Bases Físicas del Medio Ambiente. Oscilaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Bases Físicas del Medio Ambiente. Oscilaciones"

Transcripción

1 Bases Físicas del Medio Ambiente Oscilaciones

2 Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento en las proimidades del equilibrio. Oscilaciones amortiguadas. Oscilaciones forzadas. Resonancia. Superposición de M.A.S.

3 Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento en las proimidades del equilibrio. Oscilaciones amortiguadas. Oscilaciones forzadas. Resonancia. Superposición de M.A.S.

4 Esta lección Física Se trata de reconocer la utilidad de la matemática Trigonometría Cálculo Para describir unas aplicaciones interesantes de la mecánica clásica Luego, un poco de física

5 Definiciones: Movimientos Periódicos Periódico: movimiento que se repite así mismo Periodo: el tiempo necesario para que se produzca la repetición Ejemplos de movimientos periódicos Rotación de la Tierra alrededor del Sol, período = 1 año Oscilación de un péndulo Movimiento de las manecillas de un reloj Masa colgada de un muelle Movimiento armónico simple (MAS) Forma más sencilla de oscilación En una dimensión,

6 El MAS es la proyección del movimiento uniformo circular observador Importancia de la trigonometría

7 Movimiento armónico simple (MAS) Posición () frente a tiempo (t) Definición del periodo, T Definición de la amplitud, A T A T A

8 Frecuencia y Periodo f = 1/T T = 1/f T periodo, en segundos (s) f = frecuencia en Hertzios (Hz) prefijos métricos : centi- (c), milli- (m), micro- (m) kilo- (k), mega- (M)

9 Fase y desfase (en tiempo) Fase en qué parte de su ciclo se encuentra en un momento dado Grados: arbitrarios Radianes: relacionan un arco con el ángulo (y el radio) π/ π 3π/ π θ=1 Desfase en qué parte de su ciclo se encuentra, comparado con otro señal

10 Descripción matemática MAS = Acos t ( ω +δ ) A = amplitud ωt + δ = fase δ = fase inicial (t=) o constante de fase ω =??

11 Comportamiento Descripción matemática Aumento de π en la fase: ( ωt + δ ) = Acos( ω + δ π ) = Acos t + El periodo (T) corresponde a π: cómo? ( t + T ) + δ = ωt + δ + π ω ωt + ωt + δ = ωt + δ + π T = π ω

12 Periodo, Frecuencia, y Frecuencia Angular = Acos t ( ω + δ ) Periodo Frecuencia T π = ω 1 f = T Frecuencia Angular ω π ω = πf tiempo para cumplir un ciclo = número de ciclos por unidad de tiempo número de radianes por unidad de tiempo

13 Otras observaciones Para t=. = Acos t = Acos La posición inicial depende en A δ La velocidad ( ω + δ ) d dt ( δ ) π A sin = Aω cos wt + δ v = = ω ( wt +δ )

14 Una derivada más = Acos t La aceleración ( ω +δ ) dv dt d dt a = = = ω Acos( wt +δ ) = ω

15 Fase y desfase A (t) Hay un desfase de 9º (π/) entre (t) y v(t) Hay un desfase de 9º (π/) entre v(t) y a(t) Hay un desfase de 18º (π) entre (t) y a(t) wa T 1.5 v(t) w A a(t)

16 Estamos llegando a la física (trigonometría: no para divertirnos) = Acos t La aceleración ( ω +δ ) dv dt d dt a = = = ω Acos( wt +δ ) (Volvemos a la física; F=ma) = ω F = mω Fuerza proporcional al desplazamiento de sentido contrario

17 Características de un MAS F = mω La fuerza es proporcional al (negativo del) desplazamiento T (en consecuencia f y ω) es independiente de A Los valores inicial y v determinan la amplitud (A), mientras La fuerza (del muelle, ejm.) determina las características temporales (T, f, ω) Muelle débil Muelle fuerte A Equilibrio

18 Resumen de las variables más sencillas que caracterizan un MAS = Acos t ( ω +δ ) A Amplitud (metros) ω t + φ Fase ([radianes]) φ Cte. De Fase ([radianes]) ω Frecuencia Angular ([rad]/s, s-1) T Periodo (s) f Frecuencia (Hz, [oscillations]/s)

19 Ejemplo clásico de MAS Masa conectada a un muelle Ley de Hooke: F = k Compara con el MAS: F = mω Estas epresiones son idénticas si: k ω = m Equilibrio = F X =

20 Energía Potencial de un MAS Cargando la muelle La fuerza del muelle es F = mω El trabajo hecho por la muelle es W ( ) = Fd = mω d = La muelle recibe (y almacena) energía Energía potencial elástica (U) U = 1 ( ) mω 1 Equilibrio mω = F X =

21 Energía Total (E) de un MAS: Potencial (U) y Cinética (K) Energía potencial (U) U = 1 ω ( ) m U ( ) ( ) = Acos ω t +δ 1 = mω A cos ( ωt + δ ) Energía cinética (K) 1 K ( ) = mv K( ) ( ω δ ) v = Aω sin t + 1 = mω A sin t + ( ω δ ) sin ( θ ) + cos ( θ ) = 1 E = U ( ) + K( ) = 1 mω A constante, f(t)

22 Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento en las proimidades del equilibrio. Oscilaciones amortiguadas. Oscilaciones forzadas. Resonancia. Superposición de M.A.S.

23 Aplicaciones del MAS: El Péndulo Simple Consideramos el péndulo de masa (m) En la dirección radial, hay balance de fuerzas La tensión (T) centrípeta Componente centrífugo de g En la dirección tangencial, aceleración (fuerza neta) F = -mg sen θ L θ T mg sen θ m mg cos θ mg

24 El Péndulo Simple Es MAS? No eactamente MAS: fuerza proporcional al desplazamiento Eaminamos, si es el caso Desplazamiento (arco), = L θ Proporcional al ángulo, θ Fuerza, F = -mg sen θ No es MAS F = mω Proporcional a sen θ Pero, para θ pequeño, sen θ θ Para θ pequeño, F mgθ F = mg L L θ T mg sen θ m mg cos θ mg

25 Periodo del Péndulo Simple MAS F Péndulo (θ pequeño) Parámetros = mω F = mg L Frecuencia Angular Periodo T = w = π = π w L g g L L θ T mg sen θ m Frecuencia f = 1 T = 1 π g L mg cos θ mg

26 Descripción Angular MAS F Ecuación del movimiento g d = mω = m = ma = m L dt d + g = dt Recordar que = L θ Como L es cte.: Comúnmente d d θ = L dt dt d θ g + θ = dt L L θ T mg sen θ m Son aproimadamente iguales mg cos θ mg

27 Un ejemplo más: masa colgada de muelle vertical Muelle sin carga Equilibrio inicial, y Nuevo equilibrio y =y -mg/k Muelle con masa Cambio de variable: Nuevo equilibrio en y=y Muelle con masa Es casi igual al caso horizontal k(y+y ) = mg(y+y ) Y desplazamiento Porque casi : el papel de la gravedad Energía potencial gravitacional Influye en determinar y (desplaza el sistema entero hacía abajo) No influye directamente en la velocidad máima (ni ω, ni T,ni f ) y Deberes: demostrarlo energéticamente

28 Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento en las proimidades del equilibrio. Oscilaciones amortiguadas. Oscilaciones forzadas. Resonancia. Superposición de M.A.S.

29 Oscilaciones amortiguadas En la realidad, la oscilación (muelle, péndulo) no sigue para siempre La fricción convierte la energía en calor Pérdida de energía Pérdida ~ amortiguamiento Amortiguamiento fuerte Amortiguamiento moderado Amortiguamiento ligero Entonces porque hablamos del MAS? Simplicidad Utilidad La fricción no cambia mucho ni ω, ni T,ni f

30 Oscilador amortiguado Una aproimación sencilla para rozamiento/amortiguamiento es Proporcional a la velocidad r = bv Opone el movimiento (trabajo negativo) b=cte, determina el grado de amortiguamiento Entonces, con amortiguamiento, el MAS se convierte 1 m r F ma = mω bv d d m + b + mω = dt dt d d + γ + ω = dt dt { } Ecuación del movimiento γ = b m

31 Oscilador amortiguado Ecuación del movimiento: d dt d + γ + ω dt = Solución particular Amortiguamiento pequeño γ < ω Cómo? Hacía falta adivinar la solución ( ω t + α ) No lo crees? Confirmar que resuelve la ecuación diferencial = Ae γt ω = ω γ cos = k m b 4m

32 Oscilador amortiguado Ecuación del movimiento: d dt d + γ + ω dt = Qué pasa si γ > ω Entonces, ω no es real Fricción muy fuerte Llega a la posición de equilibrio con poca inercia No lo sobrepasa (o quizás un poco) Aplicaciones para diseño de instrumentos

33 Retos de la instrumentación Señal/Respuesta Los instrumentos tiene problemas de Calibración Respuesta dinámica Incapaces de medir cambios instantáneos

34 Instrumentos de orden dos Los instrumentos tiene problemas de Calibración Respuesta dinámica Incapaces de medir cambios instantáneos Tienen inercia Falta de amortiguamiento oscilaciones» Sin amortiguamiento» Amortiguamiento demasiado débil Demasiado amortiguamiento respuesta lenta» Sobreamortiguamiento Críticamente amortiguamiento ρ = Sin Amortiguamiento Amortiguamiento Débil ρ =.3 Óptimo ρ = 1 ρ = 3 Sobreamortiguado

35 Amortiguamiento y energía Pérdida de energía : trabajo negativo Potencia de la fuerza de fricción dw Fd r P = = Fv r = = bv dt dt Otra manera de ver cómo se disipa energía y potencia Recordándonos que la energía total es( 1 1 E = mv + k ) Y la ecuación del movimiento es dv dv m = bv k bv = m + k dt dt Perdida de potencia : de dv d = mv + k dv = m + k = bv dt dt dt dt v de dt = bv Potencia cedida, como flujo de calor al medio

36 Oscilaciones Forzadas Un sistema suele vibrar a una frecuencia natural Ejm. Muelle: ω Cambio de notación 1 k f = = π π m Ahora, consideramos la acción de una fuerza eterna (F et ) Si actúa en el sentido del movimiento aumenta la energía mecánica Si lo hace en sentido contrario, absorbe energía (trabajo negativo) Para F et cte. (ejm., atracción gravitacional) A veces opone y veces aumenta la oscilación Trabajo neto realizado en un ciclo = Sólo varía la posición de equilibrio del sistema Una fuerza importante es la que varía sinusoidalmente F et = F cos ( ωt) frecuencia angular de la fuerza eterna

37 *Despreciamos un término transitorio, de poca duración Oscilaciones Forzadas La suma de fuerzas es: F mω bv + d = F cos( ωt) = ma = m dt d d m + b + mω = F cos( ωt) dt dt Cuya solución (simplificada*) es t = A sen ω t + con ( ) ( ) ϕ A = m ( ) ω ω + b ω / m F ϕ = tan 1 ω ω ω ( b / m)

38 Oscilación Armónica Forzada () t = A sen( ω t + ) ϕ La amplitud A depende mucho de la diferencia de frecuencias (natural y aplicada) ω = ω Con, tenemos resonancia F et y velocidad están en fase La amplitud queda limitada por el amortiguamiento (si acaso) A ϕ = m = tan ( ) ω ω + b ω / m 1 ω ω F ω ( b / m)

39 Porqué resonancia?: Eaminar la potencia () ( ) t = A sen ω t + ϕ = d v = A cos ω t + ϕ dt Potencia, d P = Fv = F dt ( ) ( ω t + ϕ ) A ωsen ( ω + ) = F t cos ϕ resonancia -F et y velocidad en fase

40 Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento en las proimidades del equilibrio. Oscilaciones amortiguadas. Oscilaciones forzadas. Resonancia. Superposición de M.A.S.

41 Importancia de la resonancia Tacoma Narrows Bridge (Washington, EEUU) 7 noviembre 194 Resonancia entre Las ráfagas de viento (Una de las) frecuencia(s) natural(es) del puente Consecuencias para la ingeniería Para sobredimensionar las edificaciones No basta pensar solo en la fuerza del viento La amplitud de la oscilación armónica forzada (Colapsó) Otros ejemplos: Empujar un niño en un columpio Coche en una cárcava balancear

42 Superposición de MAS Dos MAS en la misma dirección 1 = A1 cos ω 1t + δ1 = A cos ω t + δ El desplazamiento total es: Dos casos Si ω 1 = ω = ω Entonces es un MAS = Acos( ω t +δ ) (Demostrar: ID trig.) Si ω 1 ω No es un MAS ( ) ( ) ( ω t + δ ) + A ( ω + δ ) = t 1 + = A1 cos 1 1 cos

43 Otras combinaciones de dos movimientos armónicos simples Considerar una partícula con dos MAS en direcciones ortogonales = A cos ω t + δ y = A y cos t ( ) Si las frecuencias son distintas, el movimiento es muy complejo, y requiere un estudio especial Para frecuencias iguales: ω ω = ω ( ω + δ ) y y = y

44 Combinaciones de dos MAS Dos MAS en direcciones ortogonales y La constante de fase δ adquiere importancia Si δ = δ y = δ Entonces ( ω + δ ) = A cos t = A y cos ( ω yt + δ y ) Ay y = Ay cos( ω t +δ ) = k A ω ω = ω = y = A y Ay Si δ y - δ = π/, podemos considerar dos casos A =A y el movimiento es un círculo A A y el movimiento es un elipse Si δ y - δ π/ π, también es un elipse y Ay Ay A y Ay A

45 Conceptos/Ecuaciones a Dominar Oscilación MAS Amplitud, A; Periodo, Frecuencia Angular, ω; Fase, ωt + δ Fase inicial ( cte ), δ; Frecuencia, Fuerza y desplazamiento Velocidad Aceleración = Acos t Energía potencial Energía cinética MAS aproimado; péndulo ( ω +δ ) π T = ω 1 f = T F = mω v = Aω sin( wt +δ ) a = ω 1 U ( ) = mω mg F = L Oscilaciones amortiguadas y forzadas. Resonancia. Superposición de M.A.S. 1 K ( ) = mv

46

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

OSCILACIONES.-TEMA 3

OSCILACIONES.-TEMA 3 OSCILACIONES.-TEMA 3 CURSO 9- Bases Físicas del Medio Ambiente º de Ciencias Ambientales Profesor: Juan Antonio Antequera Barroso Una oscilación ocurre cuando un sistema es perturbado de su posición de

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Movimiento armónico simple

Movimiento armónico simple Física Grado en Biotecnología Movimiento armónico simple ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Dpto. Física y Mecánica de la Ingeniería Agroforestal Prof. Mª Victoria Carbonell Programa Generalidades:

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA 2º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. 2) Movimiento

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

P2.- El escape de áncora

P2.- El escape de áncora P.- El escape de áncora. Como es bien sabido desde hace tiempo, las oscilaciones de un péndulo son isócronas, por lo que son idóneas como referencia para la medida del tiempo en los relojes. Sin embargo,

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

1. MOVIMIENTO OSCILATORIO

1. MOVIMIENTO OSCILATORIO . Movimiento armónico. MOVIMIENTO OSCILATORIO Uno de los movimientos más importantes observados en la naturaleza es el movimiento oscilatorio. Una partícula oscila cuando se mueve periódicamente con respecto

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO PROFESOR: ELVER RIVAS PRIMER PERIODO MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.).- Movimiento osciatorio..- Cinemática de movimiento armónico simpe. 3.- Dinámica

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. ) Movimiento

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Dinamica Curso de Verano 2005 Cinetica: Trabajo y Energia Mecanica

Dinamica Curso de Verano 2005 Cinetica: Trabajo y Energia Mecanica Dinamica Curso de Verano 005 Cinetica: Trabajo y Energia Mecanica ITESM Campus Monterrey Departamento de Ingenieria Mecanica Documento preparado por: Ing. Jovanny Pacheco B jpacheco00@gmail.com Este documento

Más detalles

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física MOVIMIENTO OSCILATORIO BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 2017 Índice general 5. Movimiento oscilatorio 1 5.1. Introducción..........................................

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN.

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. 1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. Movimientos oscilatorios: M.A.S. Cuando una partícula material se separa ligeramente de una posición

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio.

1. Escribe en el recuadro la letra correspondiente a cada elemento del movimiento oscilatorio. COLEGIO JUVENTUDES UNIDAS Asignatura: undecimo Periodo: 1 Formulas EVALUACION DE COMPROBACION PRIMER PERIODO x = Acos (wt + φ) v = wasen(wt + φ) a = w 2 Acos(wt + φ) F = ma a = w 2 A v = wa w = 2π T, w

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Vibraciones y ondas 3 1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Desarrollamos la unidad de acuerdo con el siguiente hilo conductor: 1. Por qué se producen los movimientos periódicos vibratorios?.

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Tema II: Dinámica en el espacio de fases

Tema II: Dinámica en el espacio de fases Tema II: Dinámica en el espacio de fases 1. Las ecuaciones de Hamilton Para sistemas autónomos en los que H no depende de t, es una constante del movimiento por lo que H(p, q = α (1.1 Esta ecuación determina

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Oscilador armónico simple

Oscilador armónico simple Oscilador armónico Ileana Nieves Martínez QUIM 44 Oscilador armónico simple = desplazamiento v = velocidad a = aceleración http://en.wikipedia.org/wiki/file:muelle.gif Movimiento de Oscilación simple http://en.wikipedia.org/wiki/file:fasorva.gif

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

RIZO EN EL PLANO VERTICAL

RIZO EN EL PLANO VERTICAL IZO EN EL PLANO VETICAL Una pequeña masa está colgada de un hilo fino de longitud L. Apartamos dicha masa 90º de su posición de equilibrio de manera que el hilo queda tenso y horizontal, y la soltamos.

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles