2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)"

Transcripción

1 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos con el diseño de un solo factor, que como su nombre lo indica es el estudio de un solo factor con respecto a una variable de respuesta. 2.1 EJEMPLO DE UN DISEÑO DE UN SOLO FACTOR En el desarrollo de un nuevo producto alimenticio se desea comparar el efecto del tipo de envase sobre la vida de anaquel del producto. Para ello existen tres tipos de envases: Envase A, Envase B, y Envase C. En el experimento se realizaron 10 replicas en cada tipo de envase y al final se mide los días de duración del producto. Los datos obtenidos se muestran en la tabla No Respuesta: Días de duración Media Factor: Tipo de envase A B C Tabla No.2.1 Resultados del experimento de la comparación de envases En el ejemplo, podemos ver que: LA VARIABLE DE RESPUESTA: Días de duración del producto alimenticio. EL FACTOR CONTROLADO: Tipo de envase (se tienen tres variantes). LOS NIVELES DEL FACTOR: 3 Tipos de envase 21

2 2.2 MODELO MATEMÁTICO O MODELO ESTADÍSTICO El modelo matemático del diseño unifactorial se expresa así, yij i ij Donde es días de duración; media global o media general; i efecto del factor o y ij efecto del tipo de envase; ij error aleatorio. 2.3 HIPOTESIS DEL EXPERIMENTO El planteamiento estadístico corresponde al contrastar las siguientes Hipótesis: Hipótesis Nula: H : No influye el tipo de envase en la duración de un producto alimenticio 0 Hipótesis Alternativa: H a : El tipo de envase influye en la duración de un producto alimenticio 2.4 ANALISIS ESTADISTICO DEL DISEÑO DE UN SOLO FACTOR (ANOVA) El Análisis de Varianza (ANOVA) es una técnica estadística muy poderosa para el estudio del efecto de uno o más factores sobre la media de una variable (y la varianza de la variable). La Idea básica es Descomponer la variabilidad total observada de los datos en dos partes; una debido a las diferencias de los tratamientos y otra debido a un error aleatorio. 22

3 2.4.1 DESCOMPOSICION DE LA SUMA TOTAL DE CUADRADOS (DESCOMPOSICION DE LA VARIABILIDAD) La variabilidad total de los datos se obtiene mediante la Suma de Cuadrados Totales (SC TOTALES ), el cual a su vez se descompone en dos elementos: 1. La Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ), 2. La Suma de Cuadrados del Error (SC error ). Considerando los datos del ejemplo, Suma de Cuadrados Total (SC TOTAL ): mide la variabilidad total en los datos, y matemáticamente se obtiene así, ( ) 2 +( ) ( ) 2 = Donde el es el promedio general de los treinta datos. Los Grados de libertad totales, se obtienen restándole uno al total de los datos (30-1=29). Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ): mide la variabilidad en los datos asociada a los tratamientos, que en este caso seria asociada a cada tipo de envase, su cálculo se efectúa de la siguiente manera: 10x( ) 2 +10x( ) 2 +10x( ) 2 = Donde el 10 representa el numero de replicas por tratamiento (o tipo de envase); el 31 es el promedio del envase A, el 41.3 es el promedio del envase B y el 43.3 es el promedio del envase C. Los grados de libertad son el numero de tratamientos menos uno, es decir cada tipo de envase es un tratamiento por consiguiente son 3 le restamos uno y obtenemos dos grados de libertad (3-1=2). Suma de Cuadrados Del Error (SC ERROR ): mide la variabilidad que no es debida a las diferencias entre tipo de envase o tratamientos es la variabilidad interna en los tratamientos o envases, en esta variabilidad se incluye la variabilidad de errores de medición, de experimentador o cualquier fuente externa al experimento. Los cálculos se efectúan de la siguiente manera, (23-31) 2 +.+(36-31) 2 +( ) 2 + +( ) 2 +( ) ( ) 2 =

4 El calculo de sus grados de libertad son el total de datos menos el numero de tratamientos, en este caso, es 30-3=27. Finamente, notemos que SC TOTAL = SC TRATAMIENTO + SC RESIDUAL, es decir = CUADRADOS MEDIOS Una vez obtenidos las sumas de cuadrados se procede a obtener los cuadrados medios, el primero es el Cuadrado Medio de los Tratamientos (CM TRATAMIENTOS ), el cual se obtiene dividiendo la SC TRATAMIENTOS entre sus grados de libertad, como se muestra a continuación CM TRATAMIENT OS SC TRATAMIENTOS a Donde a es el numero de tratamientos o envases. El segundo es el Cuadrado Medio del Error (CM error ), que se obtiene dividiendo la suma de cuadrados del error entre sus grados de libertad, su cálculo se efectúa así, CM ERROR SC ERROR N a Donde N es el total de datos y a es el numero de tratamientos OBTENCION DE LA F CALCULADA O DE LA La F-calculada o la F 0, se obtiene al dividir el cuadrado medio del tratamiento en tre el cuadrado medio del error, como se muestra a continuación, F CM CM TRATAMIENT O 0 ERROR F

5 2.4.4 OBTENCION DE LA F DE TABLAS F(tablas) En las tablas de la distribución F de Fisher (apéndice) podemos ver que para un 0.05 con 2 grados de libertad en el numerador y 27 grados de libertad en el denominador se tiene que el valor de la F(tablas) es COMPARACION DE LA Fo CON LA F(tablas) Si el valor de la Fo es mayor que el valor de la F(tablas) entonces se rechaza la hipótesis nula, en los resultados se puede ver que Fo=7.647>F(tablas)=3.35, entonces podemos concluir que si existen diferencias en los tipos de envase. En otras palabras el tipo de envase si influye en la duración de un producto alimenticio. Todos los resultados anteriores se pueden ver en la tabla 2.2, llamada Tabla de Análisis de Varianza. Fuente Suma de Cuadrados Gl Cuadrado Medio Razón-F Valor-P EFECTOS PRINCIPALES P(F=7.65) A:ENVASE RESIDUOS TOTAL (CORREGIDO) Tabla 2.2 Tabla de Análisis de Varianza, usando el programa Statgraphics Centurion XV Nótese que el análisis de varianza (Tabla 2.2) solo indica que si existen diferencias entre los envases, pero no establece, ni propone, cual es mejor envase de los tres. Para ello se requiere hacer un análisis complementario conocido como Prueba de Rangos Múltiples. La prueba de rangos múltiples, es un conjunto de métodos, los cuales consisten en comparación de pares de medias de los tratamientos. Entre esos métodos, se pueden mencionar, el Método de la Mínima Diferencia Significativa (LSD), el método de la Máxima Diferencia significativa (HSD), y el método de Duncan, entre otros. 2.5 COMPARACIÓN DE PAREJAS DE MEDIAS DE TRATAMIENTOS Existen varios métodos de comparación de tratamientos, los cuales consisten en comparar todas las medias de tratamientos, uno de los más usuales es Método de la Mínima Diferencia Significativa 25

6 (LSD, del inglés least significant difference). Supongamos que después de haber rechazado la hipótesis nula, con base en una prueba F de análisis de varianza, se desea probar todas las posibles comparaciones de medias de los tratamientos. Para ello se realizan el siguiente procedimiento 1. Se calcula el valor del LSD mediante la siguiente formula, cuando el numero de replicas por nivel o tratamiento es el mismo, es decir n 1 =n 2 = n LSD= t /2,N-a 2 CM ERROR n Donde t /2 (N-a) es la t-student con un nivel de confianza y N-a grados de libertad; CM error es el cuadrado medio del error del análisis de varianza. En el ejemplo el valor del LSD es, t CM 2( ) n 10 Error LSD= (, ). 2 2 N a Donde el valor de t /2 (N-a) se obtuvo analizando las tablas de la distribución t-student, para un nivel de confianza =0.05 y 27 grados de libertad. 2. Se calculan las medias de los tratamientos Tipo de envase Media A 31 B 41.3 C Se calculan el valor absoluto de las diferencias de medias de todos los tratamientos El envase A con el envase B El envase A con el envase C El envase B con el envase C 26

7 Comparación del valor absoluto de la diferencia las medias de los tratamientos con el valor del LSD * > 6.92, por lo tanto el tipo de envase A es diferente al tipo de envase B * >6.92, por lo tanto el tipo de envase A es diferente al tipo de envase C * <6.92, por consiguiente no hay diferencias entre los envases B y el C 5. Conclusión: De acuerdo a los resultados anteriores podemos concluir que el tipo de envase A es el menos recomendable, ya que presenta menor promedio que los otros dos, por consiguiente se puede decidir por cualquiera de los dos tipos de envase restantes, es decir el tipo B o el tipo C, ya que en ellos no se encontraron diferencias. La salida de los resultados usando el programa de estadística Statgraphics versión Centurion, se puede ver en la tabla 2.3, ENVASE Casos Media Grupos Homogéneos A X B X C X Contraste Sig. Diferencia +/- Límites A - B * A - C * B - C * indica una diferencia significativa. Tabla 2.3 Prueba de comparación LSD Una gráfica representativa de esto resultados es la gráfica de medias. En la figura 2.1 se puede ver la grafica de medias de ejemplo del tipo de envase. Nótese que esta gráfica, se puede establecer que no hay diferencias entre el tipo de envase B y el envase C. De hecho, si se opta por usar el envase C se esperarían promedios entre y 46.76, mientras que si se decide por el envase B se esperarían promedios entre y (ver tabla 2.4). 27

8 DIAS Medias y 95.0% de Fisher LSD A B C ENVASE Figura 2.1 Graficas de medias, método LSD Error Est. ENVASE Casos Media (s agrupada) Límite Inferior Límite Superior A B C Total Tabla 2.4 Tabla de medias 2.6 SUPUESTOS Algo fundamental en el análisis de varianza son los supuestos de los residuales, los cuales deben cumplir con tres: 1.- Los residuales deben ser independientes 2.- Los residuales deben tener varianza constante 3.- Los residuales se distribuyen normal. Si alguno de esos tres no se cumple es suficiente para invalidar el Análisis de Varianza. Para checar estos tres supuestos se deben calcular primeramente los residuales mediante la siguiente formula: e ij y ij y i. Donde y i. y i. n es el promedio del i-ésimo tratamiento. Los residuales para el ejemplo de los envases están en la tabla 2.5, 28

9 residual Envase A Envase B Envase C 23-31= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =-9.3 Tabla 2.5 Residuales para el ejemplo de los envases SUPUESTO DE VARIANZA CONSTANTE (PRUEBA GRAFICA) Para checar el supuesto de varianza constante, es necesario realizar una grafica tipo x-y, en la cual en el eje x se colocan los niveles o tratamientos y en el eje y los residuales correspondientes a cada tratamiento como se ilustra en la grafica de la figura 2.2, Residual Plot for DURACION A B C ENVASE Figura 2.2 Grafica de verificación de la varianza constante En la figura 2.2 se presentan gráficamente los niveles del factor contra los residuales. La interpretación de esta gráfica consiste en analizar los patrones o tendencias de comportamiento en los puntos graficados. La variación de los puntos para cada uno de los niveles A, B y C no debe presentarse diferencias. No se debe distinguir la presencia de un embudo. En la figura 2.2 no se 29

10 presenta patrón inusual por lo que podemos concluir que si se cumple el supuesto de varianza constante VERIFICACION DE VARIANZA CONSTANTE (PRUEBA ESTADISTICA) Existen varias pruebas estadísticas para verificar la igualdad de varianzas, en el statgraphics podemos encontrar 4 pruebas, entre las que destacan las siguientes: Prueba de Cochran: Compara la varianza máxima dentro de la muestra a la varianza promedio dentro de la muestra. Prueba de Bartlett: Compara un promedio ponderado de las varianzas dentro de la muestra a su media geométrica. Prueba de Harley: Calcula la proporción de la varianza muestral más grande a la varianza muestral más pequeña. Prueba de Levene: Ejecuta un análisis de varianza en desviaciones absolutas de las observaciones de sus medias muestrales. Los resultados usando la Prueba de Levene, se pueden observar en la tabla 2.6, donde se puede ver que el valor de p= es menor que un valor de significancia dado 0.05, indicando con esto, que no existen diferencias significativas entre las varianzas, con lo que comprobamos la varianza constante. Verificación de Varianza Prueba Valor-P Levene's Tabla 2.6 Verificación de la varianza de los tratamientos 30

11 2.6.2 SUPUESTO DE INDEPENDENCIA Para checar el supuesto de independencia se requiere tener el orden de corrida experimental, como se muestra a continuación: ORDEN DE ENVASE RESIDUAL CORRIDA 1 A -8 2 B C A -3 5 B B C A C B B A C A 4 15 B C C A C B A 6 22 C B A C B A 1 28 C B A 5 Y en seguida graficarlos como se muestra a continuación: 31

12 residual Residual Plot for DIAS row number RESIDUALES VS ORDEN DE CORRIDA (O SECUENCIA DE TIEMPO) Figura 2.3 Verificación de la independencia de los residuales En la figura 2.3 se presenta gráficamente el número de corrida contra el valor del residual. En esta gráfica no se debe presentar ningún tipo de patrón de comportamiento, los puntos deben verse completamente dispersos. De acuerdo a esta gráfica se puede concluir que si se cumple el supuesto de independencia SUPUESTO DE NORMALIDAD Un procedimiento útil consiste en construir una gráfica de probabilidad normal de los residuos. Una gráfica de este tipo es la representación de la distribución acumulada de los residuos sobre papel de probabilidad normal, en otras palabras, es papel para gráficas cuya escala de ordenadas es tal que la distribución normal acumulada sea una recta. Para construir una gráfica de probabilidad normal se hace el siguiente procedimiento: 1. Se ordenan los residuos en orden ascendente: RESIDUALES ORDENADOS

13 percentage A cada residuo se le calcula su punto de probabilidad acumulada mediante la siguiente formula: K e ( k 0. 5 ) K K ij P k e ( k 0. 5 ) ij P k ( k 0. 5 ) P k N eij P k ( k 0. 5 ) 3. Se grafican en el eje de las X's y los ( k 0. 5 ) en el eje de las Y's, como se muestra la figura 2.4 e ij P k 30 Normal Probability Plot for RESIDUALS RESIDUALS Figura 2.4 Grafico de probabilidad normal para los residuos En está gráfica se puede ver que la mayoría de los puntos se ajustan a la línea recta, lo que significa que los residuales si cumplen el supuesto de normalidad. 33

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS

Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS Red ibérica de evaluación de eficacia y efectos secundarios de tratamientos para el control de plagas en el olivar (RIESPO) 2ª Reunión, Madrid 10-11/06/2010 Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS ESTADÍSTICA

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Métodos complementarios al análisis de varianza Comparaciones múltiples Comparación o pruebas de rangos múltiples Después de que se rechazó la hipótesis

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN Espinoza Cárdenas Sara Dalila Flores Balderas Mayra Celeste Gómez Llanos Sandoval Ana Isabel LOS ESMALTES DE UÑAS

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

ANOVA Análisis de la Varianza en diseño de experimentos

ANOVA Análisis de la Varianza en diseño de experimentos ANOVA Análisis de la Varianza en diseño de experimentos NATURALEZA DEL DISEÑO EXPERIMENTAL El diseño experimental tiene sus orígenes en los trabajos de Ronald Aylmer Fisher (1890 1962) desarrollados en

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Diseño de Experimentos Diseños de un Solo Factor Categórico

Diseño de Experimentos Diseños de un Solo Factor Categórico Diseño de Experimentos Diseños de un Solo Factor Categórico Resumen La selección de Diseños de un Solo Factor Categórico sobre el menú de Crear un Diseño crea diseños experimentales para situaciones donde

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

DISTRIBUCION JI-CUADRADA (X 2 )

DISTRIBUCION JI-CUADRADA (X 2 ) DISTRIBUCION JI-CUADRADA (X 2 ) En realidad la distribución ji-cuadrada es la distribución muestral de s 2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

Diseño y análisis de experimentos

Diseño y análisis de experimentos Diseño y análisis de experimentos Sesión 15 Pruebas para la adecuación del modelo ANOVA Ejemplo Un diseñador de telas está investigando la resistencia a la tensión de na nueva fibra sintética, que será

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

CLAVE - Laboratorio 11: Análisis de la Varianza

CLAVE - Laboratorio 11: Análisis de la Varianza CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

4 Análisis de Varianza

4 Análisis de Varianza 4 Análisis de Varianza 4. Análisis de Varianza e.4.1. Quiénes obtienen mejores resultados en Matemáticas, los estudiantes que viven en zonas rurales, en pequeñas ciudades, en ciudades medias o en grandes

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos INDICE Introducción Capitulo uno. La idea nace un proyecto de investigación 1 1.1. Como se originan las investigaciones? 2 Resumen 6 Ejemplo 7 Capitulo dos. El planteamiento del problema objetivos, preguntas

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

Elementos de Diseño de Experimentos

Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Porfirio Gutiérrez González Lizbeth Díaz Caldera María de Jesús Guzmán Sánchez Autores: Porfirio Gutiérrez González Lizbeth Díaz

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

no paramétrica comparar más de dos grupos de rangos (medianas)

no paramétrica comparar más de dos grupos de rangos (medianas) Kruskal-Wallis Es una prueba no paramétrica de comparación de tres o más grupos independientes, debe cumplir las siguientes características: Es libre de curva, no necesita una distribución específica Nivel

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

paramétrica comparar dos grupos de puntuaciones

paramétrica comparar dos grupos de puntuaciones t de Student Es una prueba paramétrica de comparación de dos muestras independientes, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad (homogeneidad de las

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo):

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): son aquellas que representan los valores muestrales observados

Más detalles

Diseño de Experimentos Diseños factoriales 2 k. Diseños 2 k

Diseño de Experimentos Diseños factoriales 2 k. Diseños 2 k Diseño de Experimentos Diseños factoriales 2 k Licenciatura en Estadística 2015 Dr. José Alberto Pagura Lic. Lucía N. Hernández Dra. Daniela F. Dianda Diseños 2 k Una clase especial de diseños factoriales

Más detalles

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Paola Ilabaca Baeza 1 José Manuel Gaete 2 paolailabaca@usal.es jmgaete@usal.es

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

Comparación de dos métodos de aprendizaje sobre el mismo problema

Comparación de dos métodos de aprendizaje sobre el mismo problema Comparación de dos métodos de aprendizaje sobre el mismo problema Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Motivación 2.

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Gráfico de Probabilidad Normal

Gráfico de Probabilidad Normal Gráfico de Probabilidad Normal Resumen El Gráfico de Probabilidad Normal se usa para ayudar a juzgar si una muestra de datos numéricos proviene o no de una distribución normal. De no ser el caso, frecuentemente

Más detalles

Estadísticas y distribuciones de muestreo

Estadísticas y distribuciones de muestreo Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/25

Diseños Factoriales. Diseño de experimentos p. 1/25 Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA

CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA 1 (4.1) DISTRIBUCIÓN NORMAL 2 4.1.1- ASPECTOS GENERALES: Al graficarse los diferentes valores obtenidos de una variable X se obtiene una distribución

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

8.2 CONSTRUCCION DEL DISEÑO FRACCIONADO UN CUARTO 2 k-2

8.2 CONSTRUCCION DEL DISEÑO FRACCIONADO UN CUARTO 2 k-2 8. DISEÑOS FACTORIALES FRACCIONADOS 2 K-2 8.1 DISEÑOS FACTORIALES FRACCION UN CUARTO Dependiendo del número de factores y del costo de cada corrida experimental, en ocasiones es necesario correr una fracción

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles