2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)"

Transcripción

1 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos con el diseño de un solo factor, que como su nombre lo indica es el estudio de un solo factor con respecto a una variable de respuesta. 2.1 EJEMPLO DE UN DISEÑO DE UN SOLO FACTOR En el desarrollo de un nuevo producto alimenticio se desea comparar el efecto del tipo de envase sobre la vida de anaquel del producto. Para ello existen tres tipos de envases: Envase A, Envase B, y Envase C. En el experimento se realizaron 10 replicas en cada tipo de envase y al final se mide los días de duración del producto. Los datos obtenidos se muestran en la tabla No Respuesta: Días de duración Media Factor: Tipo de envase A B C Tabla No.2.1 Resultados del experimento de la comparación de envases En el ejemplo, podemos ver que: LA VARIABLE DE RESPUESTA: Días de duración del producto alimenticio. EL FACTOR CONTROLADO: Tipo de envase (se tienen tres variantes). LOS NIVELES DEL FACTOR: 3 Tipos de envase 21

2 2.2 MODELO MATEMÁTICO O MODELO ESTADÍSTICO El modelo matemático del diseño unifactorial se expresa así, yij i ij Donde es días de duración; media global o media general; i efecto del factor o y ij efecto del tipo de envase; ij error aleatorio. 2.3 HIPOTESIS DEL EXPERIMENTO El planteamiento estadístico corresponde al contrastar las siguientes Hipótesis: Hipótesis Nula: H : No influye el tipo de envase en la duración de un producto alimenticio 0 Hipótesis Alternativa: H a : El tipo de envase influye en la duración de un producto alimenticio 2.4 ANALISIS ESTADISTICO DEL DISEÑO DE UN SOLO FACTOR (ANOVA) El Análisis de Varianza (ANOVA) es una técnica estadística muy poderosa para el estudio del efecto de uno o más factores sobre la media de una variable (y la varianza de la variable). La Idea básica es Descomponer la variabilidad total observada de los datos en dos partes; una debido a las diferencias de los tratamientos y otra debido a un error aleatorio. 22

3 2.4.1 DESCOMPOSICION DE LA SUMA TOTAL DE CUADRADOS (DESCOMPOSICION DE LA VARIABILIDAD) La variabilidad total de los datos se obtiene mediante la Suma de Cuadrados Totales (SC TOTALES ), el cual a su vez se descompone en dos elementos: 1. La Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ), 2. La Suma de Cuadrados del Error (SC error ). Considerando los datos del ejemplo, Suma de Cuadrados Total (SC TOTAL ): mide la variabilidad total en los datos, y matemáticamente se obtiene así, ( ) 2 +( ) ( ) 2 = Donde el es el promedio general de los treinta datos. Los Grados de libertad totales, se obtienen restándole uno al total de los datos (30-1=29). Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ): mide la variabilidad en los datos asociada a los tratamientos, que en este caso seria asociada a cada tipo de envase, su cálculo se efectúa de la siguiente manera: 10x( ) 2 +10x( ) 2 +10x( ) 2 = Donde el 10 representa el numero de replicas por tratamiento (o tipo de envase); el 31 es el promedio del envase A, el 41.3 es el promedio del envase B y el 43.3 es el promedio del envase C. Los grados de libertad son el numero de tratamientos menos uno, es decir cada tipo de envase es un tratamiento por consiguiente son 3 le restamos uno y obtenemos dos grados de libertad (3-1=2). Suma de Cuadrados Del Error (SC ERROR ): mide la variabilidad que no es debida a las diferencias entre tipo de envase o tratamientos es la variabilidad interna en los tratamientos o envases, en esta variabilidad se incluye la variabilidad de errores de medición, de experimentador o cualquier fuente externa al experimento. Los cálculos se efectúan de la siguiente manera, (23-31) 2 +.+(36-31) 2 +( ) 2 + +( ) 2 +( ) ( ) 2 =

4 El calculo de sus grados de libertad son el total de datos menos el numero de tratamientos, en este caso, es 30-3=27. Finamente, notemos que SC TOTAL = SC TRATAMIENTO + SC RESIDUAL, es decir = CUADRADOS MEDIOS Una vez obtenidos las sumas de cuadrados se procede a obtener los cuadrados medios, el primero es el Cuadrado Medio de los Tratamientos (CM TRATAMIENTOS ), el cual se obtiene dividiendo la SC TRATAMIENTOS entre sus grados de libertad, como se muestra a continuación CM TRATAMIENT OS SC TRATAMIENTOS a Donde a es el numero de tratamientos o envases. El segundo es el Cuadrado Medio del Error (CM error ), que se obtiene dividiendo la suma de cuadrados del error entre sus grados de libertad, su cálculo se efectúa así, CM ERROR SC ERROR N a Donde N es el total de datos y a es el numero de tratamientos OBTENCION DE LA F CALCULADA O DE LA La F-calculada o la F 0, se obtiene al dividir el cuadrado medio del tratamiento en tre el cuadrado medio del error, como se muestra a continuación, F CM CM TRATAMIENT O 0 ERROR F

5 2.4.4 OBTENCION DE LA F DE TABLAS F(tablas) En las tablas de la distribución F de Fisher (apéndice) podemos ver que para un 0.05 con 2 grados de libertad en el numerador y 27 grados de libertad en el denominador se tiene que el valor de la F(tablas) es COMPARACION DE LA Fo CON LA F(tablas) Si el valor de la Fo es mayor que el valor de la F(tablas) entonces se rechaza la hipótesis nula, en los resultados se puede ver que Fo=7.647>F(tablas)=3.35, entonces podemos concluir que si existen diferencias en los tipos de envase. En otras palabras el tipo de envase si influye en la duración de un producto alimenticio. Todos los resultados anteriores se pueden ver en la tabla 2.2, llamada Tabla de Análisis de Varianza. Fuente Suma de Cuadrados Gl Cuadrado Medio Razón-F Valor-P EFECTOS PRINCIPALES P(F=7.65) A:ENVASE RESIDUOS TOTAL (CORREGIDO) Tabla 2.2 Tabla de Análisis de Varianza, usando el programa Statgraphics Centurion XV Nótese que el análisis de varianza (Tabla 2.2) solo indica que si existen diferencias entre los envases, pero no establece, ni propone, cual es mejor envase de los tres. Para ello se requiere hacer un análisis complementario conocido como Prueba de Rangos Múltiples. La prueba de rangos múltiples, es un conjunto de métodos, los cuales consisten en comparación de pares de medias de los tratamientos. Entre esos métodos, se pueden mencionar, el Método de la Mínima Diferencia Significativa (LSD), el método de la Máxima Diferencia significativa (HSD), y el método de Duncan, entre otros. 2.5 COMPARACIÓN DE PAREJAS DE MEDIAS DE TRATAMIENTOS Existen varios métodos de comparación de tratamientos, los cuales consisten en comparar todas las medias de tratamientos, uno de los más usuales es Método de la Mínima Diferencia Significativa 25

6 (LSD, del inglés least significant difference). Supongamos que después de haber rechazado la hipótesis nula, con base en una prueba F de análisis de varianza, se desea probar todas las posibles comparaciones de medias de los tratamientos. Para ello se realizan el siguiente procedimiento 1. Se calcula el valor del LSD mediante la siguiente formula, cuando el numero de replicas por nivel o tratamiento es el mismo, es decir n 1 =n 2 = n LSD= t /2,N-a 2 CM ERROR n Donde t /2 (N-a) es la t-student con un nivel de confianza y N-a grados de libertad; CM error es el cuadrado medio del error del análisis de varianza. En el ejemplo el valor del LSD es, t CM 2( ) n 10 Error LSD= (, ). 2 2 N a Donde el valor de t /2 (N-a) se obtuvo analizando las tablas de la distribución t-student, para un nivel de confianza =0.05 y 27 grados de libertad. 2. Se calculan las medias de los tratamientos Tipo de envase Media A 31 B 41.3 C Se calculan el valor absoluto de las diferencias de medias de todos los tratamientos El envase A con el envase B El envase A con el envase C El envase B con el envase C 26

7 Comparación del valor absoluto de la diferencia las medias de los tratamientos con el valor del LSD * > 6.92, por lo tanto el tipo de envase A es diferente al tipo de envase B * >6.92, por lo tanto el tipo de envase A es diferente al tipo de envase C * <6.92, por consiguiente no hay diferencias entre los envases B y el C 5. Conclusión: De acuerdo a los resultados anteriores podemos concluir que el tipo de envase A es el menos recomendable, ya que presenta menor promedio que los otros dos, por consiguiente se puede decidir por cualquiera de los dos tipos de envase restantes, es decir el tipo B o el tipo C, ya que en ellos no se encontraron diferencias. La salida de los resultados usando el programa de estadística Statgraphics versión Centurion, se puede ver en la tabla 2.3, ENVASE Casos Media Grupos Homogéneos A X B X C X Contraste Sig. Diferencia +/- Límites A - B * A - C * B - C * indica una diferencia significativa. Tabla 2.3 Prueba de comparación LSD Una gráfica representativa de esto resultados es la gráfica de medias. En la figura 2.1 se puede ver la grafica de medias de ejemplo del tipo de envase. Nótese que esta gráfica, se puede establecer que no hay diferencias entre el tipo de envase B y el envase C. De hecho, si se opta por usar el envase C se esperarían promedios entre y 46.76, mientras que si se decide por el envase B se esperarían promedios entre y (ver tabla 2.4). 27

8 DIAS Medias y 95.0% de Fisher LSD A B C ENVASE Figura 2.1 Graficas de medias, método LSD Error Est. ENVASE Casos Media (s agrupada) Límite Inferior Límite Superior A B C Total Tabla 2.4 Tabla de medias 2.6 SUPUESTOS Algo fundamental en el análisis de varianza son los supuestos de los residuales, los cuales deben cumplir con tres: 1.- Los residuales deben ser independientes 2.- Los residuales deben tener varianza constante 3.- Los residuales se distribuyen normal. Si alguno de esos tres no se cumple es suficiente para invalidar el Análisis de Varianza. Para checar estos tres supuestos se deben calcular primeramente los residuales mediante la siguiente formula: e ij y ij y i. Donde y i. y i. n es el promedio del i-ésimo tratamiento. Los residuales para el ejemplo de los envases están en la tabla 2.5, 28

9 residual Envase A Envase B Envase C 23-31= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =-9.3 Tabla 2.5 Residuales para el ejemplo de los envases SUPUESTO DE VARIANZA CONSTANTE (PRUEBA GRAFICA) Para checar el supuesto de varianza constante, es necesario realizar una grafica tipo x-y, en la cual en el eje x se colocan los niveles o tratamientos y en el eje y los residuales correspondientes a cada tratamiento como se ilustra en la grafica de la figura 2.2, Residual Plot for DURACION A B C ENVASE Figura 2.2 Grafica de verificación de la varianza constante En la figura 2.2 se presentan gráficamente los niveles del factor contra los residuales. La interpretación de esta gráfica consiste en analizar los patrones o tendencias de comportamiento en los puntos graficados. La variación de los puntos para cada uno de los niveles A, B y C no debe presentarse diferencias. No se debe distinguir la presencia de un embudo. En la figura 2.2 no se 29

10 presenta patrón inusual por lo que podemos concluir que si se cumple el supuesto de varianza constante VERIFICACION DE VARIANZA CONSTANTE (PRUEBA ESTADISTICA) Existen varias pruebas estadísticas para verificar la igualdad de varianzas, en el statgraphics podemos encontrar 4 pruebas, entre las que destacan las siguientes: Prueba de Cochran: Compara la varianza máxima dentro de la muestra a la varianza promedio dentro de la muestra. Prueba de Bartlett: Compara un promedio ponderado de las varianzas dentro de la muestra a su media geométrica. Prueba de Harley: Calcula la proporción de la varianza muestral más grande a la varianza muestral más pequeña. Prueba de Levene: Ejecuta un análisis de varianza en desviaciones absolutas de las observaciones de sus medias muestrales. Los resultados usando la Prueba de Levene, se pueden observar en la tabla 2.6, donde se puede ver que el valor de p= es menor que un valor de significancia dado 0.05, indicando con esto, que no existen diferencias significativas entre las varianzas, con lo que comprobamos la varianza constante. Verificación de Varianza Prueba Valor-P Levene's Tabla 2.6 Verificación de la varianza de los tratamientos 30

11 2.6.2 SUPUESTO DE INDEPENDENCIA Para checar el supuesto de independencia se requiere tener el orden de corrida experimental, como se muestra a continuación: ORDEN DE ENVASE RESIDUAL CORRIDA 1 A -8 2 B C A -3 5 B B C A C B B A C A 4 15 B C C A C B A 6 22 C B A C B A 1 28 C B A 5 Y en seguida graficarlos como se muestra a continuación: 31

12 residual Residual Plot for DIAS row number RESIDUALES VS ORDEN DE CORRIDA (O SECUENCIA DE TIEMPO) Figura 2.3 Verificación de la independencia de los residuales En la figura 2.3 se presenta gráficamente el número de corrida contra el valor del residual. En esta gráfica no se debe presentar ningún tipo de patrón de comportamiento, los puntos deben verse completamente dispersos. De acuerdo a esta gráfica se puede concluir que si se cumple el supuesto de independencia SUPUESTO DE NORMALIDAD Un procedimiento útil consiste en construir una gráfica de probabilidad normal de los residuos. Una gráfica de este tipo es la representación de la distribución acumulada de los residuos sobre papel de probabilidad normal, en otras palabras, es papel para gráficas cuya escala de ordenadas es tal que la distribución normal acumulada sea una recta. Para construir una gráfica de probabilidad normal se hace el siguiente procedimiento: 1. Se ordenan los residuos en orden ascendente: RESIDUALES ORDENADOS

13 percentage A cada residuo se le calcula su punto de probabilidad acumulada mediante la siguiente formula: K e ( k 0. 5 ) K K ij P k e ( k 0. 5 ) ij P k ( k 0. 5 ) P k N eij P k ( k 0. 5 ) 3. Se grafican en el eje de las X's y los ( k 0. 5 ) en el eje de las Y's, como se muestra la figura 2.4 e ij P k 30 Normal Probability Plot for RESIDUALS RESIDUALS Figura 2.4 Grafico de probabilidad normal para los residuos En está gráfica se puede ver que la mayoría de los puntos se ajustan a la línea recta, lo que significa que los residuales si cumplen el supuesto de normalidad. 33

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN Espinoza Cárdenas Sara Dalila Flores Balderas Mayra Celeste Gómez Llanos Sandoval Ana Isabel LOS ESMALTES DE UÑAS

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

Elementos de Diseño de Experimentos

Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Porfirio Gutiérrez González Lizbeth Díaz Caldera María de Jesús Guzmán Sánchez Autores: Porfirio Gutiérrez González Lizbeth Díaz

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

no paramétrica comparar más de dos grupos de rangos (medianas)

no paramétrica comparar más de dos grupos de rangos (medianas) Kruskal-Wallis Es una prueba no paramétrica de comparación de tres o más grupos independientes, debe cumplir las siguientes características: Es libre de curva, no necesita una distribución específica Nivel

Más detalles

ANOVA (Análisis de varianza)

ANOVA (Análisis de varianza) ANOVA (Análisis de varianza) Las pruebas de hipótesis son una herramienta útil cuando se trata de comparar dos tratamientos La experimentación usualmente requiere comparación de más de dos tratamientos

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 7: Modelos de diseños de experimentos

Tema 7: Modelos de diseños de experimentos Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

ANOVA Multifactorial. StatFolio Muestra: anova.sgp

ANOVA Multifactorial. StatFolio Muestra: anova.sgp ANOVA Multifactorial Resumen El procedimiento ANOVA Multifactorial está diseñado para construir un modelo estadístico describiendo el impacto de dos o más factores categóricos X j de una variable dependiente

Más detalles

Métodos estadísticos aplicados para la Ingeniería Informática

Métodos estadísticos aplicados para la Ingeniería Informática Grado en Ingeniería Informática Métodos estadísticos aplicados para la Ingeniería Informática Rosa Mª Alcover Arándiga Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Objetivo

Más detalles

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey.

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey. Ejercicio 1: Se someten 24 muestras de agua a 4 tratamientos de descontaminación diferentes y asignados al azar. Para cada muestra se mide un indicador de la calidad del agua ( cuanto más alto es el indicador,

Más detalles

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6.1 INTRODUCCION El aumentar el numero de factores en un diseño 2 k crece rápidamente el numero de tratamientos y por tanto el numero de corridas experimentales.

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays) Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Análisis Probit. StatFolio de Ejemplo: probit.sgp

Análisis Probit. StatFolio de Ejemplo: probit.sgp STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

bloques SC Suma de Cuadrados k trat bloques

bloques SC Suma de Cuadrados k trat bloques Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza

Más detalles

El Análisis de Correspondencias tiene dos objetivos básicos:

El Análisis de Correspondencias tiene dos objetivos básicos: Tema 8 Análisis de correspondencias El Análisis de Correspondencias es una técnica de reducción de dimensión y elaboración de mapas percentuales. Los mapas percentuales se basan en la asociación entre

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

Fundamentos de Estadística

Fundamentos de Estadística Fundamentos de Estadística Introducción a la Estadística Prof. Dr. Eduardo Valenzuela Domínguez eduardo.valenzuela@usm.cl Universidad Técnica Federico Santa María Dr. Eduardo Valenzuela D.; MEE 2005 p.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

IX.- ANÁLISIS DE VARIANZA

IX.- ANÁLISIS DE VARIANZA IX- ANÁLISIS DE VARIANZA Las técnicas de Diseño Experimental basadas en la estadística son particularmente útiles en el mundo de la Ingeniería en lo que corresponde a la mejora del rendimiento de los procesos

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10 1. El Indice Climático Turístico (ICT), definido por Mieczkowski en 1985 es un índice que toma valores en una escala de 0 a 100 y tiene como objetivo valorar la calidad que ofrece el clima de una región

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los 112 CAPITULO 5 5.- ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ 5.1. Introducción En el presente capítulo se realiza el análisis estadístico multivariado de los datos obtenidos en censo correspondientes a

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los

Más detalles

EVALUACION DE RESULTADOS INTRA-LABORATORIO. EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010

EVALUACION DE RESULTADOS INTRA-LABORATORIO. EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010 EVALUACION DE RESULTADOS INTRA-LABORATORIO EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010 1 EVALUACION DE RESULTADOS INTRA-LABORATORIO INTRODUCCION

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Comparación de Varias Muestras

Comparación de Varias Muestras Comparación de Varias Muestras Resumen El procedimiento de Comparación de Varias Muestras está diseñado para comparar dos o más muestras independientes de datos variables. Se hacen pruebas para determinar

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3 DISEÑO EN CUADRO LATINO En el diseño en cuadro latino (DCL) se controlan dos factores de bloque y se estudia un solo factor de interés. En este sentido, se tienen cuatro fuentes de variación: Los tratamientos

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Transformaciones de Box-Cox

Transformaciones de Box-Cox Transformaciones de Box-Cox Resumen El procedimiento para las Transformaciones de Box-Cox es diseñado para determinar una transformación optima para Y mientras se estima un modelo de regresión lineal.

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS

INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS CONTENIDOS APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL... 2 1. Probabilidad...

Más detalles