de vigas, siendo ésta barras prismáticas y largas que están diseñadas para soportar cargas aplicadas en varios puntos a lo largo de ellas. No obstante, debido a la distribución de las cargas o fuerzas a las que se encuentran sometidas y la manera en que están apoyadas, las vigas se pueden desviar o distorsionar por acción de su propio peso, la influencia de cargas externas o una combinación de ambas. Esta desviación se conoce como deflexión y se puede determinar por una ecuación diferencial lineal de cuarto orden, relativamente sencilla. Construcción de la Ecuación Diferencial de la Deflexión de una Viga Para empezar, supongamos que una viga de longitud L es homogénea y tiene una sección transversal uniforme en toda su longitud como se muestra en la Figura 1.1 (a). Cuando no recibe carga alguna, incluyendo su propio peso, la curva que une los centroides de las secciones transversales es una recta que se llama eje de simetría. Si a la viga se le aplica una carga perpendicular al eje de simetría, debido a su elasticidad, puede distorsionarse como se observa en la Figura 1.1 (b), y el eje de simetría distorsionado resultante se llama curva de desviación, curva elástica o simplemente elástica, que es lo que se conoce como la deflexión de la viga. (a) Eje de simetría (b) Curva elástica Figura 1.1

3 Supongamos que el eje coincide con el eje de simetría, tomado como positivo a la derecha y con origen en 0; y que la desviación representada por el desplazamiento de la curva elástica, es positiva si es hacia abajo. Sea el momento flexionante en un punto a lo largo de la viga, por la teoría de la elasticidad se demuestra que se relaciona con la carga por unidad de longitud mediante la ecuación (1) Como y son dos funciones con la misma variable independiente pero distintas variables dependientes, para que ambas queden expresadas en términos de sabemos que el momento flexionante es proporcional a la curvatura de la elástica: (2) Donde e son constantes, es el módulo de Young de elasticidad del material de la viga e es el momento de inercia de la sección transversal de ésta; y el producto de se denomina rigidez a la flexión. Ahora, según el cálculo diferencial, también sabemos que. Cuando la desviación es pequeña, la pendiente de la curva elástica es tan pequeña que su cuadrado es despreciable comparado con 1, de modo que, por lo tanto como la ecuación se transforma en, obteniendo así que la segunda derivada de sea (3) la cual al ser sustituida en la ecuación (1), vemos que la desviación diferencial de cuarto orden satisface la ecuación (4) que al ser una ecuación diferencial no homogénea de orden superior se puede resolver de la forma acostumbrada: se determina teniendo en cuenta que es una raíz de multiplicidad cuatro de la ecuación auxiliar, para después hallar una solución particular por el método de coeficientes indeterminados; o simplemente integramos la ecuación cuatro veces sucesivas.

4 Si es una viga en voladizo, empotrada en un extremo y libre en el otro, la desviación satisfacer las dos condiciones siguientes: debe Para el extremo empotrado en : porque no hay desviación en ese lugar y porque la curva de desviación es tangente al eje x (en otras palabras, la pendiente de la curva de desviación es cero en ese punto). Para el extremo libre en : porque el momento flexionante es cero porque la fuerza cortante es cero Si es una viga simplemente apoyada, con apoyos en ambos extremos, se debe cumplir que y en éstos.

5 EJEMPLO ILUSTRATIVO 1. Viga empotrada Una viga de longitud L está empotrada en ambos extremos. Determine la desviación de esa viga si sostiene una carga constante,, uniformemente distribuida en su longitud; esto es,,. SOLUCIÓN Según lo que acabamos de plantear, la desviación satisface a Puesto que la viga está empotrada en su extremo izquierdo y en su extremo derecho, no hay desviación vertical y la curva elástica es horizontal en esos puntos. Así, las condiciones en la frontera son,,, Como resolveremos integrando cuatro veces sucesivas, podemos expresar ecuación diferencial de variables separables, de modo que como una 1º Integración

6 2º Integración 3º Integración 4º Integración Solución General Ahora bien, para aplicar las condiciones iniciales derivamos la solución general de la ecuación y se obtiene que Sustituyendo las condiciones y tenemos

7 mientras que las condiciones restantes, y, originan las siguientes ecuaciones (1) (2) Como y, el sistema se reduce a (1) (2) Al resolver este sistema mediante eliminación, multiplicando la ecuación (2) por se tiene (1) (2) (3) despejando de la ecuación (3) nos queda que

8 y sustituyendo en la ecuación (1) (4) finalmente despejamos de la ecuación (4) Por lo tanto, la desviación es Para conocer el valor de la máxima desviación producida en la viga, sabemos que ésta ocurre en el punto en que, de modo que la ecuación que me dará la máxima desviación es la cual se puede expresar como es decir, y se despeja el valor de, utilizando la ecuación de segundo grado donde

9 como el menor valor de es, la máxima deflexión ocurre en este punto. Menor valor

10 EJEMPLO ILUSTRATIVO 2. Viga en voladizo Una viga de longitud L está empotrada en ambos extremos. Determine la desviación de esa viga si sostiene una carga constante,, uniformemente distribuida en su longitud; esto es,,. SOLUCIÓN Puesto que la viga está empotrada en su extremo izquierdo no hay desviación vertical y la curva elástica es horizontal en ese punto, mientras que en su extremo derecho como esta libre, la desviación tiende a producirse allí, de modo que la fuerza cortante y el momento flexionante son iguales a cero. Así, las condiciones en la frontera son,,, Igualmente, resolvemos integrando cuatro veces sucesivas, de modo que la solución general de la ecuación es Solución General Ahora bien, para aplicar las condiciones iniciales es necesario derivar tres veces la solución general de la ecuación y se obtiene que Sustituyendo las condiciones y tenemos

11 mientras que las condiciones restantes, y, originan las siguientes ecuaciones (1) (2) despejando de la ecuación (2) nos queda y sustituyendo en la ecuación (1) (3) finalmente despejamos Por lo tanto, la desviación es Y la ecuación que expresa el valor de la máxima desviación producida es

12 la cual se puede expresar como es decir, y se despeja el valor de, utilizando la ecuación de segundo grado donde Como el valor de la raíz es negativo el resultado de serán números imaginarios, lo que significa que no hay extremos relativos (máximos y mínimos) en la pendiente de la curva. Por lo tanto, evaluamos los extremos de la viga para verificar que ocurre en ellos y se obtiene que cuando no hay desviación, pero cuando la desviación máxima ocurre en ese extremo.

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1.

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1. 1.1.7. Solución de ecuaciones por integración directa Barra sección constante Determine la función, (), que satisface el PVF del elemento barra de definido en la ec. (1.14). Se considerando que la fuerza

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura (lsegura@fing.edu.uy) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Resistencia de Materiales Ingeniería en Pesquerías PEM 0633 3 2 8 2.- HISTORIA

Más detalles

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema

Más detalles

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo. 1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

mediante la ecuación, Q la cantidad de radio es función del tiempo t; de modo que Q = Q(t).

mediante la ecuación, Q la cantidad de radio es función del tiempo t; de modo que Q = Q(t). Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones desconocidas. Dependiendo del número de variables independientes respecto de las que se deriva, las ecuaciones

Más detalles

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto. Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION

Más detalles

INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO

INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO 1 INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA RESISTENCIA DE MATERIALES II CÓDIGO 9509-0 NIVEL 02 EXPERIENCIA CÓDIGO C971 Flexión 2 Flexión 1. OBJETIVO GENERAL Determinar, mediante

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

1.1. De los momentos de segundo orden y los ejes principales de inercia

1.1. De los momentos de segundo orden y los ejes principales de inercia I 1. ASPECTOS TEÓRICOS 1.1. De los momentos de segundo orden y los ejes principales de inercia Sea una sección plana de área como la de la figura 1 definido cualquier pareja de ejes perpendiculares en

Más detalles

LEYES DEL MOVIMIENTO DE NEWTON

LEYES DEL MOVIMIENTO DE NEWTON Universidad de Oriente Núcleo Bolívar Curso Básico Matemática IV Sección: 01 LEYES DEL MOVIMIENTO DE NEWTON Profesor: Bachilleres: Cristian Castillo Javier Abreu C.I: 14.517.875 Jesús Sigala C.I: 17.045.285

Más detalles

Manual de Diseño para la Construcción con Acero 216

Manual de Diseño para la Construcción con Acero  216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 217 VI.1.1 Notación especial a, b, c, m, n, da, db, dc, dx E f h Ha-Hb, etc.

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Pendiente en forma polar

Pendiente en forma polar Cálculo vectorial Unidad I.5.. Pendiente de una recta tangente en forma polar M.C. Ángel León Unidad I - Curvas en R ecuaciones paramétricas.5.. Pendiente de una recta tangente en forma polar Para encontrar

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros.

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros. Los cables fleibles y las cadenas se usan para soportar y transmitir cargas entre miembros. En los puentes en suspensión, estos llevan la mayor parte de las cargas. En el análisis de fuerzas, el peso de

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I Hasta ahora vimos: esfuerzos axiales simples: Tracción y Compresión. Flexión: esfuerzo compuesto, Tracción y Compresión en un mismo sólido distanciados por un brazo de palanca (z). A través de la comprensión

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICAS

UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICAS UNIVERSIDAD DE ORIENTE NUCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICAS Profesor: Cristian Castillo. Elaborador por: Bolívar Yunary C.I 16.648.098 Medeiros Nuralis

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

MAXIMOS Y MINIMOS RELATIVOS

MAXIMOS Y MINIMOS RELATIVOS MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

Calcular la diferencia de potencial entre el centro de la esfera y el infinito.

Calcular la diferencia de potencial entre el centro de la esfera y el infinito. Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS A. ANÁLISIS DE UNA ECUACIÓN En la geometría analítica hay dos problemas por resolver: 1. Dada la ecuación de una curva construir una gráfica.. Dadas algunas condiciones

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

APUNTES DE CLASE: PORTICOS

APUNTES DE CLASE: PORTICOS Introducción: Los pórticos están conformados por elementos conectados entre si, que interactúan para distribuir los esfuerzos y dar rigidez al sistema. El sistema compuesto por dintel parante funciona

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS INDICE Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS 1 La barra elástica 1.1 Introducción 1.2 Ley de Hooke. 1.3 Teorema de Mohr 1.4 EI concepto «rigidez de resorte» 1.5 Relación entre rigidez

Más detalles

Diagramas de características en barras de eje curvo. Arcos

Diagramas de características en barras de eje curvo. Arcos Diagramas de características en barras de eje curvo Arcos Consideraremos en nuestro análisis, un elemento diferencial de barra de eje curvo que forma parte de una estructura plana en equilibrio, perteneciente

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16.1 OBJETIVO El objetivo de este módulo es obtener el movimiento horizontal provocado por una acción horizontal en la cabeza del pilote, de una forma

Más detalles

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c)

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c) EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN 1.-Si en la expresión xcos(cρt) "x" es espacio, "t" es tiempo y ρ densidad, la constante C tiene dimensiones de: a) ML -3 T b) L c) M -1 L 3 T -1 d) L -1

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES Ecuaciones Diferenciales 1 ECUACIONES DIFERENCIALES Una ecuación diferencial contiene una función desconocida y algunas de sus derivadas. He aquí algunos ejemplos: (1) y ' =

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles