Propiedades fundamentales de las tangencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Propiedades fundamentales de las tangencias"

Transcripción

1 Las Tangencias Dos elementos son tangentes cuano tienen un punto en común enominao punto e tangencia. Estos elementos son cicunfeencias (o acos e cicunfeencia, en algunos casos cuvas conicas también) y ectas. Un enlace es la unión amónica e cuvas con cuvas o cuvas con ectas. Los enlaces son la aplicación páctica e las tangencias. Popieaes funamentales e las tangencias - Los centos e os cicunfeencias tangentes ente sí están alineaos con el punto e tangencia. 2- Una ecta tangente a una cicunfeencia es siempe pepenicula al aio coesponiente al punto e tangencia. - El cento e cualquie cicunfeencia que pasa po os puntos se encuenta en la meiatiz el segmento que efinen los os puntos.too aio pepenicula a una cuea e cicunfeencia ivie a esta en os mitaes iguales. 4- El cento e cualquie cicunfeencia tangente a os ectas se encuenta en la bisectiz el ángulo que estas poucen. Las tangencias: efinición y popieaes

2 Tangencias: Teoemas funamentales y lugaes geométicos Conocieno los cuato teoemas funamentales e las tangencias aun no sabemos lo suficiente paa esolve poblemas básicoas e tangencias. º Centos alineaos con el punto e tangencia 2º aio pepenicula a ecta tg. po el punto e tg. Es necesaio conoce el concepto e LUGA GEOMÉTICO. Y hace uso e al menos os tipos e lugaes geométicos. º Centos e ci. que pasan po os ptos. en meiatiz 4º Centos e ci. tg. a os ectas. en bisectiz Un LUGA GEOMETICO es un conjunto e puntos en el plano que cumplen unas cicunstancias, caacteísticas o popieaes comunes especto a un elemento geometico (puee se un plano, una cicunfeencia, un segmento, un ángulo, etc) Paa esolve poblemas básicos e tangencias tenemos que tene claos os lugaes geometicos: Las ectas paalelas y las cicunfeencias concénticas. Lugaes Geométicos: PAALELAS Y CI. CONCENTICAS DEFINICIONES DE ALGUNOS LUGAES GEOMÉTICOS IMPOTANTES PAA TANGENCIAS MEDIATIZ: Luga geomético e los puntos el plano que equiistan e os puntos. Una meiatiz contiene los centos e TODAS las cicunfeencias que pasan po los extemos el segmento. Cuanto más se aleje el cento el punto meio el segmento más amplio seá el aio. BISECTIZ: Luga geomético e los puntos el plano que equiistan e os ectas. Pesente en las popieaes funamentales e las tangencias. La bisectiz e un ángulo contiene a toos los centos e cicunfeencias tangentes a los laos. Cuanto más alejao esté el cento el vétice el ángulo más amplitu tená el aio e la cicunfeencia tangente. EJE ADICAL: El es luga geomético e los puntos el plano que son centos e cicunfeencia e igual aio tangentes a otas os. CICUNFEENCIAS CONCÉNTICAS Una ci. concéntica e aio (+) a ota e aio () es el luga geomético e los puntos el plano que son centos e las cicunfeencias TANGENTES EXTEIOES e aio () a la cicunfeencia e aio (). PAALELAS A UNA DISTANCIA Una ecta paalela a una istancia () es el luga geomético e los puntos el plano que son centos e cicunfeencias e aio () tangentes a una ecta que se encuenta a la istancia () e su paalela. - + Una ci. concéntica e aio (-) a ota e aio () es el luga geomético e los puntos el plano que son centos e las cicunfeencias TANGENTES INTEIOES e aio () a la cicunfeen cia e aio (). Las tangencias y los lugaes geométicos

3 ESOLUCIÓN DE POBLEMAS DE TANGENCIAS Las soluciones a los poblemas e tangencias son ectas y cicunfeencias tangentes a otas ectas y/o cicunfeencias. Peo la base e las soluciones y un equisito impotante en estas es situa coectamente LOS PUNTOS DE TANGENCIA Y LOS CENTOS (si la solución es una cicunfeencia). Daos os puntos, taza la cicunfeencia que pasa po estos con un aio ' ' ' 2 ' º- Tazamos un aco con aio ' con cento en el pime ' punto (luga geomético one se encontaá el cento solución, ci. concénticas). 2º-Tazamos oto aco con aio ' con cento en el seguno punto (luga geomético one se encontaá el cento solución, ci. concenticas). º- En el punto e intesección se encuenta la solución. Tazamos la cicunfeencia. ' ' ' EL CENTO DE LAS SOLUCIONES SIEMPE SE ENCONTAÁ EN LA MEDIATIZ DEL SEGMENTO QUE PASA PO DOS PUNTOS. PAA ESTE POBLEMA ENCONTAMOS OTA SOLUCIÓN EN EL LADO OPUESTO DEL SEGMENTO. Daos tes puntos, taza la cicunfeencia que pasa po estos. 2 º- Unimos os puntos y tazamos su meiatiz. 2º- Unimos el oto punto con cualquiea e los anteioes y tazamos la meiatiz el seguno segmento. º- En el punto e intesección se encuenta la solución. Tazamos la cicunfeencia. LA MEDIATIZ DEL SEGMENTO QUE PASA PO DOS PUNTOS CONTINENE TODOS LOS CENTOS DE LAS CICUNFEENCIAS QUE PASAN PO ESOS DOS PUNTOS. EL PUNTO DE INTESECCIÓN DE DOS MEDIATICES DE DOS SEGMENTOS PODUCIDOS PO TES PUNTOS ES EL CENTO DE LA CICUNFEENCIA QUE PASA PO LOS TES PUNTOS. CICUNCENTO DE UN TIÁNGULO. Daa una ecta y el punto e tangencia sobe ella, taza la cicunfeencia tangente con un aio ' ' ' ' ' º- Tazamos una ecta pepenicula a la aa po el punto e tangencia.(luga geomético one se encontaá el cento solución, eivao e los teoemas e las tangencias). 2 ' 2º- Con cento en el punto e tangencia tazamos un aco e aio ' que cota a la pepenicula. (luga geomético one se encontaá la solución, cicunfeencia concéntica). º- En el punto e intesección se encuenta la solución. Tazamos la cicunfeencia. Daas os ectas y el punto e tangencia sobe una e ellas, taza la cicunfeencia tangente con un aio º- Tazamos la bisectiz el ángulo fomao po las os esctas. 2 4 (luga geomético e toos los centos e ci. tg a ambas ectas). 2º- Tazamos una pepenicula a la ecta que contiene el pto. e tg. pasano po este. (Luga geomético e toos los centos e ci. que son tangentes po ese puntoa la ecta). º- La intesección e la bisectiz con la pepenicula es el cento buscao. (Coinciencia e os lugaes geométicos). Dese ese cento tazamos una pepenicula a la ota ecta que nos a el oto pto. e tg. 4º- Tazamos la ci. buscaa. Daas os ectas, taza la cicunfeencia e aio tangente a ambas. º- Tazamos una paalela a una istancia e una ecta. 2º- Hacemos lo mismo con la ota ecta. Done 2 las paalelas se cotan es el cento e la solución. º- Dese el cento tazamos pepeniculaes a las ectas el enunciao paa halla los ptos. e tg. Tazamos la ci. LA BISECTIZ DE UN SEGMENTO DE UN ÁNGULO PODUCIDO PO DOS ECTAS CONTINENE TODOS LOS CENTOS DE LAS CICUNFEENCIAS TANGENTES A ELLAS. EL PUNTO DE INTESECCIÓN DE DOS BISECTICES DE DOS ÁNGULOS PODUCIDOS PO TES ECTAS ES EL CENTO DE LA CICUNFEENCIA TANGENTE A LAS TES. INCENTO DE UN TIÁNGULO. ' Las tangencias poblemas básicos una, os o tes ectas o puntos.

4 TANGENCIAS ENTE DOS CICUNFEENCIAS: PINCIPIOS. Nos pueen pei tes tipos e cicunfeencias tangentes a una aa. - Las tangentes inteioes que se encuentan contenias po la cicunfeencia aa, con la cual compaten el punto e tangencia. Obviamente estas tenán que tene un aio meno a la aa paa poe se contenias sin se secantes. 2- Las tangentes exteioes que se encuentan fuea e la cicunfeencia aa. - Las cicunfeencias tangentes que contienen a la aa. Estas tenán que tene un aio mayo a la cicunfeencia aa. EN CUALQUIE CASO LOS CENTOS DE CICUNFEENCIAS TANGENTES SIEMPE ESTÁN ALINEADOS CON EL PUNTO DE TANGENCIA. Daa una cicunfeencia e aio y el punto e tangencia sobe ella, taza la cicunfeencias tangentes con un aio º- Tazamos una ecta que une 2 el cento con el punto e tangencia (luga geomético one se encontaá el cento solución, eivao e los teoemas e las tangencias). 2º- Con cento en el punto e tangencia tazamos un aco e aio (luga geomético one se encontaá la solución, cicunfeencia concéntica)que cota a la ecta en os puntos, los cuales seán los centos e las soluciones. º- En el punto e intesección se encuenta la solución. Tazamos la cicunfeencia. Daa una cicunfeencia e aio y el punto e tangencia sobe ella, taza la cicunfeencias tangentes con un aio. º- Tazamos una ecta que une el cento con el punto e 2 tangencia (luga geomético one se encontaá el cento solución, eivao e los teoemas e las tangencias). 2º- Con cento en el punto e tangencia tazamos un aco e aio (luga geomético one se encontaá la solución, cicunfeencia concéntica)que cota a la ecta en os puntos, los cuales seán los centos e las soluciones. º- En el punto e intesección se encuenta la solución. Tazamos la cicunfeencia. Daa una cicunfeencia e aio y un punto exteio a ella, taza las ci. tangentes e aio que pasan po el punto º- Tazamos un aio abitaio y a pati el punto e intesección con la cicunfeencia copiamos (), tazamos un aco concéntico a la cicunfeencia e aio (+). 2º- Con cento en el punto ao tazamos una cicunfeencia e aio (). Los puntos e intesección con el aco anteio son los centos e la solución (coinciencia e os lugaes geométicos). º- Unimos los centos hallaos con el cento e la cicunfeencia aa paa halla los puntos e tangéncia. 4º- Tazamos las cicunfeencias buscaas. Daa una cicunfeencia e aio y un punto exteio a ella, taza las ci. tangentes e aio que pasan po el punto. 2 4 º- Tazamos un iámeto abitaio y a pati el punto e intesección con la cicunfeencia copiamos () sobe la totalia el iámeto), tazamos un aco concéntico a la cicunfeencia e aio. 2º- Con cento en el punto ao tazamos una cicunfeencia e aio (). Los puntos e intesección con la cicunfeencia anteio son los centos e la solución (coinciencia e os lugaes geométicos). º- Unimos los centos hallaos con el cento e la cicunfeencia aa paa halla los puntos e tangéncia. 4º- Tazamos las cicunfeencias buscaas. Cicunfeencias TANGENTES a ota cicunfeencia ao el aio e la solución y un punto

5 TANGENCIAS DADOS DOS ELEMENTOS (ectas o cicunfeencias) y el aio e la cicunfeencia solución. Daa una ecta y una cicunfeencia e aio, taza la cicunfeencia e aioao (meno al aio e la aa) tangente a ambas. 2 + º- Tazamos una paalela a una istancia e la ecta. 2º- Tazamos un aco conc'entico a la aa e aio (+). Conseguimos esto tazano un aio abitaio y a pati el punto e cote con la cicunfeencia tanspota la meia (). Los puntos e intesección con la ecta paalela seán los centos e las cicunfeencias soluciones. (coinciencia e sos lugaes geométicos) º- Hallamos los puntos e tangencia: a pati e los centos pepeniculaes a las ectas y segmentos con el oto extemo en la cicunfeencia e la aa. Tazamos las cicunfeencias que solucionan el poblema. Daa una ecta y una cicunfeencia e aio, taza las cicunfeencias e aioao (mayo al aio e la aa) tangente a ambas. 2 + º- Poceeemos el mismo moo que en el poblema anteio paa halla las mismas soluciones. Tg exteioes. 2º- Situaemos la meia e sobe el iámeto a pati e un extemo paa enconta lso centos e las ci. tg que contienen a la aa. Unimos los centos solución con el ao paa halla ptos. e tg y ese estos tazamos pepeniculaes a las ectas paa halla ptos. e tg. sobe la ecta. Tazamos las ci. solución que contienen a la aa. Daas os cicunfeencias taza las cicunfeencias e aio ao tangentes exteioes a ambas. 2 º- Sumamos a los aios e ambas cicunfeencias y tazamos os acos concenticos que se cotan en os ptos que seán los centos e las soluciones. 2º- Unimos los centos e la solución con los aos y obtenemos los ptos. e tg. Tazamos las ci. solución. Daas os cicunfeencias taza la cicunfeencia e aio ao tangente a ambas queano la cicunfeencia gane el enunciao ento e la solución. 2 4 º- A un iámeto cualquiea e la ci. que va a se contenia po la ci. solución le estamos el aio. Tazamos una ci. concéntica con áio hasta la maca sobe el iámeto. 2º- Tazamos un aio a la ci. que va a quea tg. exteio a la ci. solución y le sumamos el aio. Tazamos un aco concéntico con aio hasta la maca. Los puntos e intesección con el oto aco concéntico son los centos e las soluciónes. º- Unimos los centos e las ci. aas con los centos obtenios paa halla los ptos. e tg. y tazamos las soluciónes. Cicunfeencias TANGENTES a os elementos (ectas o cicunfeencias: cc,, c)

6 En el enunciao se pesenta una cicunfeencia con su cento y un punto exteio a ella. Se pien las ectas tangentes a la cicunfeencia que pasan po el punto exteio ENUNCIADO SOLUCIÓN Paa esolvelo necesitamos taza cietos tazaos auxiliaes que se pueen explica cuato pasos º- Unimos el cento e la cicunfeencia con el punto exteio a ella tazano un segmento. 2º-Tazamos la meiatiz el semento obtenieno el punto meio e este. º- Con cento en el punto meio y aio hasta el punto exteio o el cento (lo cual es lo mismo), tazamos una cicunfeencia que cota a la aa en os puntos, los Puntos e tangencia. 4º Tazamos aios hasta los puntos e tangencia 5º Dese el punto exteio hasta los puntos e tangencia tazamos las ectas que son solución ectas tangentes: cicunfeencia-punto

7 Tangentes exteioes e inteioes a os cicunfeencias ENUNCIADO SOLUCIÓN tangentes exteioes SOLUCIÓN tangentes inteioes Paa esolve estos os poblemas necesitamos eucilos al poblema pto-cicunfeencia. tenemos que hace el esfuezo e "olvianos" (ignoa visualmente) el enunciao oiginal y esolve el poblema ptocicunfeencia. una vez conseguio el esultao el poblema oiginal no tae mas ificulta que lleva las ectas y los aios a su sitio tazano paalelas con escuaa y catabón Tangentes exteioes a os cicunfeencias º Tazamos el segmento que une los os centos 2º Sobe el segmento, a la cicunfeencia gane, con el compás, le estamos el aio e la cicunfeencia pequeña. 2 DE ESTE MODO HEMOS EDUCIDO EL POBLEMA A ECTAS TANGENTES PUNTO-CICUNFEENCIA º- esolvemos el poblema eucio, tazamos los aios que van a (t) y (t2) lo suficientemente lagos paa que coten a la cicunfeencia gane oiginal. 4º- A pati el cento e la cicunfeencia pequeña oiginal tazamos aios con la misma inclinación (escuaa y catabón). Así,con los cuato aios tazaos obtenemos t yt2 sobe la gane y t' yt2' sobe la pequeña 5º- Unimos t con t' y t2 con t2' (t ) 4 5 t ' t (t 2 ) t 2 ' t 2 Tangentes inteioes a os cicunfeencias º Tazamos el segmento que une los os centos 2º Sobe el segmento, a la cicunfeencia gane, con el compás, le sumamos el aio e la cicunfeencia pequeña. DE ESTE MODO HEMOS EDUCIDO EL POBLEMA A ECTAS TANGENTES PUNTO-CICUNFEENCIA 2 2+ º- esolvemos el poblema eucio,obtenieno así (t) y (t2), peo esta vez no tazamos las ectas tangentes paa no contamina con emasiaas lineas el ibujo. 4º- Tazamos aios paalelos a los e la cicunfeencia gane en la cicunfeencia pequeña, peo invitieno su posicion (el aio e aiba en la gane, abajo en la pequeña y vicevesa). Los puntos e tangencia el poblema oiginal se encuentan en las intesecciones e los aios. 5º- Unimos t' con t y t2' con t2 4 5 ectas tangentes a oscicunfeencias

8 Daas os cicunfeencias y sus centos, taza las tangentes exteioes empleano las popieaes e la homotécia. º- Tazamos una ecta que une los centos e las os cicungfeencias. 2º- Tazamos os aios paalelos a las cicunfeencias y unimos los os puntos e inteseccion con las cicunfeencias paa DETEMINA sobe la ecta que une los centos e las cicunfeencias el CENTO DE HOMOTECIA iecta º- Hallamos los puntos e tangencia e las ectas tangentes a la cicunfeencia más póxima al cento e homotecia que pasan po este. No las ibujamos toavía, sólo los aios que van a los puntos e tangencia. 4º- En la cicunfeencia mayo tazamos aios paalelos (homotéticos) a los hallaos en el paso anteio y eteminamos los puntos e tangencia. 5º- Las ectas tangentes exteioes eben e pasa po los puntos e tangencia os a os y po el cento e homotecia, las tazamos. HEMOS ENCONTADO EL CENTO DE HOMOTECIA DIECTA, HALLADO LOS PUNTOS DE TANGENCIA CON UNA CI. Y ENCONTADO SUS HOMOTÉTICOS EN LA SEGUNDA PAA ESOLVE EL POBLEMA. Daas os cicunfeencias y sus centos, taza las tangentes inteioes empleano las popieaes e la homotécia. BUSCAMOS EL CENTO DE HOMOTECIA INDIECTA: º-Unimos los centos e las cicunfeencias. Sobe este segmento se encontaá el cento e homotecia. 2º-Tazamos os aios paalelos a las cicunfeencias peo en laos opuestos e la ecta que une los centos. Obtenemos os puntos e intesección, uno en sobe caa cicunfeencia. Los unimos y el punto e intesección e este segmento con el que une los os centos e la cicunfeencia es el CENTO DE HOMOTECIA INVESA. º- Hallamos los puntos e tangencia e las ectas tangentes que pasan po el cento e homotecia a una e las cicunfeencias (hemos usao la más gane po claia). No tazamos las tangentes peo si sus aios. 2º- Tazamos aios paalelos a los ultimos en la ota cicunfeencia peo invitieno el lao e la ecta que une los centos al que se encuentan. Asñi obtenemos los puntos e tangencia en la ota cicunfeencia. 5º- Unimos los puntos e tangencia paa obtene las ectas tangentes, estas tienen que cotase en el cento e homotecia. Tangentes inteioes y exteioes a una cicunfeencia Po homotecia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS.

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS. IES Pae Poea (Guaix) UNIDAD 0: GEOMETRÍA MÉTRICA Si sólo tenemos en cuenta las elaciones existentes ente los puntos el espacio y los ectoes e V, la geometía estingiá su estuio a las posiciones elatias

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Polígonos y circunferencia CONTENIDOS PREVIOS

Polígonos y circunferencia CONTENIDOS PREVIOS Polígonos y cicunfeencia ONTENIOS PREVIOS ONVIENE QUE Sepas qué es la altua e un tiángulo. La altua e un tiángulo es el segmento pepenicula a un lao, o a su polongación, tazao ese el vétice opuesto. Vamos

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2...

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2... POLÍONOS RULRS Polígono (vaios ángulos), es la figua plana limitada po vaios ánulos, los tiángulos y los cuadiláteos estudiados hasta ahoa son polígonos de y ángulos, espectivamente. Un polígono seá egula

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte.

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte. ROAMIENOS RIGIOS E OLAS Este tipo e oamientos son e uso geneal, ya que pueen absobe caga aial y axial en ambos sentios, así como las fuezas esultantes e estas cagas combinaas; a su vez, pueen opea a elevaas

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión Resmen e Geometía Matemáticas II GEOMETRÍA - BASE EN lr Daos los ectoes x,, z,, w los númeos a, b, c,, g, la expesión a x+ b + c z + + gw se llama combinación lineal e esos ectoes Dos ectoes son linealmente

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

El método de las imágenes

El método de las imágenes El método de las imágenes Antonio González Fenández Dpto. de Física Aplicada III Univesidad de Sevilla Sinopsis de la pesentación El teoema de unicidad pemite enconta soluciones po analogías con poblemas

Más detalles

longitud de C = 211: r

longitud de C = 211: r a En efecto: (m + n)2 = a 2 + b 2 = (h 2 + m 2 )+ ~ 2 + n 2 ) = 2h 2 + m 2 + n 2. Luego 2m n = 2h 2, Yasí m n = h 2. El númeo 11: (pi) Desde hace apoximadamente 4000 años, se notó que el númeo de veces

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro.

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro. T: TRIGNMETRÍ 1º T 7. RESLUIÓN E TRIÁNGULS RETÁNGULS L TNGENTE UN IRUNFERENI El adio de una cicunfeencia mide 1, cm. Halla el ángulo que foman las tangentes a la cicunfeencia desde un punto situado a cm

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

Flotamiento de esferas

Flotamiento de esferas Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia),

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

DIBUJO TÉCNICO. 1º Bachillerato. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

DIBUJO TÉCNICO. 1º Bachillerato. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein DIUJO TÉCNICO 1º achilleato Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein utoizado po el Depatamento de Educación, Univesidades e Investigación del Gobieno Vasco (3-7-2003) Diseño

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

Unidad 12. Geometría (I).Ecuaciones de recta y plano

Unidad 12. Geometría (I).Ecuaciones de recta y plano Unidad.Geometía (I).Ecuaciones de la ecta el plano Unidad. Geometía (I).Ecuaciones de ecta plano. Intoducción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con vectoes.. Dependencia

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

PROPIEDADES ELECTRICAS DE LA MATERIA

PROPIEDADES ELECTRICAS DE LA MATERIA PROPIEDADES ELECTRICAS DE LA MATERIA Paa el estuio e los fenómenos elécticos inteactuano con la mateia, se hace necesaio ifeencia a los meios mateiales en os tipos funamentales: - Dielécticos. - Conuctoes.

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

DIBUJO TÉCNICO I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN SOLUCIONARIO EDITORIAL DONOSTIARRA

DIBUJO TÉCNICO I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN SOLUCIONARIO EDITORIAL DONOSTIARRA DIBUJO TÉCNICO I SOLUCIONRIO GEOMÉTRICO DESCRIPTIV Ø EDITORIL DONOSTIRR NORMLIZCIÓN Ø Ø Ø F. JVIER RODRÍGUEZ DE BJO VÍCTOR ÁLVREZ BENGO DIBUJO TÉCNICO DIBUJO GEOMÉTRICO º Bachilleato SOLUCIONRIO EDITORIL

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas RECTAS en el PLANO MATEMÁTICAS I 1º Bachilleato CCNN Alfonso González IES Fenando de Mena Dpto. de Matemáticas I. ECUACIONES de la RECTA I.1) Deteminación pincipal de la ecta: A u Es evidente que una ecta

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

GEOMETRÍA ANALÍTICA COORDENADAS POLARES. 2.1 Relación entre coordenadas polares y rectangulares de un punto

GEOMETRÍA ANALÍTICA COORDENADAS POLARES. 2.1 Relación entre coordenadas polares y rectangulares de un punto COORDENADAS OLARES CONTENIDO 1. Coodenadas polaes de un punto. Coodenadas polaes gealizadas.1 Relación ente coodenadas polaes y ectangulaes de un punto. Cambio de sistema de coodenadas catesianas a polaes

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

ÁNGULOS Y LONGITUDES DE ARCO

ÁNGULOS Y LONGITUDES DE ARCO I.E LEÓN XIII EL PEÑOL MATEMÁTICA GRADO: 0 TALLER Nº: EMETRE I ÁNGULO Y LONGITUDE DE ARCO REEÑA HITÓRICA Un Poblema de Ángulos en la Antigüedad. El matemático giego Eatostenes (apox 76 9 a.c.) midió la

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA FUEZA ELECTO MOTIZ Y ESISTENCIA INTENA DE UNA ILA Intoducción: En la figua 1 se muesta un cicuito de dos esistencias 1 y 2 conectadas en seie, este gupo a su vez está conectado en seie con una pila ideal

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

matemáticas - grado 10

matemáticas - grado 10 matemáticas - gao Reconoce que no toos los númeos son acionales, es eci, no toos los númeos se pueen escibi como una facción e enteos a/b. o ejemplo, conoce una emostación el hecho e que no es acional.

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica CURSO: º BACH. MATERÍA: MAT.AP.CC.SS.I CALIFICACIÓN NOMBRE: FECHA: V-06//5 APELLIDOS:. Calcula cuántos años deben pasa paa que un cieto dineo se tiplique al ingesalo en un depósito al 8 % de inteés simple.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora) limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria

Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria Electicidad y Magnetismo E.T.S.I.T. Univesidad de Las Palmas de Gan Canaia Electostática.- INTODUCCIÓN La electostática es el estudio de los efectos de las cagas elécticas en eposo y de los campos elécticos

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Ángulos en la circunferencia

Ángulos en la circunferencia MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la

Más detalles

9 Ángulos y rectas CONTENIDOS PREVIOS 114 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE

9 Ángulos y rectas CONTENIDOS PREVIOS 114 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE CONTENIDOS REVIOS Recuedes los tipos de ángulos que existen. ORQUE Te ayudaá a compende otas clasificaciones de ángulos. Ángulo ecto Sus lados son pependiculaes. Ángulo llano Sus lados están sobe la misma

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

1. Dibujar líneas paralelas a 2 mm de distancia de la recta dada. 2. Dibujar líneas perpendiculares y a 45º a 2 mm de distancia de la recta dada.

1. Dibujar líneas paralelas a 2 mm de distancia de la recta dada. 2. Dibujar líneas perpendiculares y a 45º a 2 mm de distancia de la recta dada. Intoducción al Dibujo Técnico MANEJO DE ESUADRA Y ARTABÓN 1. Dibuja líneas paalelas a 2 mm de distancia de la ecta dada. t s 2. Dibuja líneas pependiculaes y a 45º a 2 mm de distancia de la ecta dada.

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles