Capítulo 5 Sistemas lineales de segundo orden

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 5 Sistemas lineales de segundo orden"

Transcripción

1 Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d a 2 y 2 d 2 + a dy d + a 0 y = bf Si a 0 0: 2 d 2 y dy +2ζ d2 d + y = K p f donde 2 = a2, 2 ζ = a y K a 0 a p = b.lasnuevasconsanesson: 0 a 0 es la consane de iempo o período naural del sisema ζ es el coeficiene o facor de amoriguamieno K p es la ganancia del proceso, iene el mismo significado que para lossisemasdeprimer orden Tomando variables de desviación y condiciones iniciales iguales a cero, la función de ransferencia queda como: K Gs= p 2 s 2 +2ζs+ Los sisemas de segundo orden se pueden clasificar en res caegorías:. Procesos consisenes en dos o más procesos de primer orden, en serie o en paralelo, por los que fluye maeria o energía. 2. Sisemas inherenes de segundo orden. No son frecuenes en las indusria,algunos ejemplos son los manómeros o las válvulas neumáicas. 3. Un proceso con su conrolador presena una dinámica de segundo orden o de orden superior. 5.2 Respuesa a una enrada en escalón La salida de un sisema de segundo orden a una enrada de ipo escalón es: ys= K p M 2 s +2ζs+ s Para poder descomponer la respuesa en fracciones simples y poder obener la respuesa en iempo real hay que hallar las raíces del denominador: s,s 2 = ζ ± ζ2 57

2 58 Sisemas lineales de segundo orden En función del valor del coeficiene de amoriguamieno se pueden planear res casos Respuesa sobreamoriguada Es la respuesa obenida cuando ζ>, lasdossolucionessonreales.lasalidaconeliempoes: y = e ζ cosh ζ 2 ζ a + senh ζ 2 K p M ζ 2 En ese caso la respuesa no presena oscilaciones. Cuano mayor es el coeficiene de amoriguamieno más amoriguada es la respuesa, el sisema necesia más iempo para alcanzar el nuevo esado esacionario. La ganancia K p iene el mismo senido físico que para los sisemas de primer orden Respuesa críicamene amoriguada Cuando solo hay una solución real repeida, ζ =: y K p M = + e Respuesa subamoriguada Se obiene cuando las soluciones son complejas conjugadas, obviamene,paraqueesosepro- duzca ζ<. Lafunciónrespuesaobenidaes: y K p M = e ζ sen ζ 2 ζ 2 + aan ζ2 ζ y MKp Figura 5.. Respuesa de diferenes sisemas de segundo orden a un escalón unidad según su coeficiene de amoriguamieno.

3 5.3 Linealización 59 La respuesa es oscilaoria y se pueden definir los siguienes parámeroscaracerísicos: Overshoo disparo: Overshoo = A B = exp πζ ζ 2 El overshoo aumena al disminuir el coeficiene de amoriguamieno. Para elcasolímie de que el coeficiene de amoriguamieno ienda a, el overshoo ambién iende a. Razón de disminución decay raio: Razón de disminución = C A = exp 2πζ = overshoo 2 ζ 2 Período de oscilación: T = ν = 2π ω = 2π ζ 2 Si ζ =0, T =2π es el período naural de oscilación. Tiempo de respuesa response ime: Un sisema subamoriguado alcanza su valor esacionario de manera oscilaoria cuando el iempo se hace infinio. A efecos prácicos se oma como iempo de respuesa el necesario para que la salida del sisema esé deno del ± 5% de la respuesa esacionaria y permanezca en ese inervalo. Rise ime: De esa manera se caraceriza la velocidad con la que responde el sisema subamoriguado. Se define como el iempo que arda el sisema en alcanzar su valor esacionario por primera vez. Es imporane resalar que cuano menor es el coeficiene de amoriguamieno, menor es el rise ime pero mayor es el overshoo. 5.3 Linealización Habiualmene solo se raan de manera analíica sisemas lineales de hasa segundo orden. Los sisemas lineales de orden superior o no lineales se acosumbran a esudiar recurriendo a la uilización de sisemas numéricos como es, por ejemplo, la resolución de ecuaciones diferenciales por el méodo de Euler o de Runge-Kua o su simplificación a sisemas lineales mediane su linealización. A C ±5% y MKp B T Rise ime Tiempo de respuesa Figura 5.2. Represenación gráfica de los parámeros que caracerizan la respuesa de un sisema de segundo orden subamoriguado.

4 60 Sisemas lineales de segundo orden La linealización de un proceso es aproximar sisemas lineales a sisemas no lineales. Se uiliza ampliamene en el esudio de la dinámica de procesos y el diseño de sisemas de conrol por las siguienes razones:. Es posible enconrar soluciones analíicas a los sisemas lineales. Además se puede realizar esudios compleos y generales del comporamieno delossisemaslinealesindependienemene de los valores pariculares de los parámeros y de las variables del sisema. 2. Todos los desarrollos significaivos úiles, hasa hace unos pocos años, para el desarrollo efecivo de sisemas de conrol se ha limiado a procesos lineales. Para llevar a cabo la linealización se recurre a desarrollos en serie de Taylor para una o más variables. 5.4 Rerasos Uno de los elemeno no lineales más habiuales en los procesos alimenarioseslaexisenciade rerasos. En el capíulo 7 se esudiará su influencia en el conrol de procesos. Sea el siguiene proceso de primer orden con un reraso: f Proceso de y y d primer orden Reraso Figura 5.3. Diagrama de bloques de un proceso de primer orden con un reraso igual a d. Para el sisema de primer orden: G p = L[y] L[f] = K p p s + yparaelrerasoec.3.6,propiedad4,aparado3.2: L[y d ] L[y] donde d es el reraso o iempo muero. Por ano el proceso puede represenarse como: =e d s fs ys L[y d ] G p e ds Figura 5.4. Diagrama de bloques de la figura anerior una vez realizadas las ransformadas de Laplace. La función de ransferencia global para el proceso de primer orden y el reraso será: L[y d ] L[f] = K p p s + e d s El reraso se puede simplificar maemáicamene mediane la aproximación de Padé, que no es más que el desarrollo en serie de Taylor: e d s d 2 s + d 2 s 5.5 Problemas Problema 5..

5 5.5 Problemas 6 Deerminar la respuesa dinámica de un sisema de segundo orden sobreamoriguado y de un sisema subamoriguado a las siguienes enradas: a impulso unidad b pulso unidad de 5 minuos de duración c sen2 Deerminar la respuesa esacionaria resulane. Problema 5.2. Sea la siguiene función de ransferencia de segundo orden: Gs= ys ms = s 2 + s + Se inroduce un cambio en escalón de alura 5 en el sisema, calcular: a el overshoo, expresado como ano por cieno b la razón de disminución c el valor máximo de y d el rise ime e el periodo de oscilación Problema 5.3. Cuál de los siguienes sisemas de segundo orden es equivalene a dos sisemas de primer orden en serie y cuál no? a Gs= s 2 + s +2 b Gs= s 2 +.9s c Gs= s 2 +5 d Gs= s 2 + s +2 Problema 5.4. Sea un sisema de segundo orden con una enrada sinusoidal, m=sen 2. Demosrar que la respuesa esacionaria es:. una función sinusoidal 2. iene como ampliud ζ 2 4 ζ 3. iene como desfase ϕ = aan 4 2 Solución Ese problema se puede resolver resolviendo direcamene la ecuacióndiferencialouilizando la función de ransferencia de un sisema lineal de segundo orden. Ecuación diferencial La ecuación a resolver es: 2 d 2 y d dy +2ζ + y =sen 2 d Para resolver analíicamene la ecuación se puede recurrir amaxima.pararesolverlaecuación diferencial se ha supueso que: y =0= dy d =0 =0 lo que es razonable asumiendo que se esá rabajando con variables de desviación. En el enunciado del problema no se dice si se raa de un sisema subamoriguadoζ<, críicamene amoriguado ζ =osobreamoriguadoζ>.. Sisema sobreamoriguado: Laconsanedeiempo yelcoeficienedeamoriguamieno ζ son siempre posiivas. Por ano, si ζ> el produco 2 ζ ζ +será posiivo. Resolviendo la ecuación:

6 62 Sisemas lineales de segundo orden C au^2* diffy,,2+2*zea*au* diffy,+y=sin2* d D 2 d y ζ+ d2 d 2 y 2 + y = sin 2 C2 avaluey,=0,0 D2 0 C3 avaluediffy,,=0,0 D3 0 C4 desolved,y Is 2 ζ ζ + posiive, negaive, or zero? posiive D4 y = e ζ ζ ζ ζ ζ cos 2 ζ 6 2 ζ sin ζ ζ sinh ζ ζ cosh ζ ζ La respuea obenida se puede dividir en dos pares diferenciadas, una ransioria y ora esacionaria. La pare ransioria de la respuesa es: e ζ ζ ζ ζ ζ sinh + ζ ζ ζ cosh ζ ζ La pare más imporane es la porción esacionaria, ya que será la que marque la dinámica ras los insanes iniciales. Despreciando la pare ransioria seobienelasiguienerespuesa: 4 cos 2 ζ y= 6 2 ζ sin ζ Aplicando la propiedad rigonomérica: x senα + y cosα = z senα + ϕ donde z 2 = x 2 + y 2 y ϕ = aany/x ysabiendoque: x = se obiene: y = ζ ζ 6 2 ζ y= sen 2 + aan 8 ζ 6 2 ζ Se comprueba que se raa, al como dice el problema, de: i. Una función sinusoidal ii. La ampliud es iii. El desfase es ϕ = aan = ζ ζ ζ 4 2

7 5.5 Problemas Críicamene amoriguado: En ese caso, el produco 2 ζ ζ + omará el valor de cero. En ese caso la respuesa obenida al resolver la ecuación diferencial con la ayuda de Maxima es: y = ζ ζ ζ ζ ζ e ζ 6 2 ζ cos 2 ζ 6 2 ζ sin ζ Se observa que la pare esacionaria de la respuesa es igual al caso anerio, sólamene cambia el érmino ransiorio. 3. Sisema subamoriguado: El produco 2 ζ ζ + omará un valor negaivo. La solución de la ecuación diferencial es: e ζ ζ ζ ζ ζ sin + y = 2 4 cos 2 ζ 6 2 ζ sin ζ ζ ζ ζ cos ζ ζ De nuevo, el érmino esacionario es el mismo, solo hay cambios en la pare ransioria de la respuesa. Función de ransferencia La función de ransferencia del sisema propueso por el problema es: G = ys ms = 2 s +2ζs+ La enrada a ese sisema es m=sen 2, realizando la ransformada de Laplace: La respuesa del sisema será: ms= 2 s 2 +4 y=l Gms = L 2 2 s +2ζs+ s 2 +4 Realizando el cálculo para un sisema sobreamoriguado se obiene: C il/au^2*s^2+2*zea*au*s+*2/s^2+4,s, Is 2 ζ ζ + posiive, negaive, or zero? posiive D e ζ ζ ζ ζ ζ sinh + 4 cos 2 ζ 6 2 ζ sin ζ ζ ζ ζ cosh ζ ζ Evidenemene se obiene el mismo resulado que resolviendo la ecuación diferencial. Se puede realizar la ransformada inversa de Laplace para un sisema críicamene amoriguado y para un sisema subamoriguado con resulados análogos.

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

Tema 4: Fuentes y generadores

Tema 4: Fuentes y generadores Tema 4: Fuenes y generadores Fuenes de alimenación: : convieren ensión ac en ensión dc E. Mandado, e al. 995 Generadores de funciones: Fuene de señal calibrada y esable Aplicaciones: obención de respuesa

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en:

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en: Sisemas Físicos Dependiendo de los elemenos del sisema, los podemos clasificar en: Sisemas elécricos Sisemas mecánicos Sisemas elecromecánicos Sisemas de fluídos Sisemas ermodinámicos Sisemas Físicos En

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Análisis espectral Tareas

Análisis espectral Tareas Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2 Fundamenos de Elecrónica - Análisis de Circuios en Corriene Alerna 1 Análisis de Circuios en Corriene Alerna 1. Inroducción: Coninuando con el esudio de los principios básicos que rigen el comporamieno

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de:

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de: 1 MPLIFICDOES OPECIONLES CON DIODOS OJEIVOS DE PENDIZJE l erminar la lecura de ese capíulo sobre amplificadores operacionales con diodos, será capaz de: Dibujar el circuio de un recificador de media onda

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

Introducción al Análisis de Circuitos Eléctricos

Introducción al Análisis de Circuitos Eléctricos Universidad Auónoma de Madrid Escuela Poliécnica Superior Inroducción al Análisis de Circuios Elécricos TEMA ESTUDIO DE CIRCUITOS EN RÉGIMEN PERMANENTE SINUSOIDAL Jesús Bescós Cano Fabriio Tiburi Paramio

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

6.- Señales digitales

6.- Señales digitales EAL - #3-6.- Señales digiales Dado un mensaje digial (p.ej. ) exisen diversos méodos para ransmiirlo como una señal elécrica (señal digial), algunos de los mas comunes, suponiendo ransmisión sincrónica,

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica Universidad Nacional de Rosario Faculad de Ciencias Exacas, Ingeniería y Agrimensura Escuela de Ingeniería Elecrónica Deparameno de Elecrónica EECRÓNICA III RECIFICACIÓN Federico Miyara AÑO 00 B05.0 Riobamba

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS **

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** Revisa de Economía Aplicada E Número 53 (vol. XVIII), 2010, págs. 163 a 183 A Observaorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** GONZALO FERNÁNDEZ-DE-CÓRDOBA Universidad

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE Evaluación de Proyecos de Inversión 4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE La generación de indicadores de renabilidad de los proyecos de inversión, surge como respuesa a la necesidad de disponer

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

Fundamentos del Análisis de Fourier

Fundamentos del Análisis de Fourier Fundamenos del Análisis de Fourier Camilo José Carrillo González Deparameno de Enxeñería Elécrica Escola écnica Superior de Enxeñeiros Indusriáis Universidade de Vigo Vigo, 3 Índice Índice PRÓLOGO v I.

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

Diagnóstico y reparaciones automotrices con osciloscopio

Diagnóstico y reparaciones automotrices con osciloscopio Tu Manual combo Fascículo + DD Diagnósico y reparaciones auomorices con osciloscopio Los conroles del osciloscopio Cómo inerprear los oscilogramas Pruebas a sensores y acuadores Mediciones en el bus CAN

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

13.0 COSTOS Y VALORACIÓN ECONÓMICA

13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.1 INTRODUCCIÓN En esa sección, se calcula el valor económico de los impacos ambienales que generará el Proyeco Cruce Aéreo de la Fibra Ópica en el Kp 184+900, el cual

Más detalles

UNIDAD 5: MATRICES Y DETERMINANTES

UNIDAD 5: MATRICES Y DETERMINANTES UNIDD 5: MTRICES Y DETERMINNTES ÍNDICE DE L UNIDD - INTRODUCCIÓN - MTRICES CONCEPTOS BÁSICOS TIPOS DE MTRICES 3- OPERCIONES CON MTRICES 4 4- TRNSFORMCIONES ELEMENTLES EN UN MTRIZ6 5- MTRIZ INVERS 7 6-

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004 Conrol Digial Prácica e Regulación Auomáica I Abel Albero Cuarao Vega 24 e mao e 2004 1. Esquema e conrol igial El esquema básico el conrol igial figura 2) es semejane al el conrol analógico figura 1)

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

ENLOSúltimos quince años, la extensión del método

ENLOSúltimos quince años, la extensión del método Esabilidad y Exaciud de una Exensión del Méodo FDTD Para la Incorporación de Ferrias Parcialmene Magneiadas José A. Pereda, Ana Grande, Oscar Gonále, y Ángel Vegas Deparameno de Ingeniería de Comunicaciones(DICom,

Más detalles

Red adaptativa de conmutación suave para convertidor trifásico en puente activo completo para aplicaciones de vehículos eléctricos

Red adaptativa de conmutación suave para convertidor trifásico en puente activo completo para aplicaciones de vehículos eléctricos 1 Red adapaiva de conmuación suave para converidor rifásico en puene acivo compleo para aplicaciones de vehículos elécricos Absrac En ése arículo se presena el conrol adapaivo de un circuio auxiliar para

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Determinantes Económicos de la Fecundidad de Corto Plazo en Chile. Carla Castillo Laborde.

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Determinantes Económicos de la Fecundidad de Corto Plazo en Chile. Carla Castillo Laborde. Insiuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO 2005 Deerminanes Económicos de la Fecundidad de Coro Plazo en Chile Carla Casillo Laborde. www.economia.puc.cl

Más detalles

EVALUACIÓN DE LOS EFECTOS DE LAS POLÍTICAS DE EXPORTACIÓN Y DE PRODUCTIVIDAD EN LA DISTRIBUCIÓN DEL INGRESO A PARTIR DE MICROSIMULACIONES

EVALUACIÓN DE LOS EFECTOS DE LAS POLÍTICAS DE EXPORTACIÓN Y DE PRODUCTIVIDAD EN LA DISTRIBUCIÓN DEL INGRESO A PARTIR DE MICROSIMULACIONES INVESTIGACIÓN & DESARROLLO, No. 6: 41 60 (2006) ISSN 1814-6333 EVALUACIÓN DE LOS EFECTOS DE LAS POLÍTICAS DE EXPORTACIÓN Y DE PRODUCTIVIDAD EN LA DISTRIBUCIÓN DEL INGRESO A PARTIR DE MICROSIMULACIONES

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final Consorcio de Invesigación Económica y Social (CIES) Concurso de Invesigación CIES - IDRC - Fundación M.J. Busamane 2012 Informe Técnico Final (Agoso 2013) Creación y Desrucción de Empleos en Economías

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXAMEN DE ECONOMETRÍA (enero 010) 1h 15 Apellidos: Nombre: Tes. Cada preguna correca esá valorada con 0.5 punos y cada incorreca resa 0.5 punos 1.- Al conrasar

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

Tema 5 El Transistor MOS

Tema 5 El Transistor MOS FUNAMENTO FÍCO Y TECNOLÓGCO E LA NFORMÁTCA Tema 5 El Transisor MO Agusín Álvarez Marquina Esrucura física y polarización del ransisor nmo de acumulación (ource= Fuene) G (Gae= Puera) (rain= renador) (+)

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008 Solvencia II Los Concepos Básicos Por: P. Aguilar Febrero de 2008 El esquema regulaorio de Solvencia II planea un impaco relevane en el ejercicio de la prácica acuarial. Tal esquema se caraceriza por descansar

Más detalles

TEMA 3 DIGITALIZACIÓN DE SEÑALES: CONVERSIÓN ANALÓGICA/DIGITAL.

TEMA 3 DIGITALIZACIÓN DE SEÑALES: CONVERSIÓN ANALÓGICA/DIGITAL. TEMA 3 DIGITALIZACIÓN DE SEÑALES: CONVERSIÓN ANALÓGICA/DIGITAL. 1 Eapas principales: Muesreo, cuanificación y codificación 1.1 Selección de la frecuencia de muesreo. Teorema del muesreo 1.2 Aliasing y

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA *

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA * CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 988 - JUAN BYRON CORREA FONNEGRA * Inroducción En las úlimas dos décadas en Colombia se ha presenado un aumeno en los esudios sobre economía

Más detalles

ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE INTERÉS DE POLÍTICA DEL BANCO CENTRAL DE COSTA RICA

ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE INTERÉS DE POLÍTICA DEL BANCO CENTRAL DE COSTA RICA BANCO CENTRAL DE COSTA RICA DEPARTAMENTO DE INVESTIGACIONES ECONÓMICAS DIVISIÓN ECONÓMICA DOCUMENTO DE INVESTIGACIÓN DIE-04-2003-DI/R OCTUBRE 2003 ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 ADAPTACION DE LOS TIPOS DE INTERES DE INTERVENCION A LA REGLA DE TAYLOR. UN ANALISIS ECONOMETRICO Carlos Paeiro Rodríguez 1, Deparameno de Análisis

Más detalles

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396 ISSN 0124 4396 ECONOMÍA BORRADORES DE INVESTTI I IGACIÓN No. 87. Enero 2006 Teoría del conrol ópimo: Una guía para principianes! David Bardey y Hélène Bonne UNIVERSIDAD DEL ROSARIO Colegio Mayor de Nuesra

Más detalles