Por qué incorporar el álgebra a las asignaturas?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Por qué incorporar el álgebra a las asignaturas?"

Transcripción

1 Álgebra

2 1 Sesión No. 1 Nombre: Fundamentos de álgebra. Parte I. Objetivo: al finalizar la sesión, el estudiante aplicará correctamente los operadores matemáticos y el redondeo de decimales en diferentes operaciones algebraicas. Además conocerá la diferencia entre razones, proporciones y porcentajes al realizar cálculos, y los diferentes métodos de factorización de un polinomio y su uso. Contextualización Por qué incorporar el álgebra a las asignaturas? El álgebra es un pilar imprescindible de las matemáticas que nos permite afrontar el estudio de todas las ciencias relacionadas principalmente con las ingenierías, la computación, la economía, la biología, etc. Es por eso que el correcto manejo de operadores, números reales y decimales, proporciones entre dos o más cantidades, etc., es fundamental para luego resolver operaciones algebraicas más complejas, las cuales son usadas en muchas áreas como la optimización y el cálculo diferencial, que requieren soluciones. He aquí la razón porque lo que es de vital importancia incorporar el álgebra en las diferentes asignaturas. Sabes cuáles son los fundamentos del álgebra?

3 2 Introducción al Tema Porque la importancia de los fundamentos del álgebra? Para obtener una respuesta correcta de una operación donde se manejen paréntesis, además de los operadores matemáticos, es importante conocer el orden en que deben ser manejados, una vez que se tenga el resultado y éste contenga decimales, se tomará la decisión del redondeo a partir de condiciones que veremos en esta sesión. Es fundamental conocer la diferencia entre razones, proporciones y porcentajes para su correcta aplicación en problemas que los manejen. Existen diferentes formas para realizar la factorización de polinomios y la decisión de utilizar uno de ellos, mucho depende del tipo de polinomio.

4 3 Explicación 1.1 Prioridad de operadores y uso de paréntesis Cuál es el orden de las operaciones cuando se realiza un cálculo? Al realizarse varias operaciones matemáticas se deberán aplicar las siguientes reglas para ordenarlas: Cuando una operación incluye paréntesis, corchetes o llaves, las operaciones se resuelven de adentro hacia afuera. Los paréntesis como [ ], { }, se utilizan para situaciones en las que intervienen varias operaciones secuenciadas. Se deberán resolver primero las potencias o raíces, productos y cocientes y, en seguida las sumas y las restas. Ejemplo: resuelve las siguientes expresiones aritméticas Para sumar (5 + 7) 6, se debe efectuar primero (5 + 7) y después restar 6 al resultado. (5+7) 6 = 12 6 = 6 Para resolver 4 + ( ) Primero se resuelve la potencia 5 2 = 5x5 = 25 Después se realiza la suma que está entre paréntesis: (6+25 = 31) Finalmente se resuelve la operación completa: 4+31 = 35 El resultado correcto entonces es 35.

5 4 1.2 Redondeo de decimales Cómo se aplica el redondeo y para qué? Cuando se realizan operaciones numéricas generalmente se obtienen números con decimales, algunos de ellos con gran cantidad y que no aportan información que sea relevante. Para trabajar con la cantidad de decimales deseados se aplica el redondeo, que consiste en evaluar el decimal que ocupa el lugar siguiente al número de decimales con los que se quiere trabajar. Si el valor es mayor o igual a 5, se incrementa en una unidad el último dígito fijado, de lo contrario sólo se trunca la cifra. Por ejemplo, se desea redondear al tercer decimal las siguientes cantidades: => => Cálculo de razones, proporciones y porcentajes Cuáles son sus semejanzas y sus diferencias? Se le llama razón a la comparación que se hace entre dos o más cantidades y generalmente se expresa con una fracción. Por ejemplo cuando se dice que la razón de la cantidad de mujeres y hombres en un grupo es de 4/5, quiere decir que por cada cuatro mujeres hay 5 hombres. Una proporción es la igualdad de dos razones. Siguiendo con el ejemplo anterior, otra persona puede referirse a que en el grupo por cada ocho mujeres hay 10 hombres. Ambas razones son equivalentes y entonces se habla de proporciones.

6 5 Las proporciones pueden ser directas cuando el cociente de las dos variables permanece constante o son inversas cuando lo mismo ocurre pero con su producto. El porcentaje es un tipo de proporcionalidad directa, en la cual la totalidad es considerada como un 100%. 1.4 Números reales A qué se les llama números reales? Un número real es cualquier número racional o irracional y puede ser expresado por un número entero, un decimal periódico o exacto o, por un decimal con infinitas cifras no periódicas. Los números reales se clasifican según se muestra en la imagen. Los números reales pueden verse como etiquetas para puntos a lo largo de una línea horizontal. Allí ellos miden la distancia, a la derecha o izquierda (la distancia dirigida), a un punto fijo llamado origen y marcado con 0.

7 6 1.5 Polinomios y factorización Cómo factorizar un polinomio? Un polinomio es una expresión algebraica formada por constantes y variables, las cuales son involucradas a través de operaciones como suma, resta y multiplicación. Un polinomio también puede expresarse como un producto de factores, los cuales se pueden obtener aplicando diferentes métodos de factorización por ejemplo: factor común, factorización por agrupación de términos, factorización de un trinomio cuadrado perfecto, factorización de una diferencia de cuadrados, suma o diferencia de cubos, etc. Para saber cuál tipo de factorización se puede aplicar, primero se observa el polinomio para identificar sus características. Es posible aplicar diferentes métodos de factorización a un mismo polinomio.

8 7 Conclusión Las reglas para orden de operaciones se aplican cuando al realizar un cálculo se deben llevar a cabo varias operaciones que contengan paréntesis, corchetes, operadores, radicales, exponentes, etc. es probable que la respuesta contenga una gran cantidad de decimales, por lo que es aconsejable aplicar la regla del redondeo para dejar el número de decimales con el que se desea trabajar. Las razones, proporciones y porcentajes representan una fracción de un todo, sin embargo tienen conceptos y usos diferentes. Los polinomios son expresiones algebraicas que pueden ser factorizadas para un mejor manejo en operaciones matemáticas. Con el uso de los polinomios Qué tipo de expresiones matemáticas se pueden tener? Cómo se les llama a las expresiones que no contienen en signo de igualdad?

9 8 Para aprender más Qué métodos de factorización existen? Dávila, E. (s/f). Factorización de polinomios. Información disponible en: TORIZACION%20DE%20POLINOMIOS.htm Cómo realizar operaciones cuando hay paréntesis y varios operadores? Murrias, M. (2003). Orden de operaciones. Información disponible en:

10 9 Actividad de Aprendizaje Instrucciones: Con la finalidad de reforzar los conocimientos adquiridos a lo largo de esta sesión, deberás realizar las investigaciones solicitadas y resolver los ejercicios propuestos, donde aplicarás los conocimientos y habilidades obtenidos. Desarrollo: 1.- Encuentra una razón equivalente para cada una de las siguientes fracciones: 2.- Calcula el porcentaje solicitado para cada una de las cantidades, aplicando el redondeo hasta 3 decimales: 22% de % de % de % de Realiza una investigación de al menos una cuartilla sobre la clasificación de los números reales y las características de cada caso. 4.- Investiga sobre los diferentes tipos de factorización de polinomios mencionando sus características y agregando dos ejemplos de cada caso. Recuerda que esta actividad te ayudará a entender y apropiarte del conocimiento de reglas para resolver operaciones con números reales y de la

11 10 factorización de polinomios, los cuales te facilitarán su aplicación en temas más complejos. Guarda tu actividad en un formato PDF y entrégala de acuerdo a las indicaciones de tu profesor. Esta actividad representa el 5% de tu calificación y se tomará en cuenta lo siguiente: Carátula. Desarrollo completo y correcto de los ejercicios y actividades solicitadas. Referencias bibliográficas. Ortografía y redacción. Respuestas completas y correctas.

12 11 Bibliografía Allen, R. (1997). Álgebra Intermedia. México: Prentice Hall. Cibergrafía Dávila, E. (s/f). Factorización de polinomios. Información disponible en: ACION%20DE%20POLINOMIOS.htm Murrias, M. (2003). Orden de operaciones. Información disponible en: Pérez, M. (2008). Los números reales. Información disponible en: S/a (s/f). Factorización de polinomios. Documento disponible en: es.pdf

Por qué expresar de manera algebraica?

Por qué expresar de manera algebraica? Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 1 Nombre: Fundamentos Matemáticos Contextualización Las matemáticas financieras se encargan del estudio del valor del dinero a través del tiempo, combinando las variables

Más detalles

Matemáticas. Sesión # 1. Fundamentos del Álgebra.

Matemáticas. Sesión # 1. Fundamentos del Álgebra. Matemáticas Sesión # 1. Fundamentos del Álgebra. Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para el manejo

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales

Más detalles

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS. Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las

Más detalles

La asignatura de Matemática estimula el desarrollo de diversas habilidades:

La asignatura de Matemática estimula el desarrollo de diversas habilidades: La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,

Más detalles

Matemáticas. Sesión #2. Polinomios y expresiones racionales.

Matemáticas. Sesión #2. Polinomios y expresiones racionales. Matemáticas Sesión #2. Polinomios y expresiones racionales. Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas,

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 2 Nombre: Fundamentos Matemáticos Contextualización En el área de las inversiones, algunos fundamentos matemáticos son una parte muy importante, ya que los intereses

Más detalles

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : Página Internet : http://math.uprag.edu I. Título

Más detalles

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0 Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las

Más detalles

COLEGIO NUESTRA SEÑORA DEL CARMEN HATILLO, PUERTO RICO

COLEGIO NUESTRA SEÑORA DEL CARMEN HATILLO, PUERTO RICO MATERIA: Matemática 6to grado MES/AÑO: agosto septiembre 2015 LIBRO: Matemáticas para Crecer (Santillana) DIAS agosto 10-14 17-21 -escribirá en palabras los números. -escribirá números cardinales en notación

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Guía para la Evaluación Diagnóstica en Matemáticas. Programa

Guía para la Evaluación Diagnóstica en Matemáticas. Programa UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

1. Números naturales y sistema de numeración decimal

1. Números naturales y sistema de numeración decimal 1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones

Más detalles

Es aquel formado por todos los elementos involucrados en el problema.

Es aquel formado por todos los elementos involucrados en el problema. 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: "ð" Sea el conjunto A = ða, bð ð a ð A ð b ð A ð c ð A CONCEPTO DE SUBCONJUNTO: "ð" A ð B ð ð x ð A ð x ð B, ð x ð ð ð A, ð A A ð A, ð A CONJUNTOS ESPECIALES

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 4 Nombre: Ecuaciones Cuadráticas Objetivo de la asignatura: En esta sesión el estudiante aplicará los principales métodos de solución de raíces de polinomios de

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

Carrera: Ingeniería Química. Asignatura: Algebra. Área del Conocimiento: Ciencias Básicas. Algebra Licenciatura Ingeniero Químico

Carrera: Ingeniería Química. Asignatura: Algebra. Área del Conocimiento: Ciencias Básicas. Algebra Licenciatura Ingeniero Químico Carrera: Ingeniería Química Asignatura: Algebra Área del Conocimiento: Ciencias Básicas Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia (h/semana) Teoría:

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 4 Nombre: Interés simple Contextualización El cálculo de intereses es parte importante de la vida diaria, ya que la economía se mueve aceleradamente minuto a minuto

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL

UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL OBJETIVOS Expresar, representar en la recta graduada y ordenar números decimales. Emplear los números decimales para estimar, cuantificar e interpretar

Más detalles

RESUMEN DEL MÓDULO. Aprendizajes Esperados

RESUMEN DEL MÓDULO. Aprendizajes Esperados RESUMEN DEL MÓDULO MÓDULO: INTRODUCCIÓN A LA MATEMÁTICA UNIDAD DE COMPETENCIA: Resolver problemas matemáticos relacionados con el mundo de la economía, los negocios, la tecnología y otros fenómenos socioeconómicos,

Más detalles

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS CURSO VALOR DURACIÓN MAESTRA :MATEMATICA ACTUALIZADA 1 : ½ CREDITO : 1 SEMESTRE : Everis Aixa Sánchez Introducción El Programa de Matemáticas del Departamento

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

TRABAJO INDEPENDIENTE

TRABAJO INDEPENDIENTE TRABAJO INDEPENDIENTE Docente Asignatura MATEMÁTICAS I Grado y grupo 1 No. de actividad 1 Semana 1 Semestre Modalidad Trabajo individual ( ) Trabajo en equipo ( ) Tema Números Reales. Objetivo de la actividad

Más detalles

EJERCICIOS RESUELTOS DE NÚMEROS REALES

EJERCICIOS RESUELTOS DE NÚMEROS REALES EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

CURSO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. U2: POTENCIA Y RAÍCES.

CURSO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. U2: POTENCIA Y RAÍCES. CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 1º ESO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. Origen y evolución de los números. Sistemas de numeración aditivos y posicionales. El conjunto de

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍODO DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍODO DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 1 PROFESORA: Selene Carballo UNIDAD Nº 1 NOMBRE DE LA UNIDAD: Trabajemos con números reales OBJETIVO DE LA UNIDAD: Realizar operaciones con los números reales

Más detalles

PROGRAMACIÓN DIDÁCTICA

PROGRAMACIÓN DIDÁCTICA PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Números racionales, decimales y potencias. Créditos 3 (30 horas) Bloque II Proporcionalidad Créditos 2 (20 horas)

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

INSTITUTO TECNOLÓGICO DE SALTILLO SUBDIRECCIÓN ACADÉMICA

INSTITUTO TECNOLÓGICO DE SALTILLO SUBDIRECCIÓN ACADÉMICA INSTITUTO TECNOLÓGICO DE SALTILLO SUBDIRECCIÓN ACADÉMICA INSTRUMENTACIÓN DIDÁCTICA DEPARTAMENTO CIENCIAS BÁSICAS ASIGNATURA ÁLGEBRA Clave de la asignatura Número de unidades_4 Carrera: TODAS LAS INGENIERÍAS

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que

Más detalles

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111; PRE REQ.: BR.; No. CRED.: 4 I. PRESENTACIÓN: Este curso tiene como propósito,

Más detalles

PROGRAMA ANALÍTICO MATEMÁTICAS I

PROGRAMA ANALÍTICO MATEMÁTICAS I UNIVERSIDAD AGRO-ALIMENTARIA DE MAO IEES-UAAM ESTATUTO DE LA NUEVA UNIVERSIDAD VIRTUAL DOMINICANA Asamblea Universitaria Rectoría (Rector) Oficina Aseg. Calidad Colegio de Egresados Consejo Social Promoción

Más detalles

PROGRAMA DE ALGEBRA II (PRIMER AÑO)

PROGRAMA DE ALGEBRA II (PRIMER AÑO) PROGRAMA DE ALGEBRA II (PRIMER AÑO) DATOS GENERALES LINEA CURRICULAR: CIENCIAS EXACTAS CARÁCTER: TEÓRICO HORAS / SESIÓN: 1.5 HORAS / SEMANA: 4.5 HORAS TOTALES: 80 SESIONES TOTALES: 54 UBICACIÓN El curso

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Selene Carballo UNIDAD Nº 2 NOMBRE DE LA UNIDAD: Operemos con

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

COLEGIO EPISCOPAL SANTÍSIMA TRINIDAD PONCE, PUERTO RICO PRONTUARIO

COLEGIO EPISCOPAL SANTÍSIMA TRINIDAD PONCE, PUERTO RICO PRONTUARIO COLEGIO EPISCOPAL SANTÍSIMA TRINIDAD PONCE, PUERTO RICO 2013-2014 PRONTUARIO Título del curso: Valor: Profesor: Número de horas: Pre-requisito: Descripción del curso: Objetivos del curso: Álgebra I 1 crédito

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

COLEGIO HERNANDO DURAN DUSSAN GUÍA DE NIVELACIÓN SEGUNDO PERIODO ALGEBRA 801 Y

COLEGIO HERNANDO DURAN DUSSAN GUÍA DE NIVELACIÓN SEGUNDO PERIODO ALGEBRA 801 Y COLEGIO HERNANDO DURAN DUSSAN GUÍA DE NIVELACIÓN SEGUNDO PERIODO ALGEBRA 80 Y 80 Leer documento y resolver ejercicios en hoja tipo eamen (ecelente presentación) LECTURA: LOS POLINOMIOS Tomado con fines

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Unidad 1. Números racionales e irracionales

Unidad 1. Números racionales e irracionales Unidad 1. Números racionales e irracionales CONTENIDOS * Máximo común divisor y mínimo común múltiplo de dos o más números. * Fracción equivalente. * Fracción irreducible. * Suma, resta, multiplicación

Más detalles

CURSO UNICO DE INGRESO 2010

CURSO UNICO DE INGRESO 2010 INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para

Más detalles

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno.

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno. Versión en formato pdf Nombre de la Materia: Clave: No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno Objetivo: MATEMÁTICAS BÁSICAS PR000-T Es

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

CRITERIOS EVALUACIÓN MATEMÁTICAS

CRITERIOS EVALUACIÓN MATEMÁTICAS CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Signos del álgebra. Notación algebraica. a) Signos de operación. b) Signos de relación. c) Signos de agrupación. a) Los signos de operación son:

Signos del álgebra. Notación algebraica. a) Signos de operación. b) Signos de relación. c) Signos de agrupación. a) Los signos de operación son: Notación algebraica Al estudiar el lenguaje algebraico observamos la relación entre signos, letras y números a lo que llamamos notación algebraica. A continuación estudiaremos los elementos que son básicos

Más detalles

CONTENIDOS MINIMOS DE REFUERZO DE MATEMATICAS DE 2º DE ESO 1 Los números naturales

CONTENIDOS MINIMOS DE REFUERZO DE MATEMATICAS DE 2º DE ESO 1 Los números naturales CONTENIDOS MINIMOS DE REFUERZO DE MATEMATICAS DE 2º DE ESO 1 Los números naturales Los números naturales El sistema de numeración decimal : Órdenes de unidades. Equivalencias. números grandes. Millones.

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111 ; PRE REQ.: BR. ; No. CRED.: 4 I. PRESENTACIÓN: Este curso tiene

Más detalles

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9 ÍNDICE Presentación... 9 Unidad I Conjuntos 10 Antes de empezar... 12 1 Idea intuitiva de un conjunto... 13 2 Cardinalidad de un conjunto... 20 3 Concepto de conjunto universal, subconjunto; conjuntos

Más detalles

A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación.

A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación. UNIDADES DIDÁCTICAS 3º DIVERSIFICACIÓN A continuación se recogen los bloques de contenido por unidad del primer trimestre, directamente relacionados con los criterios de evaluación. 1 UNIDADES DIDÁCTICAS

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO COORDINACION GENERAL DEL BACHILLERATO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE UBICACIÓN DE LA ASIGNATURA: TRONCO COMUN HORAS SEMANALES 4 HORAS TOTALES

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares

Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS LICENCIATURA DE INGENIERÍA EN PRODUCCIÓN INDUSTRIAL UNIDAD DE APRENDIZAJE (UA): ÁLGEBRA Créditos institucionales de la UA: 6 Material visual:

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA Héctor Abad Gómez Departamento de Ciencias Específicas Página 1 de 7

UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA Héctor Abad Gómez Departamento de Ciencias Específicas Página 1 de 7 Página 1 de 7 APROBADO EN EL COMITÉ DE CARRERA GESTION DE SERVICIOS DE SALUD ACTA NRO. 15-2011 Mayo 18 de 2011 PROGRAMA DE ADMINISTRACION EN SALUD El presente formato tiene la finalidad de unificar la

Más detalles

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS 4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS OBJETIVOS 1. Conocer, diferenciar y operar con cualquier número en cualquiera de sus formatos usando las aproximaciones adecuadas. 2. Conocer la importancia

Más detalles

Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria:

Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: TEMA 0: REPASO DE NÚMEROS. Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: Suma de números enteros 1. Si los sumandos son del mismo

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O.

6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O. 6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O. 6.1 OBJETIVOS GENERALES DEL CURSO Reconocer las diferentes clases de números, y operar correctamente con ellos. Aplicaciones aritméticas. Conocer y manejar la

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO COORDINACION GENERAL DEL BACHILLERATO PROGRAMA DE MATEMATICAS I PRIMER SEMESTRE UBICACIÓN DE LA ASIGNATURA: TRONCO COMUN PRIMER SEMESTRE HORAS SEMANALES

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad

Más detalles

TEMA 2: NÚMEROS ENTEROS

TEMA 2: NÚMEROS ENTEROS TEMA : NÚMEROS ENTEROS 1. NÚMEROS ENTEROS Los números naturales se utilizan para expresar matemáticamente multitud de situaciones cotidianas. Sin embargo, a veces no sirven para cuantificar las situaciones

Más detalles

DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O.

DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. CRITERIOS DE EVALUACIÓN Los siguientes criterios de evaluación

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS. : 15 semanas lectivas

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS. : 15 semanas lectivas UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS Asignatura Duración Carga horaria Semanal Global Categoría : MATEMÁTICA : 15 semanas lectivas

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles