MÁQUINAS SIMPLES Y MECANISMOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÁQUINAS SIMPLES Y MECANISMOS"

Transcripción

1 MÁQUINAS SIMPLES Y MECANISMOS 1

2 INTRODUCCIÓN Muchos objetos realizados por el ser humano que conocemos son estáticos, como los edificios o los puentes, pero hay otros que no lo son, a estos los llamamos objetos dinámicos, es decir que se mueven o se pueden mover. Estos objetos dinámicos son los que nos permiten por ejemplo moler el trigo, transportar mercancías, limpiar la ropa o marcar y medir el tiempo. Estos objetos están constituidos por las llamadas máquinas y mecanismos. 2

3 DEFINICIONES OPERADOR TECNOLÓGICO: Es un elemento formado por uno o varios elementos o piezas capaz de realizar por si mismo una función determinada. Ej. El termómetro, el tornillo, la polea, etc... 3

4 DEFINICIONES MAQUÍNA: Es un conjunto de piezas o elementos móviles y fijos, agrupados en varios operadores tecnológicos, cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o realizar un trabajo con un fin determinado. Ej. Una bicicleta, un tren, un barco, un secador de pelo, etc 4

5 DEFINICIONES MAQUÍNA SIMPLE: Es una máquina formado por un solo operador tecnológico diseñado para realizar un trabajo determinado. Ej. Una cuña, una palanca, una polea, etc 5

6 DEFINICIONES MECANISMOS: Son elementos destinados a transmitir y transformar fuerzas y movimientos desde un elemento motriz, al que llamaremos motor, a un elemento receptor, al que se le llamará en algunas ocasiones conducido. Permitiendo al ser humano realizar determinados trabajos con mayor comodidad y menor esfuerzo. Los mecanismos están compuestos de operadores tecnológicos y máquinas simples y a su vez forman parte de maquinas más complejas o de mayor tamaño. 6

7 TIPOS DE MAQUÍNAS SIMPLES PLANO INCLINADO CUÑA TORNILLO 7

8 MAQUÍNAS SIMPLES PLANO INCLINADO 8

9 MAQUÍNAS SIMPLES PLANO INCLINADO Es una superficie plana que forma un ángulo agudo con el suelo y se utiliza para elevar cuerpos a cierta altura. Tiene la ventaja de necesitarse una fuerza menor que la que se emplea si levantamos dicho cuerpo verticalmente, aunque a costa de aumentar la distancia recorrida y vencer la fuerza de rozamiento. 9

10 MAQUÍNAS SIMPLES CUÑA 10

11 MAQUÍNAS SIMPLES CUÑA Es una máquina simple que consiste en una pieza de madera o de metal terminada en ángulo diedro muy agudo. Técnicamente es un doble plano inclinado portátil. Sirve para hender o dividir cuerpos sólidos, para ajustar o apretar uno con otro, para calzarlos o para llenar alguna raja o hueco. El funcionamiento de la cuña responde al mismo principio que el del plano inclinado. Al moverse en la dirección de su extremo afilado, la cuña genera grandes fuerzas en sentido perpendicular a la dirección del movimiento. 11

12 MAQUÍNAS SIMPLES CUÑA Ejemplos muy claros de cuñas son hachas, cinceles y clavos aunque, en general, cualquier herramienta afilada, como el cuchillo o el filo de las tijeras, puede actuar como una cuña. 12

13 MAQUÍNAS SIMPLES CUÑA 13

14 MAQUÍNAS SIMPLES TORNILLO 14

15 MAQUÍNAS SIMPLES TORNILLO Se denomina a un elemento u operador mecánico cilíndrico dotado de cabeza, generalmente metálico, aunque pueden ser de madera o plástico, utilizado en la fijación de unas piezas con otras, que está dotado de una caña roscada con rosca triangular, que mediante una fuerza de torsión ejercida en su cabeza con una llave adecuada o con un destornillador. Se puede introducir en un agujero roscado a su medida o atravesar las piezas y acoplarse a una tuerca. 15

16 MAQUÍNAS SIMPLES Partes de un tornillo: En él se distinguen tres partes básicas: cabeza, cuello y rosca. 16

17 MAQUÍNAS SIMPLES La cabeza permite sujetar el tornillo o imprimirle un movimiento giratorio con la ayuda de útiles adecuados; el cuello es la parte del cilindro que ha quedado sin roscar (en algunos tornillos la parte del cuello que está más cercana a la cabeza puede tomar otras formas, siendo las más comunes la cuadrada y la nervada) y la rosca es la parte que tiene tallado el surco. Además cada elemento de la rosca tiene su propio nombre; se denomina filete o hilo a la parte saliente del surco, fondo o raíz a la parte baja y cresta a la más saliente. 17

18 MAQUÍNAS SIMPLES El paso de rosca es la distancia que existe entre dos crestas consecutivas. Si el tornillo es de rosca sencilla, se corresponde con lo que avanza sobre la tuerca por cada vuelta completa. Si es de rosca doble el avance será igual al doble del paso. 18

19 CLASIFICACIÓN DE LOS MECANISMOS Los mecanismos se pueden clasificar en seis grandes grupos: Mecanismos de Transmisión del Movimiento. Mecanismos de Transformación del Movimiento. Mecanismos de Acoplamiento del Movimiento. Mecanismos para Dirigir y Regular el Movimiento. Mecanismos de Acumulación de Energía. Soportes, Cojinetes y Rodamientos. 19

20 Mecanismos de Transmisión del Movimiento Los mecanismos de transmisión del movimiento, son aquellos que transmiten a otro punto el movimiento generado por un elemento motriz o motor. 20

21 Mecanismos de Transmisión del Movimiento Los mecanismos de transmisión del movimiento son los siguientes: Palanca. Polea Simple. Transmisión por Ruedas de Fricción. Transmisión por Poleas con Correa. Transmisión por Ruedas de Dentadas o Engranajes. Transmisión por Corona y Tornillo sin Fin. Transmisión por Ruedas Dentadas con Cadena. Transmisión por Ruedas Dentadas con Correa Dentada. Transmisión Variador de Velocidad. Transmisión por Trenes. 21

22 PALANCA 22

23 PALANCA Es un mecanismo de transmisión del movimiento. La palanca es una máquina simple que se emplea en una gran variedad de aplicaciones. Está formada por una barra rígida que puede oscilar en torno a una pieza fija, que sirve de punto de apoyo, llamado fulcro. Cuando la fuerza se aplica en el extremo de la barra más alejado del punto de apoyo, la fuerza resultante en el extremo más próximo al punto de apoyo es mayor. También puede utilizarse para amplificar la fuerza mecánica que se aplica a un objeto, para incrementar su velocidad o la distancia recorrida, en respuesta a la aplicación de una fuerza. 23

24 PALANCA 24

25 PALANCA Sobre la barra rígida que constituye una palanca actúan tres fuerzas: La potencia; P: es la fuerza que aplicamos voluntariamente con el fin de obtener un resultado; ya sea manualmente o por medio de motores u otros mecanismos. La resistencia; R: es la fuerza que vencemos, ejercida sobre la palanca por el cuerpo a mover. Su valor será equivalente, por el principio de acción y reacción, a la fuerza transmitida por la palanca a dicho cuerpo. La fuerza de apoyo: es la ejercida por el fulcro sobre la palanca. Si no se considera el peso de la barra, será siempre igual y opuesta a la suma de las anteriores, de tal forma de mantener la palanca sin desplazarse del punto de apoyo, sobre el que rota libremente. Brazo de potencia; Bp: la distancia entre el punto de aplicación de la fuerza de potencia y el punto de apoyo. Brazo de resistencia; Br: distancia entre la fuerza de resistencia y el punto de apoyo. 25

26 PALANCA 26

27 PALANCA Ley de la palanca En física, la ley que relaciona las fuerzas de una palanca en equilibrio se expresa mediante la ecuación: P B = P Ley de la palanca: Potencia por su brazo es igual a resistencia por el suyo. Siendo P la potencia, R la resistencia, y Bp y Br las distancias medidas desde el fulcro hasta los puntos de aplicación de P y R respectivamente, llamadas brazo de potencia y brazo de resistencia. R B R 27

28 PALANCA Tipos de palancas Las palancas se dividen en tres géneros, también llamados grados o clases, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto al fulcro (punto de apoyo). El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente. 28

29 PALANCA Palanca de Primera clase. En la palanca de primera clase, el fulcro se encuentra situado entre la potencia y la resistencia. Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Para que esto suceda, el brazo de potencia Bp ha de ser mayor que el brazo de resistencia Br. Cuando lo que se requiere es ampliar la velocidad transmitida a un objeto, o la distancia recorrida por éste, se ha de situar el fulcro más próximo a la potencia, de manera que Bp sea menor que Br. 29

30 PALANCA Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates o la catapulta (para ampliar la velocidad). En el cuerpo humano se encuentran varios ejemplos de palancas de primer género, como el conjunto tríceps braquial - codo - antebrazo. 30

31 PALANCA 31

32 PALANCA Palanca de Segunda clase. En la palanca de segunda clase, la resistencia se encuentra entre la potencia y el fulcro. Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Ejemplos de este tipo de palanca son la carretilla, los remos y el cascanueces. 32

33 PALANCA 33

34 PALANCA Palanca de Tercera clase. En la palanca de tercera clase, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la resultante; y se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él. Ejemplos de este tipo de palanca son el quita grapas la caña de pescar y la pinza de cejas; y en el cuerpo humano, el conjunto codo - bíceps braquial - antebrazo, y la articulación temporomandibular. 34

35 PALANCA 35

36 POLEA SIMPLE 36

37 POLEA SIMPLE Es un mecanismo de transmisión del movimiento. Una polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el curso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. La polea simple se emplea para elevar pesos, consta de una sola rueda con la que hacemos pasar una cuerda. 37

38 POLEA SIMPLE Se emplea para cambiar el sentido de la fuerza haciendo más cómodo el levantamiento de la carga, entre otros motivos, porque nos ayudamos del peso del cuerpo para efectuar el esfuerzo, la fuerza que tenemos que hacer es la misma al peso a la que tenemos que levantar. F = R 38

39 POLEA SIMPLE Polea simple fija La manera más sencilla de utilizar una polea es colgar un peso en un extremo de la cuerda, y tirar del otro extremo para levantar el peso. Una polea simple fija no produce una ventaja mecánica: la fuerza que debe aplicarse es la misma que se habría requerido para levantar el objeto sin la polea. La polea, sin embargo, permite aplicar la fuerza en una dirección más conveniente. 39

40 POLEA SIMPLE Polea simple fija 40

41 POLEA SIMPLE Polea simple móvil. Una forma alternativa de utilizar la polea es fijarla a la carga un extremo de la cuerda al soporte, y tirar del otro extremo para levantar a la polea y la carga. La polea simple móvil produce una ventaja mecánica: la fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea. Por el contrario, la longitud de la cuerda de la que debe tirarse es el doble de la distancia que se desea hacer subir a la carga. 41

42 POLEA SIMPLE Polea simple móvil. 42

43 POLEA SIMPLE Polipastos o aparejos. El polipasto es la configuración más común de polea compuesta. En un polipasto, las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil. F R = 2 n 43

44 POLEA SIMPLE Donde n es el número de pares de poleas. Cada par lo forma una polea simple fija y otra polea simple móvil. Se llama polipasto a una máquina que se utiliza para levantar o mover una carga con una gran ventaja mecánica, porque se necesita aplicar una fuerza mucho menor al peso que hay que mover. Lleva dos o más poleas incorporadas para minimizar el esfuerzo. Estos mecanismos se utilizan mucho en los talleres o industrias que cargan elementos y materiales muy pesados para hacer más rápida y fácil la elevación y colocación de estas piezas en las diferentes máquinasherramientas que hay en los talleres o almacenes, así como cargarlas y descargarlas de los camiones que las transportan. 44

45 POLEA SIMPLE Polipastos o aparejos. 45

46 TRANSMISIÓN POR RUEDAS DE FRICCIÓN 46

47 TRANSMISIÓN POR RUEDAS DE FRICCIÓN Es un mecanismo de transmisión del movimiento. Es un mecanismo de transmisión constituido por dos o más ruedas, cada una de ellas gira solidariamente al eje al que están acopladas, que están en contacto a una cierta presión, de modo que, cuando una de ellas gira, la que está en contacto con esta gira también por efecto del rozamiento. El sentido de giro de la rueda conducida es contrario al sentido de giro de la rueda motriz. Por tanto, si queremos mantener el sentido de giro del motor tendremos que emplear un número impar de ruedas de fricción. 47

48 TRANSMISIÓN POR RUEDAS DE FRICCIÓN Las ruedas de fricción pueden ser cilíndricas, cónicas o esféricas. Esto permite transmitir el movimiento no sólo entre ejes paralelos, sino también entre ejes que se cortan o se cruzan en el espacio. El material empleado en las ruedas de fricción suele ser caucho o similar con coeficiente de fricción elevado. Las ruedas de fricción tienen el gran inconveniente de no poder transmitir grandes potencias, ya que puede resbalar una sobre otra, con la consiguiente pérdida de velocidad. Otro de los inconvenientes del uso de las ruedas de fricción es su desgaste, debido a que funcionan por rozamiento y presión. 48

49 TRANSMISIÓN POR RUEDAS DE FRICCIÓN La relación de transmisión entre las velocidades de giro de las ruedas depende del tamaño relativo de dichas ruedas: = 1 N D N D D D 1 = 2 N N

50 TRANSMISIÓN POR RUEDAS DE FRICCIÓN Donde N1 y N2 indican las velocidades de giro de las ruedas motriz y conducida, respectivamente, se miden en vueltas o revoluciones por minuto (rpm), y D1 y D2 corresponden a los diámetros de las ruedas motriz y conducida, se mide en unidades de longitud que normalmente son mm. Al cociente D1 se llama relación de transmisión. D2 50

51 TRANSMISIÓN POR POLEAS CON CORREA 51

52 TRANSMISIÓN POR POLEAS CON CORREA Es un mecanismo de transmisión del movimiento. El mecanismo está formado por dos ruedas simples acanaladas, que giran solidariamente a cada eje al que están acopladas, de manera que se pueden conectar mediante una cinta o correa tensa. El dispositivo permite transmitir el movimiento entre ejes alejados y normalmente paralelos, de manera poco ruidosa. La correa, sin embargo, sufre un desgaste importante con el uso y puede llegar a romperse. Hay que tensar bien, mediante un carril o un rodillo tensor, para evitar deslizamientos y variaciones de la relación de transmisión. El sentido de giro de la rueda conducida es el mismo sentido de giro de la rueda motriz. 52

53 TRANSMISIÓN POR POLEAS CON CORREA Los tipos de correas que emplea en esta transmisión son: 53

54 TRANSMISIÓN POR POLEAS CON CORREA La relación de transmisión entre las velocidades de giro de las poleas depende del tamaño relativo de dichas poleas: = 1 N D N D D D 1 = 2 N N

55 TRANSMISIÓN POR POLEAS CON CORREA Donde N1 y N2 indican las velocidades de giro de las poleas motriz y conducida, respectivamente, se miden en vueltas o revoluciones por minuto (rpm), y D1 y D2 corresponden a los diámetros de las poleas motriz y conducida, se mide en unidades de longitud que normalmente son mm. D 1 Al cociente se llama relación de transmisión. D2 55

56 TRANSMISIÓN POR POLEAS CON CORREA Esta transmisión la podemos encontrar en lavadoras, ventiladores, lavaplatos, pulidoras, videos, multicultores, cortadores de carne, taladros, generadores de electricidad, cortadoras de cesped, transmisiones de motores, compresores, tornos... en forma de multiplicador de velocidad, caja de velocidades o tren de poleas. 56

57 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES 57

58 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Es un mecanismo de transmisión constituido por dos o más ruedas, cada una de ellas gira solidariamente al eje al que están acopladas, estas ruedas están dotadas de unos salientes, llamados dientes. Dichas ruedas están en contacto atreves de los dientes en los que se apoyan. Cuando una de las ruedas gira, sus dientes se apoyan en la otra arrastrándola y obligando a esta última a girar. 58

59 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Es un mecanismo de transmisión constituido por dos o más ruedas, cada una de ellas gira solidariamente al eje al que están acopladas, estas ruedas están dotadas de unos salientes, llamados dientes. Dichas ruedas están en contacto atreves de los dientes en los que se apoyan. Cuando una de las ruedas gira, sus dientes se apoyan en la otra arrastrándola y obligando a esta última a girar. 59

60 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES El sentido de giro de la rueda conducida es contrario al sentido de giro de la rueda motriz. Por tanto, si queremos mantener el sentido de giro del motor tendremos que emplear un número impar de ruedas dentadas. Es un mecanismo de transmisión robusto, pero que sólo transmite movimiento entre ejes próximos. En algunos casos puede ser un sistema ruidoso, pero que es útil para transmitir potencias elevadas. Requiere lubricación para minimizar el rozamiento. La rueda dentada de mayor tamaño y con mayor número de dientes se la llama corona, y a la rueda dentada de tamaño pequeño y con menor número de dientes se la llama piñón. 60

61 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES La relación de transmisión entre las velocidades de giro de las ruedas depende del número de dientes de dichas ruedas: N Z = N Z 2 Donde N1 y N2 indican las velocidades de giro de las poleas motriz y conducida, respectivamente, se miden en vueltas o revoluciones por minuto (rpm), y Z1 y Z2 corresponden al número de dientes de las ruedas motriz y conducida. Al cociente Z 1 se llama relación de transmisión. Z 2 Z Z 1 = 2 N N

62 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Tipos de engranajes: Cilíndricos de dientes rectos. 62

63 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Cilíndricos de dientes helicoidales. 63

64 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Doble helicoidales 64

65 TRANSMISIÓN POR RUEDAS DENTADAS O Ejes perpendiculares: Cónicos de dientes rectos ENGRANAJES 65

66 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Cónicos de dientes helicoidales. 66

67 TRANSMISIÓN POR RUEDAS DENTADAS O ENGRANAJES Helicoidales cruzados. 67

68 TRANSMISIÓN POR CORONA Y TORNILLO SIN FIN 68

69 TRANSMISIÓN POR CORONA Y TORNILLO SIN FIN Es un mecanismo de transmisión constituido por un tornillo que engrana a una rueda dentada llamada corona. La corona gira solidaria a su eje, que es perpendicular al eje del tornillo. Por cada vuelta del tornillo sin fin acoplado al eje motriz, la rueda gira un diente. Este sistema permite, por tanto, transmitir e movimiento desde el eje motriz, el que esta conectado el tornillo, al eje de la rueda dentada o corana, que es la rueda conducida. Además se consigue una gran reducción de velocidad. Desde el punto de vista conceptual el sinfín es considerado una rueda dentada de un solo diente que ha sido tallado helicoidalmente (en forma de hélice). Este operador ha sido diseñado para la transmisión de movimientos giratorios, por lo que siempre trabaja unido a otro engranaje. 69

70 TRANSMISIÓN POR CORONA Y TORNILLO SIN FIN La relación de transmisión entre las velocidades de giro del tornillo y la corona depende del número de dientes de dicha corona: N Donde NTornillo = Tornillo Corona N es la velocidad de giro del tornillo, NCorona es la velocidad de giro de la corona, y ZCorona es número de dientes de la corona. Z Corna 70

71 TRANSMISIÓN POR CORONA Y TORNILLO SIN FIN 71

72 TRANSMISIÓN POR RUEDAS DENTADAS CON CADENA 72

73 TRANSMISIÓN POR RUEDAS DENTADAS CON CADENA El mecanismo está formado por dos ruedas dentadas, que giran solidariamente a cada eje al que están acopladas, de manera que se pueden conectar mediante una cadena de eslabones articulados que engrana en dichas ruedas. El dispositivo permite transmitir el movimiento entre ejes alejados y normalmente paralelos, de manera poco ruidosa. Este sistema permite transmitir grandes velocidades y potencias, por que no existe la posibilidad del deslizamiento ya que la cadena engrana con las ruedas. El sentido de giro de la rueda conducida es el mismo sentido de giro de la rueda motriz. Este sistema se emplea en las bicicletas, en los motores de gasolina y diesel de automóviles y camiones, y en grandes máquinas industriales. 73

74 TRANSMISIÓN POR RUEDAS DENTADAS CON CADENA La relación de transmisión entre las velocidades de giro de las ruedas depende del número de dientes de dichas ruedas: N Z = N Z 2 Donde N1 y N2 indican las velocidades de giro de las poleas motriz y conducida, respectivamente, se miden en vueltas o revoluciones por minuto (rpm), y Z1 y Z2 corresponden al número de dientes de las ruedas motriz y conducida. Z Z 1 = 2 N N 2 1 Z Z Al cociente se llama relación de transmisión

75 TRANSMISIÓN POR RUEDAS DENTADAS CON CADENA 75

76 TRANSMISIÓN POR RUEDAS DENTADAS CON CORREA DENTADA 76

77 TRANSMISIÓN POR RUEDAS DENTADAS CON CORREA DENTADA El mecanismo está formado por dos ruedas dentadas, que giran solidariamente a cada eje al que están acopladas, de manera que se pueden conectar mediante una correa dentada que engrana en dichas ruedas. El dispositivo permite transmitir el movimiento entre ejes alejados y normalmente paralelos, de manera poco ruidosa. Este sistema permite transmitir grandes velocidades y potencias, por que no existe la posibilidad del deslizamiento ya que la correa engrana con las ruedas. El sentido de giro de la rueda conducida es el mismo sentido de giro de la rueda motriz. 77

78 TRANSMISIÓN POR RUEDAS DENTADAS CON CORREA DENTADA La relación de transmisión entre las velocidades de giro de las ruedas depende del número de dientes de dichas ruedas: N Z = N Z 2 Donde N1 y N2 indican las velocidades de giro de las poleas motriz y conducida, respectivamente, se miden en vueltas o revoluciones por minuto (rpm), y Z1 y Z2 corresponden al número de dientes de las ruedas motriz y conducida. Z Z 1 = 2 N N 2 1 Z Z Al cociente se llama relación de transmisión

79 TRANSMISIÓN POR RUEDAS DENTADAS CON CORREA DENTADA 79

80 TRANSMISIÓN VARIADOR DE VELOCIDAD Son transmisiones de movimiento circular que además de transmitir fuerzas y movimientos, son capaces de variar la velocidad de giro de los ejes a los que están conectados. Consiguiendo efectos combinados de potencia y velocidad en función del tamaño de las ruedas y de la atribución que tienen en el mecanismo, es decir, si es motriz o conducida. Existen tres sistemas: 80

81 TRANSMISIÓN VARIADOR DE VELOCIDAD Sistema multiplicador de velocidad. En este sistema la velocidad de la rueda conducida es mayor que la rueda motriz. Pero la potencia que se obtiene de la rueda conducida es menor que la conductora. La rueda 1 es de mayor tamaño o tiene más dientes que la rueda 2. 81

82 TRANSMISIÓN VARIADOR DE VELOCIDAD Z > Z 1 2 N < N

83 TRANSMISIÓN VARIADOR DE VELOCIDAD D > D 1 2 N < N

84 TRANSMISIÓN VARIADOR DE VELOCIDAD Sistema Reductor de velocidad. En este sistema la velocidad de la rueda conducida es menor que la rueda motriz. Pero la potencia que se obtiene de la rueda conducida es mayor que la conductora. La rueda 1 es de menor tamaño o tiene menos dientes que la rueda 2. 84

85 TRANSMISIÓN VARIADOR DE VELOCIDAD Z < Z 1 2 N > N

86 TRANSMISIÓN VARIADOR DE VELOCIDAD D < D 1 2 N > N

87 TRANSMISIÓN VARIADOR DE VELOCIDAD Sistema constante de velocidad. En este sistema la velocidad de la rueda conducida es igual que la rueda motriz. La potencia que se obtiene de la rueda conducida es igual que la conductora. La rueda 1 es de igual tamaño o tiene los mismos dientes que la rueda 2. 87

88 TRANSMISIÓN POR TRENES Son la unión de varios mecanismos simples. Para que dos sistemas o conjuntos de transmisión formen un tren, es necesario que los dos sistemas compartan el mismo eje, de tal forma, que el eje del elemento conducido del primer sistema o conjunto se también el eje del elemento motriz del segundo sistema. Los efecto que se consiguen son la de una mayor relación de transmisión entre el primer eje correspondiente a al primer elemento motriz y el último eje donde está el último elemento conducido. Los trenes más comunes son los de poleas y los engranajes. 88

89 TRANSMISIÓN POR Trenes de poleas: Están formados por dos pares mínimo de sistemas de poleas con correa. En el eje 2 están situadas las poleas motriz y conducida de cada uno de los dos sistemas. Si el tren tiene la función de reductora, el eje 1 está la polea motriz y en el eje 3 esta la polea conducida. Si el tren tiene la función de multiplicadora, el eje 1 está la polea conducida y en el eje 3 la polea motriz. TRENES 89

90 TRANSMISIÓN POR TRENES Las relaciones de transmisión son: N N 4 1 = D D 1 2 D D 3 4 < D < D D = D D D D4 N N 4 N 3 > = 1 2 N D =

91 TRANSMISIÓN POR Trenes de engranajes: Están formados por dos pares mínimo de sistemas de ruedas dentadas. En el eje 2 están situadas las ruedas motriz y conducida de cada uno de los dos sistemas. Si el tren tiene la función de reductora, el eje 1 está la rueda motriz y en el eje 3 esta la rueda conducida. Si el tren tiene la función de multiplicadora, el eje 1 está la rueda conducida y en el eje 3 la rueda motriz. TRENES 91

92 TRANSMISIÓN POR TRENES Las relaciones de transmisión son: N N 4 1 = Z Z 1 2 Z Z 3 4 Z Z 4 < 1 Z < 3 Z Z = Z = Z N N 4 N 3 > = 1 2 N Z 4 92

93 Mecanismos de Transformación del Movimiento Los mecanismos de transformación del movimiento, son aquellos que transforman un movimiento lineal en un movimiento circular o transformar un movimiento circular en otro lineal. 93

94 Mecanismos de Transformación del Movimiento Los mecanismos de transformación del movimiento de circular a rectilíneo son los siguientes: Transmisión por Sistema Piñón Cremallera. Transmisión por Sistema Tornillo Tuerca. Transmisión por Conjunto Manivela - Torno. 94

95 Mecanismos de Transformación del Movimiento Los mecanismos de transformación del movimiento de circular a rectilíneo alternativos son los siguientes: Transmisión por Sistema Tornillo sin Fin Cremallera. Transmisión por Sistema Biela Manivela. Transmisión por Cigüeñal. Transmisión por Leva. Transmisión por Excéntrica. 95

96 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA 96

97 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Es un sistema que permite convertir un movimiento giratorio en uno lineal continuo, o viceversa. El sistema está formado por un piñón (rueda dentada) que engrana perfectamente en una cremallera. 97

98 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Una cremallera es un prisma rectangular con una de sus caras laterales tallada con dientes. Estos pueden ser rectos o curvados y estar dispuestos en posición transversal u oblicua. 98

99 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Cuando el piñón gira, sus dientes empujan los de la cremallera, provocando el desplazamiento lineal de esta. 99

100 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Si lo que se mueve es la cremallera, sus dientes empujan a los del piñón consiguiendo que este gire y obteniendo en su eje un movimiento giratorio. La relación entre la velocidad de giro del piñón (N) y la velocidad lineal de la cremallera (V) depende de dos factores: el número de dientes del piñón (Z) y el número de dientes por centímetro de la cremallera (n). 100

101 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Por cada vuelta completa del piñón la cremallera se desplazará avanzando tantos dientes como tenga el piñón. Por tanto se desplazará una distancia: Z d = n y la velocidad del desplazamiento será: V = N Z n 101

102 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA Donde la velocidad de giro del piñón (N) se mide en revoluciones por minuto (r.p.m.), la velocidad lineal de la cremallera (V) se expresa en centímetros por minuto (cm/minuto). Su utilidad práctica suele centrarse solamente en la conversión de giratorio en lineal continuo, siendo muy apreciado para conseguir movimientos lineales de precisión (caso de microscopios u otros instrumentos ópticos como retroproyectores), desplazamiento del cabezal de los taladros sensitivos, movimiento de puertas automáticas de garaje, sacacorchos, regulación de altura de los trípodes, movimiento de estanterías móviles empleadas en archivos, farmacias o bibliotecas, cerraduras, dirección de los automóviles, etc

103 TRANSMISIÓN POR SISTEMA PIÑÓN CREMALLERA 103

104 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA 104

105 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA Se emplea en la conversión de un movimiento giratorio en uno lineal continuo cuando sea necesaria una fuerza de apriete o una desmultiplicación muy grandes. Se necesita, como mínimo, un tornillo que se acople perfectamente a una tuerca (o a un orificio roscado). 105

106 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA Este sistema técnico se puede plantear de dos formas básicas: Un tornillo de posición fija (no puede desplazarse longitudinalmente) que al girar provoca el desplazamiento de la tuerca. 106

107 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA En la barra engomadora el tornillo no se desplaza, pero su giro hace que el cilindro de cola suba o baje debido a que esta es la que hace de tuerca. Una tuerca o un orificio roscado fijo (no puede girar ni desplazarse longitudinalmente) que produce el desplazamiento del tornillo cuando este gira. El grifo es un ejemplo de este funcionamiento. 107

108 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA En el caso de los grifos nos permite abrir (o cerrar) el paso del agua levantando (o bajando) la zapata a medida que vamos girando adecuadamente la llave. El sistema tornillo-tuerca presenta una ventaja muy grande respecto a otros sistemas de conversión de movimiento giratorio en longitudinal: por cada vuelta del tornillo la tuerca solamente avanza la distancia que tiene de separación entre filetes (paso de rosca) por lo que la fuerza de apriete (longitudinal) es muy grande. El paso de rosca es la distancia que existe entre dos crestas consecutivas. 108

109 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA Si el tornillo es de rosca sencilla, se corresponde con lo que avanza sobre la tuerca por cada vuelta completa. Si es de rosca doble el avance será igual al doble del paso. 109

110 TRANSMISIÓN POR SISTEMA TORNILLO TUERCA Por otro lado, presenta el inconveniente de que el sistema no es reversible (no podemos aplicarle un movimiento longitudinal y obtener uno giratorio). El sistema tornillo-tuerca como mecanismo de desplazamiento se emplea en multitud de máquinas pudiendo ofrecer servicio tanto en sistemas que requieran de gran precisión de movimiento (balanzas, tornillos micrométricos, transductores de posición, posicionadores...) como en sistemas de baja precisión. 110

111 TRANSMISIÓN POR CONJUNTO MANIVELA - TORNO 111

112 TRANSMISIÓN POR CONJUNTO MANIVELA - TORNO El sistema está formado por una máquina simple que consiste en un cilindro dispuesto para girar alrededor de su eje por la acción de manivela, y que ordinariamente actúa sobre la resistencia por medio de una cuerda que se va arrollando al cilindro. 112

113 TRANSMISIÓN POR CONJUNTO MANIVELA - TORNO 113

114 TRANSMISIÓN POR CONJUNTO MANIVELA - TORNO La manivela es una pieza normalmente de hierro, compuesta de dos ramas en ángulo recto, una de las cuales se fija por un extremo en el eje de una máquina, de una rueda, etc. y la otra forma el mango que sirve para mover al brazo, la máquina o la rueda. 114

115 TRANSMISIÓN POR CONJUNTO MANIVELA - TORNO La formula que explica funciona esta máquina es similar a la de la palanca y es la siguiente: F = R BR BF Donde R es la resistencia, F es la fuerza que hay que aplicar en la manivela, BR es el radio del cilindro y es el brazo de la resistencia R; y BF es el radio de la manivela y es el brazo de la fuerza F. 115

116 TRANSMISIÓN POR SISTEMA TORNILLO SIN FIN CREMALLERA Es un sistema que permite convertir un movimiento giratorio en uno lineal continuo, pero la conversión del movimiento lineal a circular no es posible. El sistema está formado por tornillo sin fin que engrana perfectamente en una cremallera. 116

117 TRANSMISIÓN POR SISTEMA TORNILLO SIN FIN CREMALLERA Desde el punto de vista conceptual el sinfín es considerado una rueda dentada de un solo diente que ha sido tallado helicoidalmente (en forma de hélice). Este operador ha sido diseñado para la transmisión de movimientos giratorios, por lo que siempre trabaja unido a otro elemento. Una cremallera es un prisma rectangular con una de sus caras laterales tallada con dientes. Estos pueden ser rectos o curvados y estar dispuestos en posición transversal u oblicua. 117

118 TRANSMISIÓN POR SISTEMA TORNILLO SIN FIN CREMALLERA 118

119 TRANSMISIÓN POR SISTEMA BIELA MANIVELA 119

120 TRANSMISIÓN POR SISTEMA BIELA MANIVELA El mecanismo de biela - manivela es un mecanismo que transforma un movimiento circular en un movimiento de traslación, o viceversa. 120

121 TRANSMISIÓN POR SISTEMA BIELA MANIVELA Es un conjunto formado por una manivela y una biela. La Biela es un elemento rígido y alargado que permite la unión articulada entre la manivela y el émbolo. Está formada por la cabeza, la caña o cuerpo y el pie. La forma y la sección de la biela pueden ser muy variadas, pero debe poder resistir los esfuerzos de trabajo, por eso es hecha de aceros especiales o aleaciones de aluminio. 121

122 TRANSMISIÓN POR SISTEMA BIELA MANIVELA La manivela es una palanca con un punto al eje de rotación y la otra en la cabeza de la biela. Cuando la biela se mueve alternativamente, adelante y atrás, se consigue hacer girar la manivela gracias al movimiento general de la biela. Y al revés, cuando gira la manivela, se consigue mover alternativamente adelante y atrás la biela y el émbolo. 122

123 TRANSMISIÓN POR CIGÜEÑAL 123

124 TRANSMISIÓN POR CIGÜEÑAL Un cigüeñal es un eje acodado, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en rotatorio y viceversa. Este mecanismo se emplea en los motores de combustión. 124

125 TRANSMISIÓN POR CIGÜEÑAL 125

126 TRANSMISIÓN POR LEVA La leva es un disco con un perfil externo parcialmente circular sobre el que apoya un operador móvil (seguidor de leva) destinado a seguir las variaciones del perfil de la leva cuando esta gira. Por tanto transforma un movimiento de rotación en otro lineal de traslación oscilante. 126

127 TRANSMISIÓN POR LEVA Conceptualmente deriva de la rueda y del plano inclinado. La leva va solidaria con un eje (árbol) que le transmite el movimiento giratorio que necesita; en muchas aplicaciones se recurre a montar varias levas sobre un mismo eje o árbol (árbol de levas), lo que permite la sincronización del movimiento de varios seguidores a la vez. 127

128 TRANSMISIÓN POR LEVA Como seguidor de leva pueden emplearse émbolos (para obtener movimientos de vaivén) o palancas (para obtener movimientos angulares) que en todo momento han de permanecer en contacto con el contorno de la leva. Para conseguirlo se recurre al empleo de resortes, muelles o gomas de recuperación adecuadamente dispuestos. 128

129 TRANSMISIÓN POR LEVA La forma del contorno de la leva (perfil de leva) siempre está supeditada al movimiento que se necesite en el seguidor, pudiendo aquel adoptar curvas realmente complejas. 129

130 TRANSMISIÓN POR EXCÉNTRICA 130

131 TRANSMISIÓN POR EXCÉNTRICA Desde el punto de vista técnico la excéntrica es, básicamente, un disco (rueda) dotado de dos ejes: Eje de giro y el excéntrico. En este caso, esta rueda entorno al eje excéntrico. Al igual que la leva, se apoya un operador móvil (seguidor de leva) destinado a seguir las variaciones del perfil de la leva cuando esta gira. Por tanto transforma un movimiento de rotación en otro lineal de traslación oscilante. Conceptualmente deriva de la rueda y del plano inclinado. 131

132 TRANSMISIÓN POR La excéntrica va solidaria con un eje (árbol) que le transmite el movimiento giratorio que necesita. Como seguidor de excéntica pueden emplearse émbolos (para obtener movimientos de vaivén) o palancas (para obtener movimientos angulares) que en todo momento han de permanecer en contacto con el contorno de la leva. Para conseguirlo se recurre al empleo de resortes, muelles o gomas de recuperación adecuadamente dispuestos. EXCÉNTRICA 132

133 Mecanismos de Acoplamiento del Movimiento Los siguientes mecanismos tienen como objeto transmitir los movimientos circulares entre ejes que no están colocados paralelamente, ni son perpendiculares. No emplean ningún de los mecanismos anteriormente visto para conectarlos entre si. 133

134 Mecanismos de Acoplamiento del Movimiento Estos mecanismos son los siguientes: Embragues. Acoplamiento fijos. Acoplamiento móviles.»acoplamiento por Junta Cardan.»Acoplamiento por Junta Oldham. 134

135 EMBRAGUES El embrague es un sistema que permite tanto transmitir como interrumpir la transmisión de una energía mecánica de giro entre ejes o árboles de transmisión no paralelos ni perpendiculares, mediante la conexión o desconexión de los mismos. Existen dos tipos básicos: Embragues de fricción. Embragues de dientes. 135

136 EMBRAGUES Embragues de fricción. El proceso de conexión o acoplamiento se lleva cabo mediante la fuerza de rozamiento de dos superficies que, unidas a los ejes o árboles, son presionadas entre sí. 136

137 EMBRAGUES Embragues de dientes. El acoplamiento o desacoplamiento de los ejes o árboles de transmisión tiene lugar cuando encajan los dientes de las dos piezas enfrentadas. 137

138 ACOPLAMIENTOS Acoplamientos fijos o bridas. Son elementos que se emplean en unir ejes o árboles de transmisión largos enlazados de forma permanente. Es decir, están uno a continuación del otro. 138

139 ACOPLAMIENTOS Los acoplamientos móviles se emplean para unir ejes o árboles de transmisión que entre ellos forman un ángulo distinto de cero o tienen desplazamiento entre ellos. Hay dos tipo: Acoplamiento por Junta Cardan. Acoplamiento por Junta Oldham. 139

140 ACOPLAMIENTO POR JUNTA CARDAN 140

141 ACOPLAMIENTO POR JUNTA CARDAN El cardán es un acoplamiento mecánico movil, que permite unir dos ejes que giran en un ángulo distinto uno respecto del otro. Su objetivo es transmitir el movimiento de rotación de un eje al otro a pesar de ese ángulo. En los vehículos de motor se suele utilizar como parte del árbol de transmisión, que lleva la fuerza desde el motor situado en la parte delantera del vehículo hacia las ruedas traseras. El principal problema que genera el cardán es que, por su configuración, el eje al que se le transmite el movimiento no gira a velocidad angular constante. 141

142 ACOPLAMIENTO POR JUNTA CARDAN 142

143 ACOPLAMIENTO POR JUNTA OLDHAM La juntas Oldhan también denomina de platillos en cruz y se usa para unir dos árboles paralelos de muy reducida distancia axial. La junta consta de tres elementos dos solidarios uno a cada eje y un tercero que sirve de unión entres las anteriores como se puede ver el ejemplo. 143

144 ACOPLAMIENTO POR JUNTA OLDHAM 144

145 Mecanismos para Dirigir y Regular el Movimiento Este tipo de mecanismos buscan controlar y regular los movimientos circulares y lineales. Los más comunes son: Trinquetes. Frenos. 145

146 TRINQUETE Un trinquete es un mecanismo que permite a un engranaje girar hacia un lado, pero le impide hacerlo en sentido contrario, ya que lo traba con dientes en forma de sierra. Permite que los mecanismos no se rompan al girar al revés. Usos de este mecanismo: Es lo que permite que los mecanismos no se rompan al girar al revés. El trinquete se encuentra en el reloj para prevenir que las manecillas giren hacia el sentido contrario. Tiene diferentes formatos y medidas. En llaves de carraca que permiten que el movimiento se transmita en solo en el sentido deseado. 146

147 TRINQUETE 147

148 FRENOS Los frenos son mecanismos para regular el movimiento, disminuyendo o deteniendo el movimiento circular de los ejes o árboles de transmisión. Son utilizado en numerosos tipos de máquinas. Su aplicación es especialmente importante en los vehículos, como automóviles, trenes, aviones, motocicletas o bicicletas. 148

149 FRENOS Tipos de frenos: Frenos de cinta o de banda. Freno de tambor. Freno de disco. 149

150 FRENOS Frenos de cinta o de banda: Utilizan una banda flexible, las mordazas o zapatas se aplican para ejercer tensión sobre un cilindro o tambor giratorio que se encuentra solidario al eje que se pretenda controlar. La banda al ejercer presión, ejerce la fricción con la cual se disipa en calor la energía cinética del cuerpo a regular. 150

151 FRENOS 151

152 FRENOS El freno de tambor es un tipo de freno en el que la fricción se causa por un par de zapatas que presionan contra la superficie interior de un tambor giratorio, el cual está conectado al eje o la rueda. 152

153 FRENOS 153

154 FRENOS El freno de disco es un sistema de frenado normalmente para ruedas de vehículos, en el cual una parte móvil (el disco) solidario con la rueda que gira es sometido al rozamiento de unas superficies de alto coeficiente de fricción (las pastillas) que ejercen sobre ellos una fuerza suficiente como para transformar toda o parte de la energía cinética del vehículo en movimiento, en calor, hasta detenerlo o reducir su velocidad, según sea el caso. Esta inmensa cantidad de calor ha de ser evacuada de alguna manera, y lo más rápidamente posible. El mecanismo es similar en esto al freno de tambor, con la diferencia de que la superficie frenante es menor pero la evacuación del calor al ambiente es mucho mejor, compensando ampliamente la menor superficie frenante. 154

155 FRENOS 155

156 Mecanismos de Acumulación de Energía Estos dispositivos tienen como objetivos la captación, almacenamiento y liberación de la energía de tipo mecánica, es decir, la que se obtiene con los esfuerzos de tracción, compresión, flexión, torsión, etc.; similar a como lo haría un músculo. 156

157 Mecanismos de Acumulación de Energía Estos dispositivos son los muelles. Gracias a los materiales con los que están elaborados, absorben energía cuando están sometidos a cierta presión o deformación. Esta energía puede se liberada más tarde, ya sea dosificada en pequeñas cantidades o de golpe. Los muelles pueden trabajar: 157

158 Mecanismos de Acumulación de Energía A compresión. El muelle se comprime como el de los sillones. 158

159 Mecanismos de Acumulación de Energía A tracción. El muelle es estirado como el de los somieres. 159

160 Mecanismos de Acumulación de Energía A torsión. El muelle es retorcido como en las pinzas de tender. 160

161 SOPORTES Los soportes son los elementos sobre los que se apoyan los árboles y los ejes de transmisión. Podemos clasificarlos en dos grupos: Cojinetes de Fricción Rodamientos. 161

162 SOPORTES Un cojinete es la pieza o conjunto de ellas sobre las que se soporta y gira el árbol transmisor de movimiento giratorio de una máquina. El árbol o eje al girar fricciona, por lo que necesitan ser lubricados con aceite para facilitar el giro y reducir el desgaste por rozamiento. Los cojinetes se fabrican con materiales muy resistentes al desgaste, como el bronce y materiales antifricción. 162

163 SOPORTES 163

164 SOPORTES Un rodamiento es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste por medio de rodadura, que le sirve de apoyo y facilita su desplazamiento. El rodamiento están formados por dos anillos concéntricos entre los que se colocan bolas o rodillos. El anillo interior se une o ajusta al eje o árbol de transmisión, y el exterior, al elemento soporte. Los materiales empleados en la construcción de los rodamientos son aceros de alta resistencia al desgaste. 164

165 SOPORTES 165

166 FIN 166

Clasificación de los mecanismos.

Clasificación de los mecanismos. MECANISMOS - II MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

MÁQUINAS SIMPLES Y MECANSIMOS

MÁQUINAS SIMPLES Y MECANSIMOS MÁQUINAS SIMPLES Y MECANSIMOS 1 INTRODUCCIÓN Muchos objetos realizados por el ser humano que conocemos son estáticos, como los edificios o los puentes, pero hay otros que no lo son, a estos los llamamos

Más detalles

QUÉ SON LOS MECANISMOS?

QUÉ SON LOS MECANISMOS? QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor

Más detalles

PALANCA. Operador compuesto de una barra que oscila sobre un eje la cual necesita de una potencia o fuerza.

PALANCA. Operador compuesto de una barra que oscila sobre un eje la cual necesita de una potencia o fuerza. CONCEPTOS BASICOS SOBRE OPERADORES MECANICOS DEFINICION. Son operadores que van conectados entre sì para permitir el funcionamiento de una máquina, teniendo en cuenta la fuerza que se ejerce sobre ellos.

Más detalles

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO 0.- INTRODUCCIÓN. En general, todas las máquinas se componen de mecanismos; gracias a ellos, el impulso que proviene del esfuerzo muscular o de un motor se traduce en el tipo de movimiento y la fuerza

Más detalles

TEMA 6 LOS MECANISMOS

TEMA 6 LOS MECANISMOS TEMA 6 LOS MECANISMOS 1. MÁQUINAS SIMPLES. MECANISMOS DE TRANSMISIÓN LINEAL Para ahorrar esfuerzo en la realización de diversas tareas, el ser humano ha inventado artilugios como la palanca o polea. Estos

Más detalles

MECANISMOS. Son elementos destinados a trasmitir y transformar. Clasificación de los mecanismos.

MECANISMOS. Son elementos destinados a trasmitir y transformar. Clasificación de los mecanismos. TEMA MECANISMOS MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor.

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Finalidad: - Permiten realizar trabajos con mayor comodidad

Más detalles

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 1. QUE SON LOS MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. TECNOLOGÍA - 2º ESO TEMA 5: LOS

Más detalles

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS DISIPADORES DE ENERGÍA Y RETENCIÓN MECANISMOS ACUMULADORES

Más detalles

Máquinas y mecanismos

Máquinas y mecanismos Máquinas y mecanismos Las máquinas Una máquina es un conjunto de mecanismos que transforman un tipo de energía o de trabajo en energía útil. Estos mecanismos aprovechan la acción de una fuerza para producir

Más detalles

TECNOLOGÍA MÁQUINAS Y MECANISMOS

TECNOLOGÍA MÁQUINAS Y MECANISMOS 1. MÁQUINAS 1.1 Definición Una máquina es un conjunto de elementos móviles y fijos, cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o realizar un trabajo. Se denomina

Más detalles

MECANISMOS Y MÁQUINAS SIMPLES

MECANISMOS Y MÁQUINAS SIMPLES MECANISMOS Y MÁQUINAS SIMPLES Los mecanismos y máquinas simples son dispositivos que se utilizan para reducir la cantidad de esfuerzo necesario para realizar diversas actividades o para transmitir y /

Más detalles

LOS MECANISMOS. (Tomado de slideshare.net Junio )

LOS MECANISMOS. (Tomado de slideshare.net Junio ) LOS MECANISMOS (Tomado de slideshare.net Junio 7 2012) LOS MECANISMOS Todas las máquinas, sean básicas o complejas, se componen de mecanismos sencillos. Mecanismo: dispositivo que transforma un movimiento

Más detalles

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes.

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes. Mecanismos 1. Introducción Desde la existencia del hombre, éste ha fabricado útiles que le ayudan en sus tareas cotidianas de supervivencia, como hachas y cuchillos. A medida que las sociedades se organizaban,

Más detalles

2º E.S.O. Instagram: skyrider INDICE 1.

2º E.S.O. Instagram: skyrider INDICE 1. 1. MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. Instagram: skyrider428 http://skytecnoreader.worpress.com

Más detalles

Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología

Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología e Informática) Ed. SANTILLANA, el libro de texto de

Más detalles

Guía didáctica Operadores Tecnológicos

Guía didáctica Operadores Tecnológicos Guía didáctica Operadores Tecnológicos os operadores mecánicos son elementos que facilitan la realización de una tarea o que transforman un tipo de energía en otro. 2 OPERADORES MECANICOS BASICOS 1. Palanca

Más detalles

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS 1. QUÉ SON LOS MECANISMOS? Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS Si miras a tu alrededor, veras muchos objetos que se mueven. Todos estos objetos y cualquier máquina que realice

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE.

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE. Desarrollo del tema:. Los mecanismos y los sistemas mecánicos.. Los elementos que transmiten movimientos. 3. La transmisión de movimientos por: a. Palancas. b. Ruedas de fricción. c. Poleas y correas.

Más detalles

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una

Más detalles

DIOS TECNOLOGÍA MECANISMOS. Diseño y Diagramación Camilo Andrés Paz. Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz

DIOS TECNOLOGÍA MECANISMOS. Diseño y Diagramación Camilo Andrés Paz. Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz TECNOLOGÍA MECANISMOS Diseño y Diagramación Camilo Andrés Paz Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz I.E.M MARÍA GORETTI 2015 MECANISMOS 1. Definición de mecanismos y maquinas Mecanismos

Más detalles

MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR

MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR MECANISMOS DE TRANSMISIÓN LINEAL PALANCA : MÁQUINA SIMPLE.

Más detalles

UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA. Actividades

UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA. Actividades UNIDAD 7: MECANISMOS TECNOLOGIAS 3º ESO I.E.S. ALTO GUADIANA (P. 148 Oxford) 1. INTRODUCCIÓN Las máquinas sirven para hacer más fácil el trabajo al hombre, por ejemplo levantar grandes cargas, desplazarse

Más detalles

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO. 1.- Elementos mecánicos transformadores del movimiento:

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO. 1.- Elementos mecánicos transformadores del movimiento: TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO 1.- Elementos mecánicos transformadores del movimiento: Son los elementos encargados de transformar o cambiar el tipo de movimiento de entrada

Más detalles

MAQUINAS Y MECANISMOS

MAQUINAS Y MECANISMOS MAQUINAS Y MECANISMOS INTRODUCCIÓN El ser humano necesita realizar trabajos que sobrepasan sus posibilidades: mover rocas muy pesadas, elevar coches para repararlos, transportar objetos o personas a grandes

Más detalles

Tema 4. Máquinas complejas.

Tema 4. Máquinas complejas. Tema 4. Máquinas complejas. Tecnología. 3º ESO. Tema 4: Máquinas complejas. 1. Introducción. Ya sabemos que el hombre inventa máquinas para reducir el esfuerzo necesario para realizar un trabajo. Hoy en

Más detalles

1.- Con la carretilla de la figura queremos transportar una carga de tierra.

1.- Con la carretilla de la figura queremos transportar una carga de tierra. MECANISMOS 1.- Con la carretilla de la figura queremos transportar una carga de tierra. A) qué tipo de palanca estamos empleando? B) Qué esfuerzo tenemos que realizar si el peso de la arena a transportar

Más detalles

BLOQUE 2. OPERADORES MECÁNICOS

BLOQUE 2. OPERADORES MECÁNICOS BLOQUE 2. OPERADORES MECÁNICOS 1. INTRODUCCIÓN Hay muchas maneras de definir una máquina. Nosotros vamos a usar la siguiente definición: Máquina: es el conjunto de mecanismos (operadores mecánicos) capaz

Más detalles

Departamento de Tecnología MECANISMOS

Departamento de Tecnología MECANISMOS MECANISMOS 1. Mecanismos de transmisión circular 1.1 Ruedas de fricción 1.2 Poleas y correas 1.3 Ruedas dentadas 1.4 Transmisión por cadenas 1.5 Tornillo sin fin 2. Mecanismos de transformación de movimiento

Más detalles

Máquinas y Mecanismos virtual. Nombre 1- ACTIVIDAD DE MECANISMOS

Máquinas y Mecanismos virtual. Nombre 1- ACTIVIDAD DE MECANISMOS Máquinas y Mecanismos virtual Nombre 1- ACTIVIDAD DE MECANISMOS 15- Las partes de una maquina son 1. Elemento motriz: 2. Mecanismo:. 3. Mecanismos de transmisión del movimiento. 4. Mecanismos de transformación

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2012/2013 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS TEMA 3: MECANISMOS 1. Mecanismos a. Movimiento circular en movimiento circular Ruedas de fricción Polea correa Engranajes b. Movimiento circular en movimiento lineal y viceversa Biela manivela Piñón cremallera

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO

TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO TEMA 2: ELEMENTOS MECÁNICOS TRANSFORMADORES DEL MOVIMIENTO 1.- Elementos mecánicos transformadores del movimiento: Son los elementos encargados de transformar o cambiar el tipo de movimiento de entrada

Más detalles

ACTIVIDADES DE LA UNIDAD 7. MECANISMOS

ACTIVIDADES DE LA UNIDAD 7. MECANISMOS ACTIVIDADES DE LA UNIDAD 7. MECANISMOS 1. Un padre está jugando con su hijo con un palo de 3 m de longitud, tal como muestra la figura: a) Qué tipo de palanca identificas en este juego? Es una palanca

Más detalles

TEMA 4: El movimiento de las máquinas.

TEMA 4: El movimiento de las máquinas. TEMA 4: El movimiento de las máquinas. NIVEL: 2º Curso de Educación Secundaria Obligatoria. TEMA 4: El movimiento de las máquinas. Página 1 I N D I C E 0.- INTRODUCCIÓN. 1.- TIPOS DE MOVIMIENTO. 1.1.-

Más detalles

MECANISMOS 1.- INTRODUCCIÓN

MECANISMOS 1.- INTRODUCCIÓN MECANISMOS 1.- INTRODUCCIÓN Una máquina es cualquier aparato o dispositivo que al ser accionado (es decir, cuando se pone en funcionamiento) produce un cierto efecto. Las máquinas tienen la capacidad de

Más detalles

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15 Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II Título TRANSMISIONES MECANICAS Curso 2 AÑO Año: 2006 Pag.1/15 INTRODUCCION Desde tiempos inmemorables el hombre realizó grandes esfuerzos para las

Más detalles

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN Mecanismos I Tecnología 3º ESO 1. Introducción.... 2 2. TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO... 3 2.1 Trabajo, energía y rendimiento...3 3. MECANISMOS QUE TRANSFORMAN MOVIMIENTOS RECTILÍNEOS EN MOVIMIENTOS

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

MECANISMOS. Realizado por Carolina Rubio

MECANISMOS. Realizado por Carolina Rubio MECANISMOS Realizado por Carolina Rubio Maquinas 1. Trabajo 2. Potencia 3. Partes de un maquina Maquinas simples 1. Palanca 2. Plano inclinado 3. Tornillo 4. La rueda 5. La polea INDICE Mecanismos de transmisión

Más detalles

Máquinas y Mecanismos

Máquinas y Mecanismos Máquinas y Mecanismos Tecnología 3º ESO LAS MÁQUINAS Una máquina es el conjunto de elementos fijos y/o móviles, utilizados por el hombre, y que permiten reducir el esfuerzo para realizar un trabajo (o

Más detalles

TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS. Carretilla Pinzas Polea

TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS. Carretilla Pinzas Polea TEMA 11: MECANISMOS 1 TEMA 11: MECANISMOS 11.1.- INTRODUCCIÓN Desde la existencia del hombre, éste ha fabricado útiles que le ayudan en sus tareas cotidianas de supervivencia, como hachas y cuchillos.

Más detalles

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento.

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. MECANISMOS 2º ESO A. Introducción. Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. Elemento motriz Elemento

Más detalles

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS 1. Con un remo de 3 m de longitud se quiere vencer la resistencia de 400 kg que ofrece una barca mediante una potencia de 300 kg. A qué distancia del

Más detalles

Tema 5. Mecanismos y máquinas

Tema 5. Mecanismos y máquinas Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 5. Mecanismos y máquinas. 1. INTRODUCCIÓN. Las máquinas nos rodean: el mecanismo de un

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

MECANISMOS. Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo.

MECANISMOS. Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo. MECANISMOS INTRODUCCIÓN Desde la antigüedad el hombre ha inventado máquinas que le permitan reducir el esfuerzo necesario a la hora de realizar un trabajo. Qué partes tiene una máquina? -Un elemento motriz

Más detalles

Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana.

Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana. Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana. Maquinas simples Las máquinas son ingenios inventados por el hombre para poder realizar

Más detalles

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza.

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Los elementos que constituyen las máquinas se llaman mecanismos. Las palancas

Más detalles

Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes.

Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes. QUÉ ES UN ENGRANAJE? Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes. Ruedas normalmente metálicas atravesadas por un eje En su periferia presenta unos

Más detalles

VANESA PEÑA PAOLA PUCHIGAY 901

VANESA PEÑA PAOLA PUCHIGAY 901 VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

TECNOLOGÍA INDUSTRIAL I

TECNOLOGÍA INDUSTRIAL I TECNOLOGÍA INDUSTRIAL I MÁQUINAS MÁQUINAS O SISTEMAS TÉCNICOS ELEMENTOS MOTRICES ELEMENTOS DE MÁQUINAS (MECANISMOS) MOTORES PRIMARIOS MOTORES SECUNDARIOS MECÁNICOS ELÉCTRICOS Y ELECTRÓNICOS NEUMÁTICOS

Más detalles

El movimiento en las máquinas

El movimiento en las máquinas 1 Mira a tu alrededor. Qué tipo de máquinas hacían los romanos? Marco Vitrubio describió los principios que regulan los aparatos mecánicos como órganos, máquinas para arrastrar o elevar pesos o agua, catapultas

Más detalles

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?.

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?. PROBLEMAS DE MÁQUINAS Y MECANISMOS LA PALANCA 1. Indica el tipo de palanca en cada uno de los casos siguientes: 2. A qué distancia del eje de un balancín se tendrá que sentar un niño de 30 kg para que

Más detalles

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena. Mecanismos 2. Mecanismos que transforman movimientos: Rotación en rotación. Poleas y engranajes Transmisión por cadena. Rotación en traslación y viceversa : Piñón Cremallera. Rotación en alternativo regular

Más detalles

1. Energía. Trabajo. Potencia.

1. Energía. Trabajo. Potencia. Tema 6. 1. Energía. Trabajo. Potencia. La energía es la capacidad de un sistema físico para producir un trabajo. W = E La unidad es el Julio. J = N. m (Julio = Newton. metro) El trabajo W = F. d La enegía

Más detalles

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16 1. Esquematiza los diferentes tipos de palancas, indicando: el tipo de palanca, y donde se encuentran el punto de apoyo, la resistencia (R), y donde se aplica la fuerza (F). 2. Nuestro cuerpo está lleno

Más detalles

MECANISMOS Y MÁQUINAS

MECANISMOS Y MÁQUINAS Desde el punto de vista técnico la excéntrica es, básicamente, un disco (rueda) dotado de dos ejes: Eje de giro y el excéntrico. Por tanto, se distinguen en ella tres partes claramente diferenciadas: El

Más detalles

TEMA 3: MÁQUINAS Y MECÁNICOS

TEMA 3: MÁQUINAS Y MECÁNICOS TEMA 3: MÁQUINAS Y MECÁNICOS Los mecanismos son los elementos encargados del movimiento en las máquinas. Permiten transmitir el movimiento de giro del motor a las diferentes partes del robot. el movimiento

Más detalles

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN)

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) Casos particulares Casos particulares POLEAS Y CORREA Trenes de poleas Correa y poleas dentadas Piñones y cadena ENGRANAJES Piñón

Más detalles

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas.

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas. 1 12.7. Cadenas cinemáticas A Representación gráfica Cadenas cinemáticas. 2 B Cálculos 3 C Caja de velocidades Ejemplo 7: caja de velocidades con engranajes desplazables. Ejemplo 8: caja de velocidades

Más detalles

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS 1. Dibuja esquemáticamente los siguientes objetos y señala en ellos los elementos de las palancas,; indica de qué tipo de palanca

Más detalles

Según la colocación del punto de apoyo, hay tres tipos o géneros de palanca

Según la colocación del punto de apoyo, hay tres tipos o géneros de palanca MECANISMOS QUE TRANSMITEN MOVIMIENTO Mecanismos de transmisión lineal: La palanca Consiste en una barra rígida que se articula denominado punto de apoyo (o fulcro), que hace posible que la barra gire.

Más detalles

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación:

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación: ACTIVIDADES: TEMA MECANISMOS 1) Qué función tienen las máquinas? Nombra cinco ejemplos de máquinas que conozcas. 2) Qué son los mecanismos? Conoces algunos ejemplos de mecanismos? Para qué se utilizan?

Más detalles

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante)

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante) TIPOS DE MOVIMIENTOS Giratorio Lineal Continuo Levogiro Dextrogiro TRANSMISIÓN DE MOVIMIENTOS I Tipos de movimientos Alternativo (oscilante) TRANSMISIÓN DE MOVIMIENTOS Movimiento de entrada Movimiento

Más detalles

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo UNIDAD ESTRUCTURAS Y MECANISMOS TECNOLOGÍA 1º ESO ESTRUCTURAS 1. Fuerzas: Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo 2. Estructuras: Una estructura

Más detalles

Enseñanza de la Tecnología Máquinas y Mecanismos

Enseñanza de la Tecnología Máquinas y Mecanismos 2009 Enseñanza de la Tecnología Máquinas y Mecanismos María Beatriz Fuentes U.C.C. 04/09/2009 MAQUINAS Definición: Artificio del hombre para dirigir, aprovechar o regular la acción o el sentido de una

Más detalles

Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa.

Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa. La polea: Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa. Para qué sirve? Para cambiar la dirección en la que actúa una fuerza y disminuir el esfuerzo

Más detalles

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN)

TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) TRANSMISORES DE MOVIMIENTO (NO CAMBIAN LA FORMA DEL MOVIMIENTO QUE RECIBEN) Casos particulares Casos particulares POLEAS Y CORREA Trenes de poleas Correa y poleas dentadas Piñones y cadena ENGRANAJES Piñón

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

MECANISMOS Y HERRAMIENTAS MARIA ANGELIKA OCHOA HUERTAS JENNIFER JULIETH FANDIÑO MORENO TECNOLOGIA E INFORMATICA SAN JOSEMARIA ESCRIBA DE BALAGUER

MECANISMOS Y HERRAMIENTAS MARIA ANGELIKA OCHOA HUERTAS JENNIFER JULIETH FANDIÑO MORENO TECNOLOGIA E INFORMATICA SAN JOSEMARIA ESCRIBA DE BALAGUER MECANISMOS Y HERRAMIENTAS MARIA ANGELIKA OCHOA HUERTAS JENNIFER JULIETH FANDIÑO MORENO 1003 TECNOLOGIA E INFORMATICA SAN JOSEMARIA ESCRIBA DE BALAGUER CHIA CUNDINAMARCA 2014 1. Qué tipos de serruchos hay?

Más detalles

LA PALANCA. Tipos de palancas. Ley de la palanca. P Bp = R Br. Cálculos utilizando la ley de la palanca. R Br P = R Br P=?

LA PALANCA. Tipos de palancas. Ley de la palanca. P Bp = R Br. Cálculos utilizando la ley de la palanca. R Br P = R Br P=? LA PALANCA La palanca es una barra rígida que puede girar alrededor de un punto llamado fulcro o punto de apoyo. Palanca Sobre la palanca actúan dos fuerzas: La potencia: fuerza que produce el movimiento.

Más detalles

APUNTES DE MECANISMOS E.S.O.

APUNTES DE MECANISMOS E.S.O. APUNTES DE MECANISMOS E.S.O. DEPARTAMENTO DE TECNOLOGÍA 1 INTRODUCCIÓN MECANISMOS Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento.

Más detalles

móvil) conectado a un mecanismo de tracción.

móvil) conectado a un mecanismo de tracción. La polea: Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa. Para qué sirve? Para cambiar la dirección en la que actúa una fuerza y disminuir el esfuerzo

Más detalles

Tema 4.- Mecanismos. 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno

Tema 4.- Mecanismos. 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno Tema 4.- Mecanismos 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno Mecanismos 3. Mecanismos que transforman movimientos: Rotación en rotación. Poleas Engranajes

Más detalles

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca:

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca: OBLIGATORIO: Realiza en todos los ejercicios un esquema del sistema. En él deben aparecer reflejados todos los datos del ejercicio. Palancas NOTA: En los siguientes ejercicios, si no pone nada, entenderemos

Más detalles

Cuaderno de recuperación de tecnologías

Cuaderno de recuperación de tecnologías Cuaderno de recuperación de tecnologías 2ª EVALUACIÓN TEMA 1: LA ARQUITECTURA DEL ORDENADOR. 1) Qué es un sistema informático?. 2) Qué es la memoria ROM?, Qué significa ROM?. 3) Para qué sirve y cómo se

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca la potencia, la resistencia, los brazos de potencia y de resistencia y el fulcro.

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

Unidade 5 Mecanismos (Apuntes) LOS MECANISMOS

Unidade 5 Mecanismos (Apuntes) LOS MECANISMOS LOS MECANISMOS CLICA SOBRE LA IMAGEN PARA SABER MÁS 1. INTRODUCCIÓN Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento. Los elementos

Más detalles

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza RECOPILACIÓN DE PROBLEMAS DE EXÁMENES MECANISMOS PÁGINA 1 RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS Fuerza 1.1.- La piedra del dibujo pesa 160 kg. Calcular la fuerza que hay que aplicar en el extremo

Más detalles

MECANISMOS Y MÁQUINAS Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor)

MECANISMOS Y MÁQUINAS Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) Los mecanismos son elementos cuyo objetivo es transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) hasta un receptor. Permiten al ser humano realizar determinados trabajos con

Más detalles

Página 1. Tema 5. MECANISMOS y MÁQUINAS.

Página 1. Tema 5. MECANISMOS y MÁQUINAS. Página 1 Tema 5 MECANISMOS y MÁQUINAS. Conceptos previos Una máquina es un conjunto de elementos que intectúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Definición alternativa:

Más detalles

BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS

BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS Índice 1. Mecanismos y sistemas mecánicos... 2 2. Mecanismos de transmisión del movimiento...5 A. Mecanismos de transmisión lineal...5 La palanca... 5 La polea...

Más detalles

-EXPRESIÓN GRÁFICA :1, 2 5. : 2 1: , 1:50 : ELECTRICIDAD BÁSICA

-EXPRESIÓN GRÁFICA :1, 2 5. : 2 1: , 1:50 : ELECTRICIDAD BÁSICA -EXPRESIÓN GRÁFICA 1. Tipo de escala a la que representarías un coche: 2. Perspectiva en la que se aplica un coeficiente de reducción para corregir la deformación en la representación: 3. Al representar

Más detalles

Tema 3. Máquinas simples.

Tema 3. Máquinas simples. Tema 3. Máquinas simples. Tecnología. 3º ESO. Tema 3: Máquinas simples. 1. Introducción. Ya conoces que la Tecnología es una Ciencia que reúne en conjunto de conocimientos, destrezas, habilidades...que

Más detalles

MECANISMOS Y SISTEMAS DE UNIÓN. TECNOLOGÍA INDUSTRIAL I 1º Bachillerato

MECANISMOS Y SISTEMAS DE UNIÓN. TECNOLOGÍA INDUSTRIAL I 1º Bachillerato MECANISMOS Y SISTEMAS DE UNIÓN TECNOLOGÍA INDUSTRIAL I 1º Bachillerato MECANISMO PIÑÓN-CREMALLERA (desplazamiento) L = p * Z Problemas MECANISMO PIÑÓN-CREMALLERA MECANISMO PIÑÓN-CREMALLERA MECANISMO PIÑÓN-CREMALLERA

Más detalles

I.MÁQUINAS Y MECANISMOS. TIPOS.

I.MÁQUINAS Y MECANISMOS. TIPOS. Tema 4: I.MÁQUINAS Y MECANISMOS. TIPOS. E l hombre, a lo largo de la historia, ha inventado una serie de dispositivos o artilugios llamados máquinas que le facilitan y, en muchos casos, posibilitan la

Más detalles

CCNN 5º Primaria Tema 8: Las máquinas

CCNN 5º Primaria Tema 8: Las máquinas 1. Las máquinas y sus componentes Los automóviles, los electrodomésticos o los ordenadores son aparatos que facilitan las actividades humanas y dependemos de su correcto funcionamiento para realizar nuestras

Más detalles

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido.

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido. Ventaja Mecánica. Conceptos Básicos Inercia. Dificultad que opone un cuerpo para cambiar su velocidad, cuando se esta moviendo y para moverse cando esta en reposo. Fuerza. Es todo aquello que puede producir

Más detalles

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena.

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. Ficha nº:3 Transmisión circular. 1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. 2) Descripción: Ruedas de fricción: Son sistemas formados por

Más detalles

El Hombre: herramientas y máquinas

El Hombre: herramientas y máquinas El Hombre: herramientas y máquinas Desde sus inicios el Hombre (los seres humanos, es decir hombre y mujer) ha necesitado herramientas para realizar su trabajo y sobrevivir, por ello con su creatividad

Más detalles

TEMA 3: ESTRUCTURAS Y MECANISMOS

TEMA 3: ESTRUCTURAS Y MECANISMOS TEMA 3: ESTRUCTURAS Y MECANISMOS 1. Estructuras a. Propiedades b. Tipos I. Naturales II. Artificiales c. Elementos de una estructura I. Zapatas II. Pilares III. Vigas d. Perfiles e. Esfuerzos I. Tracción

Más detalles