Tema 1: movimiento oscilatorio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1: movimiento oscilatorio"

Transcripción

1 Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1

2 Movimiento oscilatorio Movimiento periódico Ejemplos: Barcas sobre el agua Bandera al viento Péndulo de un reloj Moléculas en un sólido V e I en circuitos de corriente alterna En general, cualquier objeto desplazado ligeramente de su posición de equilibrio Curso 9/1 3 Movimiento oscilatorio Forma más básica de movimiento oscilatorio: movimiento armónico simple (MAS) Por qué estudiar el MAS? Ejemplo sencillo de movimiento i oscilatorio i Aproimación válida en muchos casos de movimiento i oscilatorio i Componente básico de la ecuación del desplazamiento de movimientos i oscilatorios i más complejos Curso 9/1 4

3 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 5 Representación matemática del MAS: dinámica del MAS Cuerpo unido a un muelle F Segunda ley de Newton: F ma k F k k : constante del muelle Signo: fuerza restauradora k a m Condición de MAS para la aceleración Curso 9/1 6

4 Representación matemática del MAS Segunda ley de Newton: d F ma k m k dt d k con: dt m Solución: t () A cos( t ) d Comprobación: A sen( t ) dt d A cos( t) dt Curso 9/1 7 Representación matemática del MAS Significado físico de las constantes: t () A cos( t ) A Amplitud (m) Frecuencia angular (rad/s) Constante de fase (rad) Determinación de A y () A cos( ) Dos ecuaciones v() Asen( ) con dos incógnitas Curso 9/1 8

5 Representación matemática del MAS: Ejemplo t () Acos( ) A v () AAsen( ) A A A Solución: A A A t () Acos( t) t AA Curso 9/1 9 Representación matemática del MAS: Resumen Fuerza que provoca un MAS: F k Ecuación diferencial del MAS Ecuación del MAS d dt () t Acos( t) Ley de Hooke Curso 9/1 1

6 Representación del MAS: periodo y frecuencia Periodo (T): Tiempo necesario para cumplir un ciclo completo () t ( tt) ( tt) Acos( tt ) T T T t Unidades: segundos (s) T Curso 9/1 11 Representación del MAS: periodo y frecuencia Frecuencia ( f ): Número de oscilaciones por unidad de tiempo (ciclos por segundo) f 1 T Para el resorte: T k m 1 1 f T Curso 9/1-1 Unidades: s m k k m Hz La frecuencia no depende d de la amplitud 1

7 Representación del MAS: aplicaciones El hecho de que la frecuencia de las oscilaciones del resorte no dependa de la amplitud tiene interesantes aplicaciones: Medida de masas a partir de periodo de oscilación El astronauta Alan L. Bean midiendo su masa durante el segundo viaje del Skylab (1973) Curso 9/1 13 Representación del MAS: aplicaciones El hecho de que la frecuencia de las oscilaciones del resorte no dependan de la amplitud tiene interesantes aplicaciones: Medida de masas a partir de periodo de oscilación Instrumentos musicales: la frecuencia del sonido no depende de la fuerza con que se pulse la cuerda del instrumento o la tecla de un piano. Curso 9/1 14

8 Representación del MAS: velocidad y aceleración Posición: () t Acos( t) Velocidad: vt () d A sen( t ) dt k v A A (para el resorte) ma Aceleración: m () d cos( ) () El signo indica el sentido El signo indica el at A t t sentido dt k ama A A (para el resorte) m Curso 9/1 15 Representación del MAS: velocidad y aceleración A -A A vt () -A A at () T T 3T T T 3T T T 3T t () A cos( t ) Suponemos = vt () Asen( t) Acos( t ) Desfase / con (t) at A t () cos( ) Desfase / con v(t) Desfase con (t) () A cos( t) -AJoaquín Bernal Méndez Curso 9/1 16

9 Representación del MAS: velocidad y aceleración A T T 3T t v a A -A A vt () T T 3T t T 4 v A a -A A at () T t T T 3T v a A -AJoaquín Bernal Méndez 17 Curso 9/1 Representación del MAS: velocidad y aceleración A T T 3T t T v a A -A A vt () T T 3T t 3T3 T 4 v A a -A A at () t T T T 3T v a A -AJoaquín Bernal Méndez 18 Curso 9/1

10 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 19 Energía del MAS Si no hay rozamiento: energía mecánica constante E E U cte Energía cinética: E Energía potencial: c c 1 mv U( ) U() Wmuelle Fd Curso 9/1 1 U( ) k K d 1 k

11 Energía del MAS Energía mecánica: Curso 9/1 1 1 t () A cos( t ) E mv k con: vt () Asen( t) 1 1 sen ( ) cos ( ) E ma t ka t Usando: m k (para un resorte) E 1 1 (sen ( ) cos ( )) ka t t ka 1 1 Energía del MAS E 1 ka No depende de la masa! 1 La energía se trasvasa continuamente de cinética a potencial y viceversa 1 A E U ma ka 1 1 E E c,ma mv ma ka Curso 9/1 E c E ka

12 Energía del MAS Cualquier partícula que se desplaza ligeramente de su equilibrio sufre un MAS ya que cualquier curva puede aproimarse cerca del mínimo con una parábola: Curso 9/1 U() para una partícula en el fondo de un cuenco esférico 3 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 4

13 Sistemas oscilantes: muelle vertical Supongamos muelle vertical Definimos eje y hacia abajo Fuerza del muelle F kyu y y Curso 9/1 5 Sistemas oscilantes: muelle vertical Añadimos una masa m P mgu y Aparece una fuerza adicional, el peso: Se puede hallar el alargamiento del muelle ( y ): Condición de equilibrio: F P mg ky y mg k Puede usarse para medir k Curso 9/1 6

14 Sistemas oscilantes: muelle vertical Hacemos oscilar el sistema: mg ky ma y y y mg y y y y k mg ky ky d y d y ma m m dt dt d y m ky dt Definimos: i Curso 9/1 7 Sistemas oscilantes: muelle vertical d y k y dt m de un MAS Ecuación diferencial Solución: y Acos( t ) k ; T m m k El único efecto de m es desplazar la posición de equilibrio Curso 9/1 8

15 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 9 Sistemas oscilantes: péndulo simple Objeto de masa m Suspendido de una cuerda ligera (m c <<m) de longitud L Etremo superior fijo Si lo desplazamos del equilibrio y lo soltamos: oscilaciones i Es un M.A.S.? Curso 9/1 3

16 Sistemas oscilantes: péndulo simple Segunda Ley de Newton: mg sen ma ds mg sen m usando: s L dt d g sen L dt Si sen d g dt L Ecuación diferencial de un MAS Curso 9/1 31 Sistemas oscilantes: péndulo simple Curso 9/1 d g dt L Solución: cos( t ) con: g L Periodo del péndulo simple: T L g T no depende de m! T no depende de! 3

17 Péndulo simple: aplicaciones El hecho de que el periodo de oscilación de un péndulo simple no dependa de la masa ni de la amplitud (para amplitudes pequeñas) resulta llamativo y tiene interesantes aplicaciones: Técnica sencilla para calcular la aceleración de la gravedad. Medida del tiempo: péndulo de un reloj Curso 9/1 33 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 34

18 Sistemas oscilantes: péndulo físico Eje Objeto rígido de masa m Oscila alrededor de un eje fijo Si lo desplazamos del equilibrio y lo soltamos: os oscilaciones Es un M.A.S.? Curso 9/1 35 Sistemas oscilantes: péndulo físico Eje M D P Segunda Ley de Newton para una rotación: M mgdsen d M I mgd sen i dt Si sen d mgd dt I Ecuación diferencial de un MAS Curso 9/1 36

19 Sistemas oscilantes: péndulo físico Eje Curso 9/1 d mgd dt I Solución: cos( mgd t ) con: I Periodo del péndulo simple: T I mgd Puede usarse para medir I Si I=mD : T del pendulo simple 37 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 38

20 Oscilaciones amortiguadas Las oscilaciones en sistemas oscilantes reales no son permanentes: rozamiento Este efecto puede incluirse en los cálculos: Fuerza resistiva: R bv b b constante t con: v velocidad Amortiguamiento lineal (muy habitual) Segunda Ley de Newton: d k bv ma k b m dt dt d k Curso 9/1 39 Oscilaciones amortiguadas Ecuación: d d m b k dt dt Solución: b t m t () Ae cos( t) ; k b b m m m k m Frecuencia natural (corresponde a b=) El sistema oscila con frecuencia menor que si no hubiera rozamiento (b=) Curso 9/1 4

21 Oscilaciones amortiguadas b t m () cos( ) t Ae t La amplitud decrece eponencialmente decrece más rápido cuanto mayor es b Curso 9/1 41 Oscilaciones amortiguadas La solución propuesta es válida para b m b Sistema subamortiguado m Si b m : el sistema no oscila ( b m ) ( b m ) Críticamente amortiguado Sobreamortiguado Cuanto mayor sea b más tarda en alcanzar el equilibrio Curso 9/1 4

22 Índice Introducción: movimiento oscilatorio Representación matemática del MAS Dinámica del MAS Periodo y frecuencia Velocidad y aceleración Energía del MAS Sistemas oscilantes: Muelle vertical Péndulo simple Péndulo físico Oscilaciones amortiguadas Oscilaciones Forzadas: resonancia Curso 9/1 43 Oscilaciones forzadas En un sistema amortiguado la energía decrece con el tiempo Para mantener las oscilaciones es preciso suministrar energía de forma continua Esto precisa la acción de una fuerza eterna F F cos( et) Curso 9/1 44

23 Oscilaciones forzadas: resonancia Movimiento del oscilador forzado: Estado inicial transitorio Estado estacionario: Oscila con e y A( e ) Energía es constante (suministrada=disipada) Resonancia: ocurre cuando e El sistema oscila con amplitud y energía máimas Curso 9/1 45 Resonancia: ejemplo Puente de Tacoma Narrows El 7 de noviembre de 194, se derrumbó el puente colgante de Tacoma Narrows (Washington, USA) debido a las vibraciones provocadas por el viento. El puente llevaba abierto al tráfico unos pocos meses. Curso 9/1 46

24 Resonancia: ejemplo Puente de Tacoma Narrows Curso 9/1 47 Resonancia: ejemplo Bahía de Fundy La bahía de Fundy se conoce por registrar la máima diferencia en el nivel del agua entre la marea alta y la bajamar (alrededor de 17 metros). Se cree que el nombre Fundy data del siglo XVI, cuando eploradores portugueses llamaron a la bahía "Rio Fundo (río profundo). El folklore popular afirma que las mareas son causadas por una ballena gigante que chapotea en el agua. Los oceanógrafos atribuyen el fenómeno a la resonancia, como resultado de la coincidencia entre el tiempo que necesita una gran ola para penetrar hasta el fondo de la bahía y regresar y el tiempo entre mareas altas (1.4 horas). Curso 9/1 48

25 Resonancia: ejemplo Bahía de Fundy Curso 9/1 49 Resumen del tema El MAS tiene lugar cuando una partícula está sometida a una fuerza restauradora de valor proporcional al desplazamiento desde el equilibrio. La posición de una partícula que eperimenta un MAS varia con el tiempo de forma sinusoidal La energía total de un oscilador armónico simple es una constante del movimiento. Las oscilaciones amortiguadas tienen lugar en un sistema en que hay una fuerza resistiva que se opone al movimiento del cuerpo oscilante. Para compensar la disminución de energía con el tiempo en un oscilador amortiguado debe emplearse una fuerza eterna: oscilaciones forzadas. Cuando la frecuencia de la fuerza eterna es similar a la frecuencia natural del oscilador no amortiguado la amplitud de las oscilaciones es máima: resonancia Curso 9/1 5

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Movimiento armónico simple

Movimiento armónico simple Física Grado en Biotecnología Movimiento armónico simple ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Dpto. Física y Mecánica de la Ingeniería Agroforestal Prof. Mª Victoria Carbonell Programa Generalidades:

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

OSCILACIONES.-TEMA 3

OSCILACIONES.-TEMA 3 OSCILACIONES.-TEMA 3 CURSO 9- Bases Físicas del Medio Ambiente º de Ciencias Ambientales Profesor: Juan Antonio Antequera Barroso Una oscilación ocurre cuando un sistema es perturbado de su posición de

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Movimientos periódicos PAU

Movimientos periódicos PAU 01. Un muelle de masa despreciable y de longitud 5 cm cuelga del techo de una casa en un planeta diferente a la Tierra. Al colgar del muelle una masa de 50 g, la longitud final del muelle es 5,25 cm. Sabiendo

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Protocolo de Experiencias de Oscilaciones y Ondas

Protocolo de Experiencias de Oscilaciones y Ondas Aula Espacio Tocar la Ciencia J Güémez Aula de la Ciencia Universidad de Cantabria Junio 22, 2011 Protocolo de Experiencias de Oscilaciones y Ondas 1 Equilibrios: estable, inestable, indiferente Con la

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

SISTEMA MASA-RESORTE

SISTEMA MASA-RESORTE SISTEMA MASA-RESORTE OBJETIVOS. Determinar la fuerza en función del alargamiento de un resorte.. Obtener la constante de rigidez del resorte.. Determinar el periodo en función de la masa m.. Determinar

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance?

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance? Física de PSI - movimiento armónico simple (M.A.S.) Preguntas de múltiple opción 1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO.

PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. Problemas de Física. 2º de Bachillerato. I.E.L. Curso 2015-2016 1 PROBLEMAS DE MOVIMIENTO VIBRATORIO Y ONDULATORIO. ECUACION DEL MOVIMIENTO VIBRATORIO 1 Una partícula de masa m = 20g oscila armónicamente

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

BEAT RAMON LLULL CURS INCA

BEAT RAMON LLULL CURS INCA COL LEGI FÍSICA BEAT RAMON LLULL CURS 2007-2008 INCA 1. Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA aletos 15.1 15.1 Energía potencial elástica Hay cierto tipo de sólidos que no son rígidos, capaces, por tanto, de eperimentar deormaciones. La deormación de un sólido rígido puede ser plástica, o elástica.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

I.E.S. FRANCISCO GARCIA PAVÓN. DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CURSO: B2CT FECHA: 16/11/2011

I.E.S. FRANCISCO GARCIA PAVÓN. DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CURSO: B2CT FECHA: 16/11/2011 FÍSICA Y QUÍMICA CURSO 0-0 NOMBRE: SOLUCIONADO CURSO: BCT FECHA: 6//0 FÍSICA TEMA. M.A.S. TEMA. MOVIMIENTOS ONDULATORIOS. NORMAS GENERALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Estudio del comportamiento de un muelle ideal

Estudio del comportamiento de un muelle ideal Estudio del comportamiento de un muelle ideal Experiment lesson Created by: Marisa Amieva Rodríguez Introduction Activities Evaluation Conclusion Introduction La ley que explica el comportamiento elástico

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

CAPÍTULO II BASES TEÓRICAS

CAPÍTULO II BASES TEÓRICAS 7 CAPÍTULO II BASES TEÓRICAS 2.1 Sistemas vibratorios Se entiende por sistema vibratorio todo aquel que posee un movimiento oscilatorio que puede o no ser armónico y que tiene la capacidad de almacenar

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

SILABO DE FISICA II I. DATOS GENERALES

SILABO DE FISICA II I. DATOS GENERALES UNIVERSIDAD PRIVADA DEL NORTE Departamento de Ciencias SILABO DE FISICA II I. DATOS GENERALES 1.1 Facultad : Ingeniería 1.2 Carrera Profesional : Ingeniería Industrial 1.3 Departamento Académico : Ciencias

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

Rapidez De Transferencia de energía por ondas sinoidales en cuerda

Rapidez De Transferencia de energía por ondas sinoidales en cuerda Rapidez De Transferencia de energía por ondas sinoidales en cuerda Las ondas transportan energía cuando se propagan en un medio. Podemos fácilmente demostrar eso al colgar un objeto sobre una cuerda estirada

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DIRECCIÓN DE PROGRAMA INGENIERIA DE PRODUCCIÓN PROGRAMA DE LA ASIGNATURA PROGRAMA: Ingeniería de Producción DEPARTAMENTO:

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

Mecánica Aplicada. Dinámica

Mecánica Aplicada. Dinámica Mecánica Aplicada Dinámica PROYECTO EDITORIAL SÍNTESIS INGENIERÍA Áreas de Publicación INGENIERÍA INDUSTRIAL COORDINADORA: Alicia Larena Mecánica Aplicada Dinámica Armando Bilbao Enrique Amezua Óscar Altuzarra

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos.

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos. PÉNDULO FÍSICO FORZADO 1. OBJETIVO Estudio de las curvas de resonancia para diferentes amortiguamientos. 2. FUNDAMENTO TEÓRICO Se denomina péndulo físico a cualquier sólido rígido capaz de oscilar alrededor

Más detalles

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés Problemas Resueltos de Física 2 Alumno Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés 25 de Abril de 2013 Índice general 1. Movimientos Periódicos 2 1.1. Superposición de Movimientos

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO PROFESOR: ELVER RIVAS PRIMER PERIODO MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.).- Movimiento osciatorio..- Cinemática de movimiento armónico simpe. 3.- Dinámica

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles