tema 6: ecuaciones curso 2010/2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "tema 6: ecuaciones curso 2010/2011"

Transcripción

1 nombre: ecuaciones apellidos: Una ecuación es un igualdad entre expresiones algebraicas expresión algebraica 1 = expresión algebraica 2 En una ecuación hay dos miembros separados por un signo igual =. El de la izquierda se llama 1 er miembro y el de la derecha es el 2º miembro expresión algebraica 1 = expresión algebraica 2 1º miembro 2º miembro 1. Señala cuáles de los casos siguientes corresponden a ecuaciones ecuación? ecuación? si no si no 8x + 9 = y 6 = 2z +1 xy 2 + 3y 5 2. Dadas las siguientes ecuaciones, señala en cada caso cuál es el primer miembro, cuál es el segundo y cuáles son las incógnitas 1 er miembro 2º miembro incógnitas resolución de una ecuación Resolver una ecuación, encontrar su solución, es encontrar el valor de las incógnitas que hacen iguales ambos miembros de la ecuación.

2 3. Comprueba si los siguientes valores de las incógnitas son soluciones de las ecuaciones planteadas valor del 1 er miembro valor del 2º miembro si/no es x=4 solución? es x=3 solución? es x=2 solución? es x=1 solución? es x=4 solución? es x=3 solución? es x=2 solución? es x=1 solución? es x=8 solución? es x=4 solución? es y=0 solución? es y=1 solución? es a=3 solución? es a=2 solución? 2x = y +1 son x=2, y=3 soluciones? son x=1, y=4 soluciones? son x=3, y=5 soluciones? son x=-2, y=-5 soluciones? 4. Escribe ecuaciones que tengan las soluciones indicadas a=7 x=2, y=5 x=-3 a=3, b=-1 y=0 x=2, y=5, z=1 b=1/2 p=-2, q=-9 2

3 representación gráfica de ecuaciones La mayor parte de los objetos que se estudian en geometría se pueden representar mediante ecuaciones. Las figuras planas (rectas, circunferencias, parábolas, elipses,...) se pueden representar mediante ecuaciones de 2 incógnitas. Las figuras en el espacio (esferas, cilindros, planos, conos, prismas,...) se pueden representar mediante ecuaciones de 3 incógnitas. ejes de coordenadas Para representar figuras en el plano se usan los ejes de coordenadas o los ejes cartesianos. La representación se basa en una idea muy sencilla: identificar cada punto del plano con dos valores, sus coordenadas (x,y) x 1ª coordenada se mide en el eje horizontal y 2ª coordenada se mide en el eje vertical 5. Representa en los ejes de coordenadas los siguientes puntos: A=(6,1); B=(3,0); C=(2,-3); D=(-8,-8); E=(-11,0); F=(-4,7); G=(0,-5); H=(0,4); O=(0,0) 3

4 6. Expresa en lenguaje algebraico la siguiente ecuación: un número es el doble de otro x = 1 er número y = 2º número ecuación Con la ecuación calculada se puede completar una tabla como la siguiente. Se representan los puntos en los ejes de coordenadas. A continuación se unen los puntos dibujados trazando una recta x y punto (x,y) 2 1 (2,1) 6 3 (6,3) -4-2 (-4,-2) 0 0 (0,0) 7. Representa gráficamente la siguiente ecuación: 3x + y = 7 x y 1 punto (x,y) Para ello debes completar primero la tabla. Sustituye en la ecuación el valor, x o y, dado para calcular el que falta. 4

5 8. Expresa en lenguaje algebraico y representa gráficamente la ecuación: la suma de dos números es dos variables ecuación x 0 y punto (x,y) 9. Representa gráficamente la siguiente ecuación: x 3y = 6 x 0-6 y 0 2 punto (x,y) 5

6 ecuaciones de primer grado con una incógnita Vamos a aprender a resolver ecuaciones que sólo tienen una variable (una incógnita) y las que ésta aparece elevada a exponente 1 (primer grado). Este tipo de ecuaciones tienen en general una única solución. Pueden darse algunos casos en los que la ecuación no tiene solución o tiene infinitas soluciones. Para resolver estas ecuaciones se usarán las siguientes reglas: regla de la suma Los términos de la ecuación que están sumando o restando en uno de los miembros de la ecuación pasan al otro cambiendo de signo. regla del producto Los términos de la ecuación que están multiplicando en unos de los miembros pasan al otro dividiendo; si están dividiendo pasan al otro miembro multiplicando. 10. Resuelve las siguientes ecuaciones a. b. 4 5x = 2x + 8 c. d. e. f. 6

7 11. Resuelve las siguientes ecuaciones 7

8 12. La base de un rectángulo es 9cm mayor que su altura. Su perímetro mide 400cm. Calcula las dimensiones de este rectángulo. base, altura 13. Calcula las longitudes de los lados de un triángulo isósceles de perímetro 82cm y cuya base mide 8cm menos que cada uno de los lados iguales. base, lados iguales cada uno 14. He pagado por un bolígrafo, un cuaderno y una carpeta. Si el precio de la carpeta es 5 veces el del cuaderno y este cuesta el doble que el bolígrafo, cuál es el precio de cada artículo? bolígrafo, cuaderno, carpeta 15. Dos hermanas se llevan 3 años y su padre tiene 45. Hace 7 años, la suma de las edades de las hijas era la mitad que la del padre. Qué edad tiene cada hija? hija 1, hija 2 8

9 16. Una madre de 43 años tiene dos hijos de 9 y 11 años. Cuántos años han de transcurrir para que entre los dos hijos igualen la edad de la madre? tiene que pasar 17. La edad actual del una madre es el triple que la de su hija y dentro de 14 años será el doble. Qué edad tiene cada una actualmente? madre, hija 18. Luis y Miguel han comprado dos videojuegos que tenían el mismo precio, pero han conseguido una rebaja del 16% y del 19%, respectivamente. Si Luis pagó 1 26 más que Miguel, cuál era el precio que tenía el videojuego?. precio original videojuegos 19. El precio de un cierto artículo ha pasado de 0 75 la unidad a 0 81 la unidad en el último mes. Cuál ha sido el porcentaje de aumento?. % de aumneto 9

10 20. Un carnicero ha vendido 65 kilos de carne; la de pollo a 3 /kg y la de cerdo a 8 /kg. Si ha recaudado 295, cuántos kilos ha vendido de cada carne?. kg de pollo y kg de cerdo 21. Dos depósitos tienen igual capacidad. Estando llenos de agua, de uno de ellos se sacan 2000 l. y del otro 9000 l., quedando en el primero doble cantidad de agua que en el segundo. Cuál es la capacidad de los depósitos?. 1 er depósito l 2º depósito l 22. Marta decide utilizar un tercio de sus vacaciones para realizar un viaje a Lisboa. Después descansará durante la quinta parte de los días de los que dispone y aún le quedará una semana para ir de camping con unos amigos. Cuántos días de vacaciones tiene Marta? Marta tiene diías de vacaciones 10

11 23. Una persona distribuye su salario neto mensual de la siguiente forma: una quinta parte para el alquiler de la vivienda; el 35% en gastos de alimentación; el 15% lo ingresa en una cuenta de ahorro, y el resto, que son 468, lo destina a gastos diversos. Cuál es el salario neto mensual de dicha persona?. salario: /mes 24. Una moto sale de una ciudad A, se dirige a una ciudad B a una velocidad constante de 70 km/h. A la misma hora sale un coche de la ciudad B hacia la ciudad A circulando por la misma carretera que la moto, a una velocidad constante de 90 km/h. La distancia entre A y B es de 480 km. Al cabo de cuánto tiempo, después de la salidad, se produce el encuentro?. En qué punto de la carretera se produce el encuentro?. t = tiempo que tardan en cruzarse (h) v = velocidad (km/h) e = espacio (km) tiempo que tardan en cruzarse h distancia a la que se cruzan. Desde A km. Desde B km 11

12 25. Un tren de mercancías que circula a 42 km/h es seguido, 3 horas después, por un tren de cercanías que se mueve a una velocidad de 60 km/h. Al cabo de cuántas horas el tren de cercanías alcanza al de mercancías?. A qué distancia del punto de partida está situada la estación en la que coincidirán los dos trenes? t = tiempo (h) v = velocidad (km/h) e = espacio (km) tiempo que tarda en tren en alcanzar al otro h punto de encuentro km desde la estación 26. Una pirámide de 30m de altura y de base cuadrada, tiene un volumen de 2250m3. Halla el lado de la base de la pirámide. l=lado base (m) a=área base (m 2 ) h=altura (m) V=volumen (m 3 ) lado de la base m 12

tema 5: lenguaje algebraico curso 2010/2011

tema 5: lenguaje algebraico curso 2010/2011 IES Montevil tema 5: lenguaje algebraico curso 2010/2011 nombre: apellidos: 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un número La mitad de un número La diferencia

Más detalles

3º ESO. ACTIVIDADES DE RECUPERACIÓN

3º ESO. ACTIVIDADES DE RECUPERACIÓN º ESO. ACTIVIDADES DE RECUPERACIÓN. Opera: [ 7 ( )] (7 ) ( ) :( ) ( ) f) 7 9 c) d) e) 9 : 9 : g) h). Calcula utilizando las propiedades de las potencias. Deja el resultado en forma de potencia: 8 9 9 c)

Más detalles

TEMA 5 - ECUACIONES DE SEGUNDO GRADO Ejercicios Resueltos

TEMA 5 - ECUACIONES DE SEGUNDO GRADO Ejercicios Resueltos TEMA 5 - ECUACIONES DE SEGUNDO GRADO Ejercicios Resueltos Resuelve mentalmente las siguientes ecuaciones: 1 5 5, 5 9 7, 7 4 5 5 1, 1 Resuelve las siguientes ecuaciones: 6 6, 6 7 16 4, 8 7 9 5 + 6, 10 +

Más detalles

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:

Más detalles

tema 10: lenguaje algebraico curso 2009/2010

tema 10: lenguaje algebraico curso 2009/2010 IES Mata Jove tema 10: lenguaje algebraico curso 009/010 nombre: apellidos: 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un número La mitad de un número La diferencia

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

7 ECUACIONES. SISTEMAS DE ECUACIONES

7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.

Más detalles

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números? TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 141

6Soluciones a los ejercicios y problemas PÁGINA 141 PÁGINA Pág. E cuaciones sencillas Resuelve mentalmente. a) b) 6 c) 0 d) e) f) 9 g) h)9 i) 9 a) b) 9 c) d) e) 6 f) g) h) 6 i) Resuelve. a) b) 0 c) 9 9 d) e) 6 f) 8 g) 6 0 h) 8 i) 6 j) 9 6 k) l) 8 m) 6 n)

Más detalles

ECUACIONES 2º E.S.O. Ancho x Largo x + 3. x x ECUACIONES. SIGNIFICADO Y UTILIDAD. Ejemplo: ECUACIONES. SIGNIFICADO Y UTILIDAD

ECUACIONES 2º E.S.O. Ancho x Largo x + 3. x x ECUACIONES. SIGNIFICADO Y UTILIDAD. Ejemplo: ECUACIONES. SIGNIFICADO Y UTILIDAD ECUACIONES. SIGNIFICADO Y UTILIDAD ECUACIONES º E.S.O. Una ecuación epresa, en lenguaje algebraico, una relación entre cantidades cuyo valor, de momento, se desconoce. Ejemplo: La mitad de un número es

Más detalles

6. Ecuaciones de 1. er y 2. o grado

6. Ecuaciones de 1. er y 2. o grado SOLUCIONARIO. Ecuaciones de. er y. o grado. ECUACIONES DE. ER GRADO PIENSA Y CALCULA Resuelve mentalmente: a) + = b) = c) = d) ( )( + ) a) = b) = 7 c) = d) =, = CARNÉ CALCULISTA Calcula con dos decimales:

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS OBJETIVOS MÍNIMOS Realizar operaciones con números enteros [ ] a) 18 ( 8 ) b) [ 1 ( 1 ) ] c) [ ( 8 9) ] 7 ( ) [ ] Realizar operaciones con fracciones 7 1 a) 1 1 b) c) : 1 7 7 1 1 d) : 1 1 e) 1 : 10 1 f)

Más detalles

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 6 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Contenidos 1. Lenguaje algebraico Expresiones algebraicas Traducción de enunciados Valor numérico 2. Monomios Características Suma y resta Producto 3. Ecuaciones Solución de una

Más detalles

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente:

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente: ECUACIONES Ejercicio nº 1.- Dada la ecuación: x 1 x 1 x 5 3x 7 responde razonadamente: a Qué valor obtienes si sustituyes x 3 en el primer miembro? b Qué obtienes si sustituyes x 3 en el segundo miembro?

Más detalles

7. Sistemas de ecuaciones lineales

7. Sistemas de ecuaciones lineales 76 SOLUCIONARIO 7. Sistemas de ecuaciones lineales 1. SISTEMAS LINEALES. RESOLUCIÓN GRÁFICA PIENSA CALCULA a) En qué punto se cortan la gráfica roja la azul del dibujo? s r 3. Aplica el criterio que relaciona

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

a) x + 7 = 2 x = 2 7 Solución: x = 5

a) x + 7 = 2 x = 2 7 Solución: x = 5 º ESO REFUERZO DE MATEMÁTICAS UNIDAD.- ECUACIONES Y SISTEMAS CURSO 0/0 Objetivo.- Usar las reglas de equivalencia para despejar variables en fórmulas Reglas de equivalencia. Para despejar una letra en

Más detalles

8. Ecuaciones de 1. er y 2. o grado

8. Ecuaciones de 1. er y 2. o grado 0 Solucionario. Ecuaciones de. er y. o grado. Ecuaciones de. er grado piensa y calcula Resuelve mentalmente: a) + = b) = c) = d) = a) = b) = c) = d) = CARNÉ CALCULISTA, : C =,; R = 0, APLICA LA TEORÍA

Más detalles

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es?

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I PÁGINA 142 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 3x 8 = 25 Solución: 11 Si a cierta cantidad le restas su tercera parte y le sumas

Más detalles

NOMBRE: 1. Redondea a las centenas de mil los siguientes números:

NOMBRE: 1. Redondea a las centenas de mil los siguientes números: NOMBRE: 1. Redondea a las centenas de mil los siguientes números: a) 6 342 567 b) 12 535 000 c) 542 657 000 d) 67 584 000 2. Si a = 2 3 3 5 7; b = 2 4 3 2 5 7 y c = 2 3 5 7, averigua: a) Si b es múltiplo

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos:

Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos: 7. Ecuaciones y sistemas de primer grado 1. Ecuaciones 1.1. Ecuaciones de primer grado 1.2. Transposición de términos 2. Sistemas de ecuaciones lineales 2.1. Ecuaciones lineales con dos incógnitas. 2.2.

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Siempre se ha dicho que las ecuaciones son muy difíciles. Casi con pronunciar su nombre ya da

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Definiciones Igualdad : Una igualdad se compone de dos expresiones unidas por el signo igual. Una igualdad puede ser: 2x + 3 = 5x 2 Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2

Más detalles

b. 14 x = 4 c. 2 c + 2 cba 2 cqa = 4

b. 14 x = 4 c. 2 c + 2 cba 2 cqa = 4 Curso 016-017 Pág. 1 de 15 UNIDAD 6 ECUACIONES 1. RAÍZ DE UNA ECUACIÓN Actividades de clase 1.1. Comprueba si x = 5 es solución de alguna de estas ecuaciones sin resolverlas: 3x 7 = x [ 10 b. x ] x [ =

Más detalles

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal

Más detalles

TEMA 5 ECUACIONES 2 2, 17

TEMA 5 ECUACIONES 2 2, 17 TEMA ECUACINES.1 Ecuaciones. Solución de una ecuación. ACTIVIDADES DE LA PÁGINA 94 1. Es solución de alguna de las siguientes ecuaciones?. Justifica tu respuesta. a. x 3 11x 1 Sustituimos la incógnita

Más detalles

= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado:

= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado: Hoja de Ejercicios Ecuaciones de primer y segundo grado y problemas 1. Resuelve las siguientes ecuaciones de primer grado: a) x x1 b) x c) x 10 x d) 1x 1 1 x e) x 0 x1 f) x g) x1 x1 h) x x i) x x 1 j)

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

8. EXPRESIONES ALGEBRAICAS

8. EXPRESIONES ALGEBRAICAS 8. EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS El lenguaje algebraico expresa la información matemática mediante números y letras. Las letras la utilizamos para expresar cantidades desconocidas. Javier

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO.

EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. INSTRUCCIONES Estos ejercicios y problemas se realizarán en casa para preparar las pruebas CDI, cada alumno dedicará

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios y problemas. Ecuaciones de er y º grado Resuelve mentalmente las siguientes ecuaciones: 55 5 0 5/, 5/ 6 6 + /, 8 ( ) + ( ) 56 ( )( + ) 0, 57 ( ) + 0 0, / 58 6 5 0, 65 66 + + 5 ( + )( ) + 7,

Más detalles

PROBLEMAS ALGEBRAICOS. 2) La diferencia entre los cuadrados de dos números consecutivos es 71. Calcula dichos números.

PROBLEMAS ALGEBRAICOS. 2) La diferencia entre los cuadrados de dos números consecutivos es 71. Calcula dichos números. PROBLEMAS ALGEBRAICOS 1) La suma de un número y su cuadrado es 4. Calcula dicho número. Sea dicho número La suma del nº y su cuadrado es 4: + = 4 1+ 13 1 = = 6 1± 1 4 ( 4) 1± 13 + 4 = 0 = = = 1 13 = =

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas 1. Si es la edad de Juan, escribe la epresión algebraica de: La mitad de su edad El doble de su edad menos tres El triple de su edad más uno La edad que tendrá dentro de cinco años

Más detalles

TRABAJO DE REPASO PARA 2º ESO

TRABAJO DE REPASO PARA 2º ESO TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 Piensa, tantea y encuentra una solución para estas ecuaciones: a) 5 5 b) 5 1 c) 1 4 d) 1 e) 1 f ) 6 1 Despeja la incógnita y encuentra la solución: a) 6 b) 4 c) 7 d) 7 4 Resuelve las

Más detalles

3x = 12 x = 12 3 x = 4. Fíjate bien

3x = 12 x = 12 3 x = 4. Fíjate bien 1.- ECUACIONES Objetivo 1.- Usar las reglas de equivalencia para despejar incógnitas en una fórmula y aplicarlo para plantear y resolver problemas en diversos contetos Objetivo 2.- Resolver ecuaciones

Más detalles

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones: UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

8. ECUACIONES. SISTEMAS DE ECUACIONES

8. ECUACIONES. SISTEMAS DE ECUACIONES 8. ECUACIONES. SISTEMAS DE ECUACIONES º ESO Def.: Una ecuación es una igualdad entre dos epresiones algebraicas donde aparecen números conocidos (datos) números desconocidos llamados incógnitas. Def.:

Más detalles

1. Números naturales y enteros

1. Números naturales y enteros . Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25 1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR

Más detalles

1 Ecuaciones con dos incógnitas

1 Ecuaciones con dos incógnitas a las Enseñanzas Aplicadas Ecuaciones con dos incógnitas Página 99. Representa las rectas correspondientes a estas ecuaciones: a) y = b) + y = Cuál es la solución común a ambas ecuaciones? a) y = y = y

Más detalles

NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO

NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO 1. Responde a las preguntas y justifica tu respuesta: a) El número 14 es divisor de 56? Explica por qué. b) El número 310 es múltiplo de 31? Explica por qué.

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

PROYECTO # 2 SISTEMAS DE ECUACIONES CON LOS 4 MÉTODOS

PROYECTO # 2 SISTEMAS DE ECUACIONES CON LOS 4 MÉTODOS PROYECTO # 2 SISTEMAS DE ECUACIONES CON LOS 4 MÉTODOS Matemáticas 2 Secundaria 5 Bimestre Prof. Héctor Lagunes Espinosa FECHA DE ENTREGA: 29 DE MAYO DEL 2015 Nombre: - Grado y Grupo: Nota: Escribe todos

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.

MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano. MATEMÁTICA CPU MÓDULO Números reales. Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

TEMA 05 - EXPRESIONES ALGEBRAICAS

TEMA 05 - EXPRESIONES ALGEBRAICAS º ESO TEMA 05 - EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades.

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Ficha 1. Ecuaciones de primer y segundo grado

Ficha 1. Ecuaciones de primer y segundo grado Ficha 1. Ecuaciones de primer y segundo grado Una ecuación de primer grado es una igualdad que puede epresarse de la forma a + b = 0, donde a y b son números reales y a 0. Las ecuaciones de segundo grado

Más detalles

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo: Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

2.- Ecuaciones de primer grado

2.- Ecuaciones de primer grado 3º ESO E UNIDAD 8.- ECUACIONES. SISTEMAS DE ECUACIONES PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

1f 2v 3v 4f 5v 6f 7v 8v 9v 10v 11v 12v 13f 14f 15v 16v 17v 18f 19v 20f 21v 22f 23v 5 - ( ) = -2 3(2 + 3(-7) + 25) = -27

1f 2v 3v 4f 5v 6f 7v 8v 9v 10v 11v 12v 13f 14f 15v 16v 17v 18f 19v 20f 21v 22f 23v 5 - ( ) = -2 3(2 + 3(-7) + 25) = -27 I CUESTIONES TEÓRICAS: 1f v 3v 4f 5v 6f 7v 8v 9v 10v 11v 1v 13f 14f 15v 16v 17v 18f 19v 0f 1v f 3v 4v 5f 6v 7f 8f 9v 30v 31f 3f 33v 34v 35f II OPERACIONES CON NÚMEROS RACIONALES. 1.- Calcula, paso a paso,

Más detalles

Curso º ESO. UNIDAD 8: FUNCIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas (Morón)

Curso º ESO. UNIDAD 8: FUNCIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas (Morón) Curso 2º ESO UNIDAD 8: FUNCIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas (Morón) OBJETIVOS CONTENIDOS PROCEDIMIENTOS 1. Conocer qué es una función y cómo expresarla. 2. Reconocer las

Más detalles

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO ) Calcula el valor de a y B, dando el resultado de la forma más sencilla posible.

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO ) Calcula el valor de a y B, dando el resultado de la forma más sencilla posible. PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009 1) Calcula el valor de a y B, dando el resultado de la forma más sencilla posible. Solución: 2) Rellena la siguiente tabla. En cada columna,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA.

TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA. TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA. 3.1 ECUACIONES Una ecuación es una epresión algebraica relacionada mediante el signo =, en la que las variables se denominan incógnitas. Llamamos primer

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

Departamento de Matemáticas. Nombre:.Grupo:..

Departamento de Matemáticas. Nombre:.Grupo:.. I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

CUADERNO Nº 6 NOMBRE:

CUADERNO Nº 6 NOMBRE: Ecuaciones Contenidos 1. Ecuaciones: ideas básicas Igualdades y ecuaciones Elementos de una ecuación Ecuaciones equivalentes 2. Reglas para resolver una ecuación Sin denominadores Con denominadores Resolución

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL de º de E.S.O. (º Parcial) EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE º E.S.O. PENDIENTES º PARCIAL Fecha tope para entregarlos: 17 de abril de 015 Examen el 3 de abril de 015 I.E.S.

Más detalles

2. Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo?

2. Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo? TEMA 5: ECUACIONES Y SISTEMAS LINEALES DE ECUACIONES ECUACIONES DE PRIMER GRADO Una ecuación es una igualdad algebraica en la que interviene una letra llamada incógnita. El objetivo es descubrir el valor

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Juan José Cervilla Sáez 1 o ESO Nombre: Objetivos: 1. Conocer qué es una ecuación de primer grado. 2. Conocer y aplicar las distintas etapas para resolver una ecuación de primer

Más detalles

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. . RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)

Más detalles

Ecuaciones. Ecuaciones de primer grado con una incógnita.

Ecuaciones. Ecuaciones de primer grado con una incógnita. Ecuaciones Recuerda: Una ecuación es una igualdad algebraica en la cual aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente maor de la incógnita. Solucionar

Más detalles

9 Ecuaciones. de primer grado. 1. El lenguaje algebraico

9 Ecuaciones. de primer grado. 1. El lenguaje algebraico 9 Ecuaciones de primer grado 1. El lenguaje algebraico Calcula el resultado de las siguientes epresiones: a) Tenía 5 y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado mide metros y el

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

1.OPERACIONES CON NÚMEROS

1.OPERACIONES CON NÚMEROS 1.OPERACIONES CON NÚMEROS DECIMALES Y FRACCIONES 1. Expresa en forma de fracción: a) 37 6. b) 5 23. c) 7 0 38. OPERACIONES CON FRACCIONES 2. a) 8 ( 1 6 + 4 3 ) b) 3 4 1 2 5 8 + 3 16 c) 1 1 3 5 4 1 2 d)

Más detalles

Guía 1: PATRONES DE REPETICIÓN

Guía 1: PATRONES DE REPETICIÓN Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.

Más detalles

Sistema de ecuaciones e inecuaciones

Sistema de ecuaciones e inecuaciones 5 Sistema de ecuaciones e inecuaciones 1. Sistemas lineales. Resolución gráfica Piensa y calcula Indica, en cada caso, cómo son las rectas y en qué puntos se cortan: c) r r s P r s s Las rectas r y s son

Más detalles

Ejercicios de ecuaciones y sistemas

Ejercicios de ecuaciones y sistemas Ejercicios de ecuaciones y sistemas 1 Resuelve las siguientes ecuaciones: 1 7x 2 + 21x 28 = 0 2 x 2 + 4x 7 = 0 3 12x 2 3x = 0 4 2 Halla las soluciones de las ecuaciones: 1 2 3Resuelve: 4 1 x 61x 2 + 900

Más detalles

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones . Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal con dos incógnitas es una igualdad algebraica del tipo:

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

MATEMÁTICAS 3º ESO IES LOS CARDONES PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: FECHA DE ENTREGA 03 de Septiembre de 2013.

MATEMÁTICAS 3º ESO IES LOS CARDONES PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: FECHA DE ENTREGA 03 de Septiembre de 2013. MATEMÁTICAS º ESO IES LOS CARDONES 01-01 PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: - ESTRATEGIAS, HABILIDADES, DESTREZAS Y ACTITUDES GENERALES. - NÚMEROS naturales, enteros, racionales y reales. Operaciones.

Más detalles

Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.

Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden. Bloque4 Representa sucesiones de números enteros a partir de una regla dada y viceversa Resuelve problemas que impliquen el uso de ecuaciones de la forma: ax+ b = cx + d, donde los coeficientes son números

Más detalles

4 Ecuaciones e inecuaciones

4 Ecuaciones e inecuaciones Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,

Más detalles

1. a) Qué significa una potencia de exponente negativo?... ; b)

1. a) Qué significa una potencia de exponente negativo?... ; b) MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006

Más detalles

TEMA 3. Algebra. Ejercicios. Matemáticas

TEMA 3. Algebra. Ejercicios. Matemáticas 1 1 Las expresiones algebraicas 1. Traduce a lenguaje algebraico 1) El doble de un número aumentado en la mitad del mismo número. 2) El doble de a, aumentado en b. 3) El doble de a aumentado en b. 4) La

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 7 PIENSA Y RESUELVE 8 Calcula dos números cuya suma sea 191 y su diferencia 67. Llamamos e y a los números que buscamos. Tenemos que: Sumando: = 58 = 58 = 19 y = 191 = 6 Solución: = 19; y = 6 9 Dos

Más detalles

Definiciones I. Definiciones II

Definiciones I. Definiciones II Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una

Más detalles

6 EL LENGUAJE ALGEBRAICO. ECUACIONES

6 EL LENGUAJE ALGEBRAICO. ECUACIONES 6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.

Más detalles

Indicadores Operaciones básicas

Indicadores Operaciones básicas EDUCACIÓN PRIMARIA Nivel primero Ciclo I de Educación Primaria 1. Series crecientes. 2. Series decrecientes. 3. Completar series. 4. Ordenar series de números (menor a mayor). 5. Ordenar series de números

Más detalles

9. Ecuaciones de 1. er grado

9. Ecuaciones de 1. er grado 9 9. Ecuaciones de 1. er grado 1. EL LENGUAJE ALGEBRAICO PIENSA Y CALCULA Calcula el resultado de las siguientes epresiones: a) Tenía y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado

Más detalles

Ecuaciones de primer ysegundo grado

Ecuaciones de primer ysegundo grado 86 _ 087-098.qxd 7//07 : Página 87 Ecuaciones de primer ysegundo grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados

Más detalles