Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos
|
|
- Juan Carlos Duarte Silva
- hace 7 años
- Vistas:
Transcripción
1 Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible acerca de sus características. Esto se consigue prestando atención a tres aspectos básicos: tendencia central, dispersión y forma de la distribución. Ahora bien, las medidas de tendencia central y de dispersión, y los índices y gráficos sobre la forma de la distribución, resultan más o menos útiles dependiendo del tipo de variable que se intente caracterizar. Con variables categóricas, por ejemplo, las medidas de tendencia central y de dispersión carecen de importancia comparadas con la utilidad de una distribución de frecuencias o un gráfico sobre la forma de la distribución. Por el contrario, con variables continuas una distribución de frecuencias pierde importancia comparada con la capacidad informativa de las medidas de tendencia central y de dispersión. Por otro lado, los diagramas que informan sobre la forma de una distribución son diferentes dependiendo de que la variable estudiada sea categórica o continua. En este capítulo vamos a describir dos procedimientos SPSS que permiten obtener la información necesaria para caracterizar apropiadamente tanto variables categóricas como cuantitativas: el procedimiento Frecuencias y el procedimiento Descriptivos.
2 Capítulo 10. Análisis descriptivo 2 Frecuencias Una distribución de frecuencias informa sobre los valores concretos que adopta una variable y sobre el número (y porcentaje) de veces que se repite cada uno de esos valores. El procedimiento Frecuencias permite obtener distribuciones de frecuencias, pero además contiene opciones para: Calcular algunos de los estadísticos descriptivos más utilizados (sobre tendencia central, posición, dispersión, asimetría y curtosis). Construir algunos diagramas básicos (gráficos de barras, de sectores e histogramas). Controlar el formato de presentación de las distribuciones de frecuencias. La utilización de estas opciones depende en gran medida del hecho de que la variable estudiada sea categórica o continua. Para obtener una distribución de frecuencias: Seleccionar la opción Estadísticos descriptivos > Frecuencias... del menú Analizar para acceder al cuadro de diálogo Frecuencias que muestra la figura Figura Cuadro de diálogo Frecuencias. Este cuadro de diálogo permite obtener distribuciones de frecuencias absolutas y porcentuales, varios estadísticos descriptivos y algunos gráficos básicos. Para ello:
3 Capítulo 10. Análisis descriptivo 3 Trasladar a la lista Variables, mediante el botón flecha, la variable o variables cuya distribución de frecuencias se desea obtener. La especificación mínima requerida es una variable numérica o de cadena corta; las variables de cadena larga no están disponibles en la lista de variables del archivo de datos. Pulsar el botón Aceptar. G Mostrar tablas de frecuencias. Esta opción (activa por defecto) permite decidir si se desea o no obtener la distribución de frecuencias. Puede desactivarse si, por ejemplo, sólo interesa ver algún gráfico o algún estadístico descriptivo (como suele ocurrir cuando se intenta describir una variable cuantitativa continua). Si se desactiva esta opción y no se efectúa ninguna otra selección, los resultados sólo muestran el número total de casos y de valores perdidos.
4 Capítulo 10. Análisis descriptivo 4 Ejemplo (Estadísticos descriptivos > Frecuencias) Este ejemplo muestra cómo obtener una distribución de frecuencias con las especificaciones mínimas que el procedimiento Frecuencias tiene establecidas por defecto: Seleccionar la opción Estadísticos descriptivos > Frecuencias del menú Analizar. Trasladar, mediante el botón flecha, la variable catlab (categoría laboral) a la lista Variables. Pulsar el botón Aceptar. Aceptando estas elecciones, el Visor de resultados ofrece dos tablas pivotantes: una con el número de casos válidos y de casos con valores perdidos (tabla 10.1.a), y otra con la distribución de frecuencias solicitada (tabla 10.1.b). Figura 10.1.a. Tabla de estadísticos del procedimiento Frecuencias. Categoría laboral N Válidos Perdidos Tabla 10.1.b. Tabla de frecuencias del procedimiento Frecuencias. Válidos Total Administrativo Seguridad Directivo Total Porcentaje Porcentaje Frecuencia Porcentaje válido acumulado ,6 76,6 76,6 27 5,7 5,7 82, ,7 17,7 100, ,0 100, ,0 Puesto que no hemos seleccionado ningún estadístico, la tabla 10.1.a sólo muestra el número de casos válidos y el número de valores perdidos. La tabla 10.1 ofrece información sobre: los valores de la variable catlab (sus etiquetas), la frecuencia absoluta de cada valor (Frecuencia), la frecuencia porcentual (Porcentaje), la frecuencia porcentual calculada sobre los casos válidos, es decir, sin tener en cuenta los casos con valores perdidos (Porcentaje válido) y la frecuencia porcentual acumulada (Porcentaje acumulado). En la última línea aparece el número total de casos.
5 Capítulo 10. Análisis descriptivo 5 Estadísticos Podemos obtener información adicional utilizando los botones específicos del cuadro de diálogo Frecuencias (figura 10.1). Para obtener estadísticos descriptivos: Pulsar el botón Estadísticos... para acceder al subcuadro de diálogo Frecuencias: Estadísticos que muestra la figura Figura Subcuadro de diálogo Frecuencias: Estadísticos. Valores percentiles. Este recuadro contiene varias opciones para solicitar cuantiles: cuartiles, deciles, percentiles, etc. G Cuartiles. Calcula los percentiles 25, 50 y 75, es decir, los valores por debajo de los cuales se encuentra el 25 %, el 50 % y el 75 % de los casos, respectivamente. Para saber cómo calcula el SPSS estos cuantiles, puede consultarse el apartado Estadísticos del capítulo 11. G Puntos de corte para k grupos iguales. Calcula los kn1 valores que dividen la muestra en k grupos del mismo tamaño. El valor por defecto de k es 10, pero puede escribirse cualquier otro valor entre 2 y 100.
6 Capítulo 10. Análisis descriptivo 6 G Percentiles. Permite solicitar percentiles concretos (valores que acumulan un determinado porcentaje de casos). Para obtener un percentil concreto: Escribir el valor deseado en el cuadro de texto Percentiles. Pulsar el botón Añadir para trasladar ese valor a la lista de percentiles. Pulsar los botones Cambiar y Borrar para modificar o eliminar, respectivamente, valores previamente añadidos. Tendencia central. Puede seleccionarse uno o más de los siguientes estadísticos: G Media. Media aritmética: suma de todas las puntuaciones dividida por el número de puntuaciones. G Mediana. Valor por debajo del cual se encuentra el 50 % de los casos (equivale al percentil 50). Si el número de casos es par, la mediana se calcula como el promedio de los dos casos centrales cuando éstos se encuentran ordenados. Si el número de casos es impar, la mediana es el valor del caso central de la distribución. G Moda. Valor que más se repite. Si existen dos o más valores empatados en el número de repeticiones, solo se muestra el más pequeño de ellos. G Suma. Suma de todos los valores. Dispersión. Puede seleccionarse uno o más de los siguientes estadísticos: G Desv. típica. Desviación típica: raíz cuadrada de la varianza. Mide el grado en que las puntuaciones de la variable se alejan de su media. G Varianza. Medida de dispersión que se obtiene dividiendo por nn1 la suma de los cuadrados de las diferencias entre cada puntuación y la media. G Amplitud. Diferencia entre el valor más grande (máximo) y el más pequeño (mínimo). G Mínimo. Valor más pequeño. G Máximo. Valor más grande. G E.T. media. Error típico de la media: desviación típica de la distribución muestral de la media. Se obtiene dividiendo la desviación típica de la variable por la raíz cuadrada del número de casos.
7 Capítulo 10. Análisis descriptivo 7 Distribución. Puede seleccionarse uno o más de los siguientes estadísticos: G Asimetría. Índice que expresa el grado de asimetría de la distribución. La asimetría positiva indica que los valores más extremos se encuentran por encima de la media. La asimetría negativa indica que los valores más extremos se encuentran por debajo de la media. Los índices de asimetría próximos a cero indican simetría. Los resultados también recogen el error típico del índice de asimetría (es decir, la desviación típica de la distribución muestral del índice de asimetría), el cual permite tipificar el valor del índice de asimetría e interpretarlo como una puntuación z con distribución aproximadamente N (0, 1). Índices tipificados mayores que 1,96 en valor absoluto permiten afirmar que existe asimetría (positiva o negativa, dependiendo del signo del índice). G Curtosis. Índice que expresa el grado en que una distribución acumula casos en sus colas en comparación con los casos acumulados en las colas de una distribución normal con la misma varianza. La curtosis positiva indica que en las colas de la distribución hay acumulados más casos que en las colas de una distribución normal (lo cual suele coincidir con distribuciones más puntiagudas que una distribución normal). Los índices de curtosis próximos a cero indican semejanza con la curva normal. Los resultados también recogen el error típico del índice de curtosis, el cual puede utilizarse para tipificar el valor del índice de curtosis y poder interpretarlo como una puntuación z distribuida aproximadamente N (0, 1). Índices mayores que 1,96 en valor absoluto permiten afirmar que la distribución se aleja de la distribución normal. G Los valores son puntos medios de grupos. En el caso de que la variable que deseamos estudiar se encuentre agrupada en intervalos, esta opción permite calcular la mediana y los percentiles interpolando valores, es decir, considerando que los valores de la variable son los puntos medios de intervalos uniformemente distribuidos. Puesto que esta opción afecta a todas las variables de la lista Variables (ver figura 10.1), no debería marcarse si una o más variables de las listadas no se encuentran agrupadas en intervalos.
8 Capítulo 10. Análisis descriptivo 8 Cuándo utilizar cada estadístico Por lo que se refiere a los percentiles, sólo tiene sentido calcularlos con variables al menos ordinales. Carecen de significado con variables nominales. Entre las medidas de tendencia central, la media requiere variables cuantitativas (de intervalo o razón, aunque también suele calcularse con datos ordinales). La mediana es un estadístico típicamente ordinal (requiere variables ordinales al menos). Al contrario de lo que ocurre con la media, la mediana es insensible a la presencia de valores extremos y, por tanto, es preferible a la media cuando la distribución es asimétrica. La moda sirve para todo tipo de variables, pero es más apropiada para caracterizar datos categóricos porque, por un lado, es un estadístico que sólo aprovecha información nominal y, por otro, con variables continuas es esperable que todos los valores tengan una frecuencia igual a 1. En cuanto a las medidas de dispersión, la desviación típica, la varianza y el error típico de la media únicamente poseen significado con variables cuantitativas (de intervalo o razón, aunque también suelen calcularse con datos ordinales). La amplitud o rango es apropiada para todo tipo de variables, excepto para las nominales, en las que no tiene sentido hablar de dispersión. En lo relativo a los índices de asimetría y curtosis, de nuevo solo tiene sentido calcularlos con variables cuantitativas.
9 Capítulo 10. Análisis descriptivo 9 Ejemplo (Estadísticos descriptivos > Frecuencias > Estadísticos) Este ejemplo muestra cómo obtener algunos estadísticos descriptivos utilizando el procedimiento Frecuencias: En el cuadro de diálogo Frecuencias (ver figura 10.1), seleccionar la variable salario y trasladarla a la lista Variables. Pulsar el botón Estadísticos... y marcar todas las opciones del subcuadro de diálogo Frecuencias: Estadísticos (ver figura 10.2). Con estas elecciones, el Visor muestra los estadísticos que recoge la tabla 10.2 (la tabla ha sido pivotada para adaptarla mejor a las dimensiones de la página): Tabla Tabla de Estadísticos del procedimiento Frecuencias. Salario actual N Media Mediana Moda Desv. típ. Varianza Asimetría Curtosis Rango Mínimo Máximo Suma Percentiles Válidos Perdidos $10.00 $20.00 $25.00 $30.00 $40.00 $50.00 $60.00 $70.00 $75.00 $80.00 $90.00 Estadístico $34, $ $28, $30,750 $17, $291,578, ,125,112 5,378,224 $119,250 $15,750 $135,000 $16,314,875 $21, $22, $24, $24, $26, $28, $30, $34, $37, $41, $59, Error típ.
10 Capítulo 10. Análisis descriptivo 10 Observando la tabla vemos, por ejemplo, que el salario medio es de ,57 dólares (Media), que la mitad de los sujetos tienen salarios por debajo de dólares (Mediana, Percentil 50), que entre el sujeto que gana más y el que gana menos existe una diferencia de dólares (Rango), que el 50 % de los sujetos tiene salarios comprendidos entre y ,50 dólares (Percentiles 25 y 75), que el grado de asimetría es acusadamente positivo (pues el cociente entre el índice de asimetría y su error típico vale 2,125/0,112 = 18,97, y este valor es demasiado grande para pensar que pertenece a una distribución con valor esperado cero), y que la acumulación de casos en las colas (Curtosis) es mayor que la que corresponde a una distribución normal (pues tipificando el índice de curtosis obtenemos 5,378/0,224 = 24,01, y este valor es demasiado grande para pensar que pertenece a una distribución con valor esperado cero, que es el valor que indica una curtosis equivalente a la de una curva normal).
11 Capítulo 10. Análisis descriptivo 11 Gráficos El procedimiento Frecuencias también ofrece la posibilidad de obtener algunos gráficos básicos. En concreto, permite obtener gráficos de barras, gráficos de sectores e histogramas. (El menú Gráficos de la barra de menús también permite obtener estos mismos gráficos, además de otros muchos). Para obtener una gráfico de barras, un gráfico de sectores, o un histograma: Pulsar el botón Gráficos... del cuadro de diálogo Frecuencias (ver figura 10.1) para acceder al subcuadro de diálogo Frecuencias: Gráficos que muestra la figura Figura Subcuadro de diálogo Frecuencias: Gráficos. Tipo de gráfico. Puede elegirse entre: F Ninguno. No se genera ningún gráfico. Es la opción por defecto. F Gráficos de barras. Gráficos en los que a cada valor de la variable se le asigna una barra con altura equivalente a su frecuencia absoluta o porcentual. La escala de la altura de las barras se ajusta automáticamente teniendo en cuenta la frecuencia más alta de las representadas. F Gráficos de sectores. Gráficos circulares en los que a cada valor de la variable se le asigna un sector de tamaño equivalente a su frecuencia absoluta o porcentual. F Histogramas. Similares a los gráficos de barras, pero con las barras juntas, dando así la impresión de continuidad. Sólo pueden obtenerse con variables numéricas. Para construir el histograma, el SPSS agrupa la variable en 21 intervalos (o menos, si la amplitud de la variable es menor que 21).
12 Capítulo 10. Análisis descriptivo 12 G Con curva normal. Esta opción permite obtener una curva normal superpuesta sobre el histograma (la curva normal se genera a partir de la media y la desviación típica de la variable representada). Valores del gráfico. En los gráficos de barras y de sectores es posible decidir qué tipo de frecuencia se desea representar: F Frecuencias. La escala y la etiqueta del eje correspondiente a la altura de las barras (o al tamaño de los sectores) están expresadas en frecuencias absolutas. Es la opción por defecto. F Porcentajes. La escala y la etiqueta del eje correspondiente a la altura de las barras (o al tamaño de los sectores) están expresadas en frecuencias porcentuales.
13 Capítulo 10. Análisis descriptivo 13 Ejemplo (Estadísticos descriptivos > Frecuencias > Gráficos) Este ejemplo muestra cómo obtener un histograma de la variable salario utilizando la opción Gráficos... del procedimiento Frecuencias. En el cuadro de diálogo Frecuencias (ver figura 10.1), trasladar la variable salario a la lista Variables. Pulsar el botón Gráficos... En el subcuadro de diálogo Frecuencias: Gráficos (ver figura 10.3) seleccionar Histogramas y marcar la opción Con curva normal. Aceptando estas elecciones, obtenemos el histograma que muestra la figura Figura Histograma de la variable salario. 140 Histograma Frecuencia Desv. típ. = 17075,66 Media = 34419,6 N = 474, , , , , , , , , , , , , ,0 Salario actual Tal como habíamos anticipado ya basándonos en los índices de asimetría y curtosis del ejemplo anterior, el histograma muestra asimetría positiva, al tiempo que una evidente desviación de la normalidad.
14 Capítulo 10. Análisis descriptivo 14 Formato Las opciones de formato permiten controlar algunos aspectos relacionados con la forma en que aparecerán en el Visor las tablas de frecuencias y los estadísticos solicitados. Para controlar el formato de presentación de las tablas de frecuencias: Pulsar el botón Formato... del cuadro de diálogo Frecuencias (ver figura 10.1) para acceder al subcuadro de diálogo Frecuencias: Formato que muestra la figura Figura Cuadro de diálogo Frecuencias: Formato. Ordenar por. Las opciones de este recuadro sirven para establecer el orden en el que aparecerán los valores o categorías de la variable en la distribución de frecuencias: F Valores ascendentes. Los valores o categorías de la variable son ordenados desde el más pequeño al más grade. Es la opción por defecto. F Valores descendentes. Los valores o categorías de la variable son ordenados desde el más grande al más pequeño. F Frecuencias ascendentes. Los valores o categorías de la variable se ordenan de forma ascendente tomando como criterio el tamaño de cada frecuencia. F Frecuencias ascendentes. Los valores o categorías de la variable se ordenan de forma descendente tomando como criterio el tamaño de cada frecuencia. Si se solicita algún percentil o algún histograma, los valores se ordenan de forma ascendente (la opción por defecto) independientemente del orden seleccionado. G Suprimir tablas con más de k categorías. Esta opción elimina de la salida las distribuciones con más de k valores o categorías. El valor por defecto para k es 10, pero puede introducirse cualquier valor igual o mayor que 1.
15 Capítulo 10. Análisis descriptivo 15 Esta opción es particularmente útil si en la lista Variables (figura 10.1) se han seleccionado variables continuas y categóricas: permite eliminar selectivamente las distribuciones de frecuencias de las variables continuas al tiempo que permite obtener las de las variables categóricas. (Generalmente, con variables cuantitativas continuas interesa obtener estadísticos descriptivos o histogramas, pero no distribuciones de frecuencias, pues éstas son demasiado largas y, por tanto, poco informativas). Múltiples variables. Al solicitar gráficos o estadísticos para más de una variable: G Comparar variables utiliza una sola tabla de resultados para todas las variables. G Organizar resultados según variables utiliza una tabla para cada variable.
16 Capítulo 10. Análisis descriptivo 16 Descriptivos A diferencia de lo que ocurre con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas continuas, el procedimiento Descriptivos está diseñado únicamente para variables cuantitativas continuas. Contiene unos cuantos estadísticos descriptivos (tendencia central, dispersión y forma de la distribución) que también incluye el procedimiento Frecuencias, pero añade una opción especialmente importante: la posibilidad de obtener puntuaciones típicas. Para obtener estadísticos descriptivos y puntuaciones típicas: Seleccionar la opción Estadísticos descriptivos > Descriptivos del menú Analizar para acceder al cuadro de diálogo Descriptivos que muestra la figura Figura Cuadro de diálogo Descriptivos. Para obtener los estadísticos básicos (media aritmética, desviación típica, valor mínimo y valor máximo) que el procedimiento Descriptivos ofrece por defecto: Trasladar una o más variables a la lista Variables. La especificación mínima requerida es una variable numérica; las variables de cadena no están disponibles en la lista de variables del archivo de datos. Pulsar el botón Aceptar.
17 Capítulo 10. Análisis descriptivo 17 G Guardar valores tipificados como variables. Los valores tipificados, también llamados puntuaciones típicas o puntuaciones z (z scores), expresan el número de desviaciones típicas que cada valor se aleja de su media (ver, dentro de este mismo apartado Descriptivos, el sub-apartado Puntuaciones típicas y curva normal). Marcando esta opción, el SPSS crea en el archivo de datos del Editor de datos una nueva variable con las puntuaciones típicas correspondientes a cada caso. Esta nueva variable recibe, por defecto, el nombre de la variable original con el prefijo z (si el nombre de la variable original posee 8 caracteres, el nuevo nombre sólo utiliza los 7 primeros). Si, por ejemplo, solicitamos las puntuaciones típicas de la variable salario, el SPSS recoge esas puntuaciones típicas en una nueva variable a la que asigna el nombre zsalario. Si la variable zsalario ya existe, entonces el nombre asignado a la nueva variable es zsc001 (y así sucesivamente hasta zsc099). El prefijo zsc proviene de z score. La etiqueta de la nueva variable se obtiene a partir de la etiqueta de la variable original. Si la variable original posee etiqueta, la etiqueta de la nueva variable se forma con los primeros 31 caracteres de la etiqueta original acompañados del prefijo zscore. Si el nombre de la nueva variable no contiene parte del nombre original (lo que ocurre cuando el nombre asignado es, por ejemplo, z001), la etiqueta de la nueva variable se forma con zscore(nombre-de-la-variable-original) y los primeros 31 caracteres de la etiqueta original. Si la variable original no posee etiqueta, la etiqueta de la nueva variable se forma con el nombre de la variable original acompañado del prefijo zscore.
18 Capítulo 10. Análisis descriptivo 18 Opciones Para decidir qué estadísticos descriptivos se desea obtener y para controlar algunos aspectos de la presentación: Pulsar el botón Opciones... del cuadro de diálogo Descriptivos (ver figura 10.6) para acceder al subcuadro de diálogo Descriptivos: Opciones que muestra la figura Figura Subcuadro de diálogo Descriptivos: Opciones. G Media. Media aritmética: suma de todas las puntuaciones dividida por el número de puntuaciones. G Suma. Suma de todos los valores. Dispersión. Puede seleccionarse uno o más de los siguientes estadísticos de dispersión: G Desv. típica. Desviación típica: raíz cuadrada de la varianza. Mide el grado en que las puntuaciones de una variable se alejan de su media. G Varianza. Medida de dispersión que se obtiene dividiendo por nn1 la suma de los cuadrados de las diferencias entre cada puntuación y la media.
19 Capítulo 10. Análisis descriptivo 19 G Amplitud. Diferencia entre el valor más grande (máximo) y el más pequeño (mínimo). G Mínimo. Valor más pequeño. G Máximo. Valor más grande. G E.T. media. Error típico de la media: desviación típica de la distribución muestral de la media. Se obtiene dividiendo la desviación típica de la variable por la raíz cuadrada del número de casos. Distribución. Puede seleccionarse uno o más de los siguientes estadísticos: G Curtosis. Índice que expresa el grado en que una distribución acumula casos en sus colas, en comparación con los casos acumulados en las colas de una distribución normal con la misma varianza. La curtosis positiva indica que en las colas de la distribución hay acumulados más casos que en las colas de una distribución normal (lo cual suele coincidir con un mayor apuntamiento). Los índices de asimetría próximos a cero indican apuntamiento similar al de la curva normal. Los resultados también recogen el error típico del índice de curtosis, el cual puede utilizarse para tipificar el valor del índice de curtosis e interpretarlo como una puntuación z distribuida aproximadamente N (0, 1). Índices mayores que 1,96 en valor absoluto permiten afirmar que la distribución se aleja de la distribución normal. G Asimetría. Índice que expresa el grado de asimetría de la distribución. La asimetría positiva indica que los valores más extremos tienden a situarse por encima de la media. La asimetría negativa indica que los valores más extremos tienden a situarse por debajo de la media. Los valores en torno a cero indican simetría. Los resultados también recogen el error típico del índice de asimetría, el cual puede utilizarse para tipificar el valor del índice de asimetría e interpretarlo como una puntuación z distribuida aproximadamente N (0, 1). Índices tipificados mayores que 1,96 en valor absoluto permiten afirmar que existe asimetría (positiva o negativa, dependiendo del signo del índice).
20 Capítulo 10. Análisis descriptivo 20 Orden de visualización. Esta opción permite establecer el orden en el que serán listadas las variables en la tabla de descriptivos que ofrece el Visor: F Lista de variables. Las variables aparecen listadas en el mismo orden en el que han sido seleccionadas en el cuadro de diálogo Descriptivos, es decir, en el mismo orden que aparecen en el listado Variables de la figura Es la opción por defecto. F Alfabético. Las variables aparecen listadas en orden alfabético. F Medias ascendentes. Las variables se ordenan por el tamaño de sus medias, desde la más pequeña hasta la más grande. F Medias descendentes. Las variables se ordenan por el tamaño de sus medias, desde la más grande hasta la más pequeña.
21 Capítulo 10. Análisis descriptivo 21 Ejemplo (Estadísticos descriptivos > Descriptivos > Opciones) Este ejemplo muestra cómo obtener puntuaciones típicas y algunos estadísticos descriptivos utilizando el procedimiento Descriptivos: En el cuadro de diálogo Descriptivos (figura 10.6), trasladar las variables salini, salario y tiempemp a la lista Variables. Marcar la opción Guardar valores tipificados como variables. Pulsar el botón Opciones... En el subcuadro de diálogo Descriptivos: Opciones (figura 10.7) seleccionar las opciones Media y Suma, todas las opciones de los apartados Dispersión y Distribución y la opción Lista de variables del apartado Orden de visualización. Aceptando estas elecciones, el Visor ofrece la información que muestra la tabla 10.3 (hemos pivotado la tabla para poder ajustarla mejor al tamaño de la página). Comparando estos resultados con los obtenidos en el ejemplo referido al procedimiento Frecuencias (ver tabla 10.2), podemos observar que la diferencia radica en que, además de los estadísticos que ofrece el procedimiento Descriptivos (todos ellos apropiados para describir variables cuantitativas continuas), el procedimiento Frecuencias ofrece otros estadísticos susceptibles de ser utilizados con variables nominales y ordinales (moda, mediana, percentiles, etc). Puede comprobarse en el Editor de datos que, además de los estadísticos descriptivos de la tabla 10.3, el procedimiento Descriptivos ha generado tres nuevas variables (con los nombres zsalini, zsalario y ztiempem) en el archivo Datos de empleados; estas tres nuevas variables contienen las puntuaciones típicas de las tres variables seleccionadas en el ejemplo: salini, salario y tiempemp.
22 Capítulo 10. Análisis descriptivo 22 Tabla Tabla de Estadísticos descriptivos del procedimiento Descriptivos. Salario inicial Salario actual Meses desde el contrato N válido (según li t ) N Rango Mínimo Máximo Suma Media Desv. típ. Varianza Asimetría Curtosis N Rango Mínimo Máximo Suma Media Desv. típ. Varianza Asimetría Curtosis N Rango Mínimo Máximo Suma Media Desv. típ. Varianza Asimetría Curtosis N Estadístico Error típico 474 $70,980 $9,000 $79,980 $8,065,625 $17, $ $7, ,959 2,853,112 12,390, $119,250 $15,750 $135,000 $16,314,875 $34, $ $17, ,453 2,125,112 5,378, ,11,46 10,06 101,223 -,053,112-1,153,
23 Capítulo 10. Análisis descriptivo 23 Puntuaciones típicas y curva normal En muchas de las variables que podemos medir, la mayoría de los valores se encuentran próximos al centro de la distribución y van siendo menos frecuentes a medida que va aumentando la distancia al centro. Este tipo de distribuciones tienen forma de campana, y el ejemplo más típico es una distribución teórica llamada curva normal. Muchos de los fenómenos que podemos observar en la sociedad y en la naturaleza tienen distribuciones muy similares a la distribución teórica normal. La distribución normal es, probablemente, la distribución teórica más importante en estadística y sirve como punto de referencia para describir cómo se distribuyen muchos de los datos muestrales que recogemos. La explicación de por qué esto es así se encuentra en el teorema central del límite, que, formulado en palabras, afirma lo siguiente: si los datos que recogemos son debidos a la suma de cierto número de causas independientes entre sí, cada una con un efecto parcial, siempre que la desviación típica de estos efectos sea finita, la distribución de los datos recogidos se asemejará tanto más a la curva normal cuantos más datos recojamos (cualquiera que sea la distribución original de esos efectos parciales). La importancia de la distribución normal como referente del comportamiento de los datos que recogemos nos obliga a describir, aunque sólo sea brevemente, algunas de sus características (ver figura 10.8): Figura Curva normal (con probabilidades para algunas puntuaciones típicas).
24 Capítulo 10. Análisis descriptivo 24 Tiene forma de campana (de ahí que sea conocida también como campana de Gauss). Esto implica que los valores centrales de la distribución son mucho más probables que los valores que se van alejando del centro de la distribución. Es simétrica respecto a su valor central. Al ser simétrica, las medidas de tendencia central (media, mediana, moda, etc.) coinciden. Es asintótica respecto al eje de abscisas (por mucho que se extienda, nunca llega a tocarlo), por lo que los valores mínimo y máximo del eje de abscisas son y +. Los puntos de inflexión de la curva se encuentran a una desviación típica por encima y por debajo de la media. Cualquier combinación lineal de variables normalmente distribuidas también se distribuye según el modelo de probabilidad normal. La mayor parte del trabajo relacionado con variables aleatorias distribuidas normalmente consiste en hallar las probabilidades asociadas a sus valores. Estas probabilidades se obtienen integrando la función de densidad normal. Pero para evitar este tipo de cálculos se han construido tablas con las probabilidades ya calculadas. En cualquier libro de estadística puede encontrarse una tabla con las probabilidades de la curva normal. Ahora bien, esas tablas recogen las probabilidades de una curva normal muy especial: la que tiene media 0 y desviación típica 1; lo cual se expresa así: N (0, 1). Por supuesto, el hecho de que la distribución normal tabulada tenga media 0 y desviación típica 1 no es un problema sino, de hecho, una ventaja, pues cualquier variable puede ser transformada en otra variable equivalente con media 0 y desviación típica 1 sin que se alteren sus propiedades. A esta transformación la llamamos tipificación o estandarización y se realiza de la siguiente manera: donde: X i se refiere a las puntuaciones originales de la variable E(X i ) es el valor esperado de X i (es decir, su media: ) S x es la desviación típica de X i :
ANÁLISIS DESCRIPTIVO CON SPSS
ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
Parámetros y estadísticos
Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
Otras medidas descriptivas usuales
Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.
1. MEDIDAS DE TENDENCIA CENTRAL
1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Clase 2: Estadística
Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea
Indicaciones específicas para los análisis estadísticos.
Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por
Ejercicio de estadística para 3º de la ESO
Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población
CORRELACIONES CON SPSS
ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
Introducción al SPSS/PC. 1. El editor de datos. Taller de Estadística
1 Taller de Estadística Curso 2oo5/2oo6 Introducción al SPSS/PC SPSS: Statistical Package for the Social Sciences. Este programa estadístico está organizado en dos bloques: el editor de datos y el visor
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Capítulo 5. Transformar datos
Capítulo 5 Transformar datos En ocasiones, los datos de un archivo serán de tal índole que será posible aplicar directamente sobre ellos el análisis estadístico deseado. Pero esto sólo ocurrirá en una
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
ESTADÍSTICA DESCRIPTIVA CON SPSS
ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos
Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.
Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta
Clase 2: Estadística
Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea
TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS
TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS 1. Introducción 2. Definición de variables 3. Introducción de los datos 4. Análisis de los datos 5. Otras utilidades 1. INTRODUCCIÓN El SPSS es un paquete
Capítulo 9. Archivos de sintaxis
Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
Capítulo 6. Modificar archivos de datos. Ordenar casos
Capítulo 6 Modificar archivos de datos Los archivos de datos no siempre están organizados de forma idónea. En ocasiones podemos desear cambiar el orden de los casos, o transponer las filas y las columnas,
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
ESTADÍSTICA SEMANA 4
ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...
Estadística: conceptos básicos y definiciones.
Estadística: conceptos básicos y definiciones. 1 Conceptos básicos 2 Conceptos básicos cont. 3 Conceptos básicos cont. 4 Conceptos básicos cont. 5 Conceptos básicos cont. 6 Definición de Estadística La
Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:
Iniciar con las interpretaciones de las medidas MEDIA VS MEDIANA VS MODA CUAL ES LA MEDIDA ADECUADA TAREA MEDIA PONDERADA Actividad de Medidas de Localización Problema 1. El problema de las tasas de delito.
Tema 3: Variables aleatorias y vectores aleatorios bidimensionales
Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL
MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN
MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes
GENERACIÓN DE ANTICIPOS DE CRÉDITO
GENERACIÓN DE ANTICIPOS DE CRÉDITO 1 INFORMACIÓN BÁSICA La aplicación de generación de ficheros de anticipos de crédito permite generar fácilmente órdenes para que la Caja anticipe el cobro de créditos
Práctica 2 ESTADÍSTICA DESCRIPTIVA
Práctica 2. Estadística descriptiva 1 Práctica 2 ESTADÍSTICA DESCRIPTIVA Objetivos: En esta práctica utilizaremos el paquete SPSS para calcular estadísticos descriptivos de una muestra. Se representarán
ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS
UNA SESIÓN EN SPSS INTRODUCCIÓN. SPSS (Statistical Product and Service Solutions) es un paquete estadístico orientado, en principio, al ámbito de aplicación de las Ciencias sociales, es uno de las herramientas
1 Ejemplo de análisis descriptivo de un conjunto de datos
1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos
Tema 2 Estadística Descriptiva
Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada
Distribución de frecuencias gráficas y tablas
Distribución de frecuencias gráficas y tablas Dra. Alicia M. González de la Cruz Educ 525 2013 Organizar los datos Las distribuciones de frecuencia es la organización de datos crudos en forma de tablas,
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
MEDIDAS DE TENDENCIA CENTRAL
CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función
Estadística descriptiva con Excel (Cálculo de medidas)
Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez Departamento de Ciencias Naturales y Matemáticas Cátedra: Estadística aplicada a la educación Estadística
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL
UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características
Análisis estadístico con Microsoft Excel
Análisis estadístico con Microsoft Excel Microsoft Excel ofrece un conjunto de herramientas para el análisis de los datos (denominado Herramientas para análisis) con el que podrá ahorrar pasos en el desarrollo
... Formas alternativas de escribir un texto. Columnas. anfora CAPÍTULO 4
CAPÍTULO 4. Formas alternativas de escribir un texto........ Columnas Para fijar columnas se posiciona el Punto de Inserción donde se desee que comiencen las columnas, o bien se selecciona el texto que
CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)
CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas
Manual para la utilización de PrestaShop
Manual para la utilización de PrestaShop En este manual mostraremos de forma sencilla y práctica la utilización del Gestor de su Tienda Online mediante Prestashop 1.6, explicaremos todo lo necesario para
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
1. Análisis de variables cuantitativas (2 a parte)
Práctica 3: Análisis descriptivo de variables. Parte II. 1. Análisis de variables cuantitativas (2 a parte) Realizaremos un estudio descriptivo completo de variables cuantitativas. Ilustraremos los conceptos
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
Instalación del programa PSPP y obtención de una distribución de frecuencias.
Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico
El programa Minitab: breve introducción a su funcionamiento. Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos
El programa Minitab: breve introducción a su funcionamiento Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos estadísticos en la actualidad, el libro se acompaña, en todo
En los menús del Editor de datos, elija: Gráficos Generador de gráficos... Bakieva, M.; García-Bellido, R.; González Such, J. y Jornet, J.M.
SPSS: GRÁFICOS DIAGRAMAS DE DISPERSIÓN En este ejemplo, crearemos un diagrama de dispersión utilizando el archivo de datos de coches. El diagrama de dispersión mostrará el consumo de gasolina con respecto
Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante
Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto
Tema 2. Análisis gráfico Ejercicios resueltos 1
Tema 2. Análisis gráfico Ejercicios resueltos 1 Ejercicio resuelto 2.1 En una tienda han anotado los precios de los artículos que han vendido en una hora. Los datos son: 9,95, 19,95, 19,95, 14,95, 29,95,
2. Seleccionar Insertar función:
Estadística I Curso 2014/2015 Guión de la Práctica 1 Introducción a la Estadística con Excel; Estadística Descriptiva En el siguiente guión vamos a ver cómo realizar Estadística Descriptiva con el software
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
2_trabajar con calc I
Al igual que en las Tablas vistas en el procesador de texto, la interseccción de una columna y una fila se denomina Celda. Dentro de una celda, podemos encontrar diferentes tipos de datos: textos, números,
GENERACIÓN DE TRANSFERENCIAS
GENERACIÓN DE TRANSFERENCIAS 1 INFORMACIÓN BÁSICA La aplicación de generación de ficheros de transferencias permite generar fácilmente órdenes para que la Caja efectúe transferencias, creando una base
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
La ventana de Microsoft Excel
Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft
ARREGLOS DEFINICION GENERAL DE ARREGLO
ARREGLOS DEFINICION GENERAL DE ARREGLO Conjunto de cantidades o valores homogéneos, que por su naturaleza se comportan de idéntica forma y deben de ser tratados en forma similar. Se les debe de dar un
Medidas de tendencia Central
Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas
Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS
Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier
CASO PRÁCTICO. ANÁLISIS DE DATOS EN TABLAS DINÁMICAS
CASO PRÁCTICO. ANÁLISIS DE DATOS EN TABLAS DINÁMICAS Nuestra empresa es una pequeña editorial que maneja habitualmente su lista de ventas en una hoja de cálculo y desea poder realizar un análisis de sus
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
Oficina Online. Manual del administrador
Oficina Online Manual del administrador 2/31 ÍNDICE El administrador 3 Consola de Administración 3 Administración 6 Usuarios 6 Ordenar listado de usuarios 6 Cambio de clave del Administrador Principal
LECCION 1ª Introducción a la Estadística Descriptiva
LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,
Operación de Microsoft Word
Generalidades y conceptos Combinar correspondencia Word, a través de la herramienta combinar correspondencia, permite combinar un documento el que puede ser una carta con el texto que se pretende hacer
FICHERO DE AYUDA DEL PROGRAMA MEGAPRIMI
FICHERO DE AYUDA DEL PROGRAMA MEGAPRIMI Versión MEGAPRIMI : 4.0 Fecha : 19/06/2010 1. INFORMACION GENERAL Versión completamente gratuita. Entre otras muchas opciones, el programa permite seleccionar cualquier
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
Capítulo 8. Editar tablas de resultados
Capítulo 8 Editar tablas de resultados Los objetos del Visor de resultados adoptan, según sabemos ya, tres tipos de formato: texto, tablas y gráficos. Pero la mayor parte de los objetos adoptan formato
Temas de Estadística Práctica Antonio Roldán Martínez
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 1: Recogida de datos Documento Datos de tipo nominal o cualitativo Son los datos que no tienen carácter numérico,
LA MEDIDA Y SUS ERRORES
LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger
ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión
Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1
5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0
01 Índice. GESTOR DE CONTENIDOS Manual de uso 01 ÍNDICE... 1 02 OBJETO DEL DOCUMENTO... 2 03 ESTRUCTURA GRÁFICA DEL SISTEMA... 3
01 Índice 01 ÍNDICE..... 1 02 OBJETO DEL DOCUMENTO..... 2 03 ESTRUCTURA GRÁFICA DEL SISTEMA..... 3 04 GESTIÓN DE TABLAS..... 5 05 USO DE TABLAS EN ENVIDUR..... 15 06 GESTIÓN DE FUNCIONALIDAD ADICIONAL.
Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1
Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna
Tema 5. Variables aleatorias discretas
Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso
Operación Microsoft Access 97
Trabajar con Controles Características de los controles Un control es un objeto gráfico, como por ejemplo un cuadro de texto, un botón de comando o un rectángulo que se coloca en un formulario o informe
PANEL DE CONTROL (Zona de Administración) MANUAL DE USO Por conexanet. Revisión 1.1 Fecha 2006-08
PANEL DE CONTROL (Zona de Administración) MANUAL DE USO Por conexanet Revisión 1.1 Fecha 2006-08 Índice 1. Acceder 2. Menú 3. Gestión Básica 3.1 Añadir 3.2 Editar 3.3 Eliminar 3.4 Eliminación de registros
GESTIÓN DOCUMENTAL PARA EL SISTEMA DE CALIDAD
GESTIÓN DOCUMENTAL PARA EL SISTEMA DE CALIDAD Manual de usuario 1 - ÍNDICE 1 - ÍNDICE... 2 2 - INTRODUCCIÓN... 3 3 - SELECCIÓN CARPETA TRABAJO... 4 3.1 CÓMO CAMBIAR DE EMPRESA O DE CARPETA DE TRABAJO?...
QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.
QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no
Haciendo estadística con SPAC-FL y Minitab
Haciendo estadística con SPAC-FL y Minitab Mayo de 2011 Ing. Fernando Tomati Director de Contenidos HLTnetwork S.A. www.hltnetwork.com 1 de 12 HACIENDO ESTADÍSTICA CON SPAC-FL Y MINITAB El uso de las estadísticas
INDICE. 1. Introducción... 4. 2. El panel Entities view... 5. 3. El panel grafico... 6. 4. Barra de botones... 6. 4.1. Botones de Behavior...
MANUAL DE USUARIO INDICE 1. Introducción... 4 2. El panel Entities view... 5 3. El panel grafico... 6 4. Barra de botones... 6 4.1. Botones de Behavior... 7 4.2. Botones de In-agents... 8 4.3. Botones
MS ACCESS BÁSICO 6 LOS INFORMES
2010 MS ACCESS BÁSICO 6 LOS INFORMES 93 LOS INFORMES Los informes son una herramienta de Access para elaborar información, sobre los datos que deseemos, preparada para ser impresa. A partir de una base
Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie.
Adaptación al NPGC Introducción Nexus 620, ya recoge el Nuevo Plan General Contable, que entrará en vigor el 1 de Enero de 2008. Este documento mostrará que debemos hacer a partir de esa fecha, según nuestra
MICROSOFT WORD 2007 AVANZADO. Unidad Didáctica Nº 1
MICROSOFT WORD 2007 AVANZADO Unidad Didáctica Nº 1 I Tablas A) Explicación conceptual y de uso de una tabla B) Creación de tablas C) Trabajo con tablas D) Formato de las tablas Ejercicio de Repaso Portal
Socioestadística I Análisis estadístico en Sociología
Análisis estadístico en Sociología Capítulo 3 CARACTERÍSTICAS DE LAS DISTRIBUCIOES DE FRECUECIAS 1. CARACTERÍSTICAS DE UA DISTRIBUCIÓ UIVARIATE Hasta ahora hemos utilizado representaciones gráficas para
PLANTILLAS EN MICROSOFT WORD
PLANTILLAS EN MICROSOFT WORD Una plantilla es un modelo o patrón para crear nuevos documentos. En una plantilla se guarda internamente el formato utilizado, es decir, el estilo de la fuente, el tamaño,
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Introducción a la plataforma Moodle Aníbal de la Torre 2006. Plataforma Moodle. Accediendo a los contenidos
Plataforma Moodle Accediendo a los contenidos Formatos ----------------------------------------------------------------------- 2 Glosarios -----------------------------------------------------------------------
CASO PRAÁ CTICOPREÉ STAMOS. CAÁLCULO DE CUOTAS
CASO PRAÁ CTICOPREÉ STAMOS. CAÁLCULO DE CUOTAS Nuestra empresa necesita adquirir una nueva nave industrial por la que debe pagar 700.000,00. Para financiar el pago solicitaremos un préstamo hipotecario
PROYECTOS, FORMULACIÓN Y CRITERIOS DE EVALUACIÓN
PROYECTOS, FORMULACIÓN Y CRITERIOS DE EVALUACIÓN GESTIÓN DE PROYECTOS CON PLANNER AVC APOYO VIRTUAL PARA EL CONOCIMIENTO GESTIÓN DE PROYECTOS CON PLANNER Planner es una poderosa herramienta de software
Imprimir códigos de barras
Imprimir códigos de barras Al igual que en Abies 1, podemos definir el papel de etiquetas que vamos a utilizar. Se nos dan tres tipos de etiquetas ya creadas, que podemos modificar o eliminar, para lo
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos