2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)"

Transcripción

1 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos con el diseño de un solo factor, que como su nombre lo indica es el estudio de un solo factor con respecto a una variable de respuesta. 2.1 EJEMPLO DE UN DISEÑO DE UN SOLO FACTOR En el desarrollo de un nuevo producto alimenticio se desea comparar el efecto del tipo de envase sobre la vida de anaquel del producto. Para ello existen tres tipos de envases: Envase A, Envase B, y Envase C. En el experimento se realizaron 10 replicas en cada tipo de envase y al final se mide los días de duración del producto. Los datos obtenidos se muestran en la tabla No Respuesta: Días de duración Media Factor: Tipo de envase A B C Tabla No.2.1 Resultados del experimento de la comparación de envases En el ejemplo, podemos ver que: LA VARIABLE DE RESPUESTA: Días de duración del producto alimenticio. EL FACTOR CONTROLADO: Tipo de envase (se tienen tres variantes). LOS NIVELES DEL FACTOR: 3 Tipos de envase 21

2 2.2 MODELO MATEMÁTICO O MODELO ESTADÍSTICO El modelo matemático del diseño unifactorial se expresa así, yij i ij Donde es días de duración; media global o media general; i efecto del factor o y ij efecto del tipo de envase; ij error aleatorio. 2.3 HIPOTESIS DEL EXPERIMENTO El planteamiento estadístico corresponde al contrastar las siguientes Hipótesis: Hipótesis Nula: H : No influye el tipo de envase en la duración de un producto alimenticio 0 Hipótesis Alternativa: H a : El tipo de envase influye en la duración de un producto alimenticio 2.4 ANALISIS ESTADISTICO DEL DISEÑO DE UN SOLO FACTOR (ANOVA) El Análisis de Varianza (ANOVA) es una técnica estadística muy poderosa para el estudio del efecto de uno o más factores sobre la media de una variable (y la varianza de la variable). La Idea básica es Descomponer la variabilidad total observada de los datos en dos partes; una debido a las diferencias de los tratamientos y otra debido a un error aleatorio. 22

3 2.4.1 DESCOMPOSICION DE LA SUMA TOTAL DE CUADRADOS (DESCOMPOSICION DE LA VARIABILIDAD) La variabilidad total de los datos se obtiene mediante la Suma de Cuadrados Totales (SC TOTALES ), el cual a su vez se descompone en dos elementos: 1. La Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ), 2. La Suma de Cuadrados del Error (SC error ). Considerando los datos del ejemplo, Suma de Cuadrados Total (SC TOTAL ): mide la variabilidad total en los datos, y matemáticamente se obtiene así, ( ) 2 +( ) ( ) 2 = Donde el es el promedio general de los treinta datos. Los Grados de libertad totales, se obtienen restándole uno al total de los datos (30-1=29). Suma de Cuadrados de Tratamientos (SC TRATAMIENTOS ): mide la variabilidad en los datos asociada a los tratamientos, que en este caso seria asociada a cada tipo de envase, su cálculo se efectúa de la siguiente manera: 10x( ) 2 +10x( ) 2 +10x( ) 2 = Donde el 10 representa el numero de replicas por tratamiento (o tipo de envase); el 31 es el promedio del envase A, el 41.3 es el promedio del envase B y el 43.3 es el promedio del envase C. Los grados de libertad son el numero de tratamientos menos uno, es decir cada tipo de envase es un tratamiento por consiguiente son 3 le restamos uno y obtenemos dos grados de libertad (3-1=2). Suma de Cuadrados Del Error (SC ERROR ): mide la variabilidad que no es debida a las diferencias entre tipo de envase o tratamientos es la variabilidad interna en los tratamientos o envases, en esta variabilidad se incluye la variabilidad de errores de medición, de experimentador o cualquier fuente externa al experimento. Los cálculos se efectúan de la siguiente manera, (23-31) 2 +.+(36-31) 2 +( ) 2 + +( ) 2 +( ) ( ) 2 =

4 El calculo de sus grados de libertad son el total de datos menos el numero de tratamientos, en este caso, es 30-3=27. Finamente, notemos que SC TOTAL = SC TRATAMIENTO + SC RESIDUAL, es decir = CUADRADOS MEDIOS Una vez obtenidos las sumas de cuadrados se procede a obtener los cuadrados medios, el primero es el Cuadrado Medio de los Tratamientos (CM TRATAMIENTOS ), el cual se obtiene dividiendo la SC TRATAMIENTOS entre sus grados de libertad, como se muestra a continuación CM TRATAMIENT OS SC TRATAMIENTOS a Donde a es el numero de tratamientos o envases. El segundo es el Cuadrado Medio del Error (CM error ), que se obtiene dividiendo la suma de cuadrados del error entre sus grados de libertad, su cálculo se efectúa así, CM ERROR SC ERROR N a Donde N es el total de datos y a es el numero de tratamientos OBTENCION DE LA F CALCULADA O DE LA La F-calculada o la F 0, se obtiene al dividir el cuadrado medio del tratamiento en tre el cuadrado medio del error, como se muestra a continuación, F CM CM TRATAMIENT O 0 ERROR F

5 2.4.4 OBTENCION DE LA F DE TABLAS F(tablas) En las tablas de la distribución F de Fisher (apéndice) podemos ver que para un 0.05 con 2 grados de libertad en el numerador y 27 grados de libertad en el denominador se tiene que el valor de la F(tablas) es COMPARACION DE LA Fo CON LA F(tablas) Si el valor de la Fo es mayor que el valor de la F(tablas) entonces se rechaza la hipótesis nula, en los resultados se puede ver que Fo=7.647>F(tablas)=3.35, entonces podemos concluir que si existen diferencias en los tipos de envase. En otras palabras el tipo de envase si influye en la duración de un producto alimenticio. Todos los resultados anteriores se pueden ver en la tabla 2.2, llamada Tabla de Análisis de Varianza. Fuente Suma de Cuadrados Gl Cuadrado Medio Razón-F Valor-P EFECTOS PRINCIPALES P(F=7.65) A:ENVASE RESIDUOS TOTAL (CORREGIDO) Tabla 2.2 Tabla de Análisis de Varianza, usando el programa Statgraphics Centurion XV Nótese que el análisis de varianza (Tabla 2.2) solo indica que si existen diferencias entre los envases, pero no establece, ni propone, cual es mejor envase de los tres. Para ello se requiere hacer un análisis complementario conocido como Prueba de Rangos Múltiples. La prueba de rangos múltiples, es un conjunto de métodos, los cuales consisten en comparación de pares de medias de los tratamientos. Entre esos métodos, se pueden mencionar, el Método de la Mínima Diferencia Significativa (LSD), el método de la Máxima Diferencia significativa (HSD), y el método de Duncan, entre otros. 2.5 COMPARACIÓN DE PAREJAS DE MEDIAS DE TRATAMIENTOS Existen varios métodos de comparación de tratamientos, los cuales consisten en comparar todas las medias de tratamientos, uno de los más usuales es Método de la Mínima Diferencia Significativa 25

6 (LSD, del inglés least significant difference). Supongamos que después de haber rechazado la hipótesis nula, con base en una prueba F de análisis de varianza, se desea probar todas las posibles comparaciones de medias de los tratamientos. Para ello se realizan el siguiente procedimiento 1. Se calcula el valor del LSD mediante la siguiente formula, cuando el numero de replicas por nivel o tratamiento es el mismo, es decir n 1 =n 2 = n LSD= t /2,N-a 2 CM ERROR n Donde t /2 (N-a) es la t-student con un nivel de confianza y N-a grados de libertad; CM error es el cuadrado medio del error del análisis de varianza. En el ejemplo el valor del LSD es, t CM 2( ) n 10 Error LSD= (, ). 2 2 N a Donde el valor de t /2 (N-a) se obtuvo analizando las tablas de la distribución t-student, para un nivel de confianza =0.05 y 27 grados de libertad. 2. Se calculan las medias de los tratamientos Tipo de envase Media A 31 B 41.3 C Se calculan el valor absoluto de las diferencias de medias de todos los tratamientos El envase A con el envase B El envase A con el envase C El envase B con el envase C 26

7 Comparación del valor absoluto de la diferencia las medias de los tratamientos con el valor del LSD * > 6.92, por lo tanto el tipo de envase A es diferente al tipo de envase B * >6.92, por lo tanto el tipo de envase A es diferente al tipo de envase C * <6.92, por consiguiente no hay diferencias entre los envases B y el C 5. Conclusión: De acuerdo a los resultados anteriores podemos concluir que el tipo de envase A es el menos recomendable, ya que presenta menor promedio que los otros dos, por consiguiente se puede decidir por cualquiera de los dos tipos de envase restantes, es decir el tipo B o el tipo C, ya que en ellos no se encontraron diferencias. La salida de los resultados usando el programa de estadística Statgraphics versión Centurion, se puede ver en la tabla 2.3, ENVASE Casos Media Grupos Homogéneos A X B X C X Contraste Sig. Diferencia +/- Límites A - B * A - C * B - C * indica una diferencia significativa. Tabla 2.3 Prueba de comparación LSD Una gráfica representativa de esto resultados es la gráfica de medias. En la figura 2.1 se puede ver la grafica de medias de ejemplo del tipo de envase. Nótese que esta gráfica, se puede establecer que no hay diferencias entre el tipo de envase B y el envase C. De hecho, si se opta por usar el envase C se esperarían promedios entre y 46.76, mientras que si se decide por el envase B se esperarían promedios entre y (ver tabla 2.4). 27

8 DIAS Medias y 95.0% de Fisher LSD A B C ENVASE Figura 2.1 Graficas de medias, método LSD Error Est. ENVASE Casos Media (s agrupada) Límite Inferior Límite Superior A B C Total Tabla 2.4 Tabla de medias 2.6 SUPUESTOS Algo fundamental en el análisis de varianza son los supuestos de los residuales, los cuales deben cumplir con tres: 1.- Los residuales deben ser independientes 2.- Los residuales deben tener varianza constante 3.- Los residuales se distribuyen normal. Si alguno de esos tres no se cumple es suficiente para invalidar el Análisis de Varianza. Para checar estos tres supuestos se deben calcular primeramente los residuales mediante la siguiente formula: e ij y ij y i. Donde y i. y i. n es el promedio del i-ésimo tratamiento. Los residuales para el ejemplo de los envases están en la tabla 2.5, 28

9 residual Envase A Envase B Envase C 23-31= = = = = = = = = = = = = = = = = = = = = = = = = = = = = =-9.3 Tabla 2.5 Residuales para el ejemplo de los envases SUPUESTO DE VARIANZA CONSTANTE (PRUEBA GRAFICA) Para checar el supuesto de varianza constante, es necesario realizar una grafica tipo x-y, en la cual en el eje x se colocan los niveles o tratamientos y en el eje y los residuales correspondientes a cada tratamiento como se ilustra en la grafica de la figura 2.2, Residual Plot for DURACION A B C ENVASE Figura 2.2 Grafica de verificación de la varianza constante En la figura 2.2 se presentan gráficamente los niveles del factor contra los residuales. La interpretación de esta gráfica consiste en analizar los patrones o tendencias de comportamiento en los puntos graficados. La variación de los puntos para cada uno de los niveles A, B y C no debe presentarse diferencias. No se debe distinguir la presencia de un embudo. En la figura 2.2 no se 29

10 presenta patrón inusual por lo que podemos concluir que si se cumple el supuesto de varianza constante VERIFICACION DE VARIANZA CONSTANTE (PRUEBA ESTADISTICA) Existen varias pruebas estadísticas para verificar la igualdad de varianzas, en el statgraphics podemos encontrar 4 pruebas, entre las que destacan las siguientes: Prueba de Cochran: Compara la varianza máxima dentro de la muestra a la varianza promedio dentro de la muestra. Prueba de Bartlett: Compara un promedio ponderado de las varianzas dentro de la muestra a su media geométrica. Prueba de Harley: Calcula la proporción de la varianza muestral más grande a la varianza muestral más pequeña. Prueba de Levene: Ejecuta un análisis de varianza en desviaciones absolutas de las observaciones de sus medias muestrales. Los resultados usando la Prueba de Levene, se pueden observar en la tabla 2.6, donde se puede ver que el valor de p= es menor que un valor de significancia dado 0.05, indicando con esto, que no existen diferencias significativas entre las varianzas, con lo que comprobamos la varianza constante. Verificación de Varianza Prueba Valor-P Levene's Tabla 2.6 Verificación de la varianza de los tratamientos 30

11 2.6.2 SUPUESTO DE INDEPENDENCIA Para checar el supuesto de independencia se requiere tener el orden de corrida experimental, como se muestra a continuación: ORDEN DE ENVASE RESIDUAL CORRIDA 1 A -8 2 B C A -3 5 B B C A C B B A C A 4 15 B C C A C B A 6 22 C B A C B A 1 28 C B A 5 Y en seguida graficarlos como se muestra a continuación: 31

12 residual Residual Plot for DIAS row number RESIDUALES VS ORDEN DE CORRIDA (O SECUENCIA DE TIEMPO) Figura 2.3 Verificación de la independencia de los residuales En la figura 2.3 se presenta gráficamente el número de corrida contra el valor del residual. En esta gráfica no se debe presentar ningún tipo de patrón de comportamiento, los puntos deben verse completamente dispersos. De acuerdo a esta gráfica se puede concluir que si se cumple el supuesto de independencia SUPUESTO DE NORMALIDAD Un procedimiento útil consiste en construir una gráfica de probabilidad normal de los residuos. Una gráfica de este tipo es la representación de la distribución acumulada de los residuos sobre papel de probabilidad normal, en otras palabras, es papel para gráficas cuya escala de ordenadas es tal que la distribución normal acumulada sea una recta. Para construir una gráfica de probabilidad normal se hace el siguiente procedimiento: 1. Se ordenan los residuos en orden ascendente: RESIDUALES ORDENADOS

13 percentage A cada residuo se le calcula su punto de probabilidad acumulada mediante la siguiente formula: K e ( k 0. 5 ) K K ij P k e ( k 0. 5 ) ij P k ( k 0. 5 ) P k N eij P k ( k 0. 5 ) 3. Se grafican en el eje de las X's y los ( k 0. 5 ) en el eje de las Y's, como se muestra la figura 2.4 e ij P k 30 Normal Probability Plot for RESIDUALS RESIDUALS Figura 2.4 Grafico de probabilidad normal para los residuos En está gráfica se puede ver que la mayoría de los puntos se ajustan a la línea recta, lo que significa que los residuales si cumplen el supuesto de normalidad. 33

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

no paramétrica comparar más de dos grupos de rangos (medianas)

no paramétrica comparar más de dos grupos de rangos (medianas) Kruskal-Wallis Es una prueba no paramétrica de comparación de tres o más grupos independientes, debe cumplir las siguientes características: Es libre de curva, no necesita una distribución específica Nivel

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Elementos de Diseño de Experimentos

Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Porfirio Gutiérrez González Lizbeth Díaz Caldera María de Jesús Guzmán Sánchez Autores: Porfirio Gutiérrez González Lizbeth Díaz

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

bloques SC Suma de Cuadrados k trat bloques

bloques SC Suma de Cuadrados k trat bloques Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza

Más detalles

Curso: POBLACIÓN Y DESARROLLO Conferencia 4

Curso: POBLACIÓN Y DESARROLLO Conferencia 4 Tema 2. Dinámica y perspectivas de la población. Sumario: La mortalidad. Continuación... - El método de tipificación. Conceptos y razones para su uso. Tipos de métodos de tipificación. - La tipificación

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

Unidad 7: Muestreo de aceptación

Unidad 7: Muestreo de aceptación Unidad 7: Muestreo de aceptación Cap 12. Gutiérrez Liliana Recchioni Unidad 7: 7.1. Tipos de planes de muestreo. 7.2. Variabilidad y curvas características (CO). 7.3. Diseño de un plan de muestreo simple

Más detalles

Inversión en condiciones de riesgo, riesgo y rendimiento

Inversión en condiciones de riesgo, riesgo y rendimiento Los barcos no están hechos más que de tablas, los marineros no son más que hombres; hay ratas de tierra y ratas de agua; Ladrones de tierra y Ladrones de agua; quiero decir piratas. Además existe el peligro

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

CAPÍTULO IV. Resultados. Este capítulo tiene como objetivo exponer al lector los resultados obtenidos

CAPÍTULO IV. Resultados. Este capítulo tiene como objetivo exponer al lector los resultados obtenidos Capítulo IV Resultados 33 CAPÍTULO IV Resultados Este capítulo tiene como objetivo exponer al lector los resultados obtenidos del estudio que se realizó a través de la recopilación de datos de los cinco

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

Todos los sistemas eléctricos de distribución están

Todos los sistemas eléctricos de distribución están Coordinación de protecciones en configuración Anillo utilizando ETAP *Por: Ing. Rafael Franco Manrique 1. Introducción Todos los sistemas eléctricos de distribución están expuestos a fallas o eventos,

Más detalles

IX.- ANÁLISIS DE VARIANZA

IX.- ANÁLISIS DE VARIANZA IX- ANÁLISIS DE VARIANZA Las técnicas de Diseño Experimental basadas en la estadística son particularmente útiles en el mundo de la Ingeniería en lo que corresponde a la mejora del rendimiento de los procesos

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Capítulo 4 Exploración del ambiente.

Capítulo 4 Exploración del ambiente. Capítulo 4 Exploración del ambiente. Para explorar el ambiente se tomó como base el vehículo explorador de Braitenberg, la idea es tomar este comportamiento y adaptarlo al uso de una cámara de video, esto

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA 8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA El proceso de control se fundamenta en el principio de excepción, que determina la imposibilidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Diseño Asistido por Computadora Ingeniería Industrial Clave de la asignatura: (Créditos) SATCA 1 OPN-1307 0-6-6 2.- PRESENTACIÓN Caracterización

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

BANCO DE MEXICO En su carácter de Agente Financiero del I P A B

BANCO DE MEXICO En su carácter de Agente Financiero del I P A B BANCO DE MEXICO En su carácter de Agente Financiero del I P A B DESCRIPCION TECNICA DE LOS BONOS DE PROTECCIÓN AL AHORRO QUE EMITE EL INSTITUTO PARA LA PROTECCIÓN AL AHORRO BANCARIO 1. INTRODUCCION El

Más detalles

MEDIDAS DE DISPERSIÓN

MEDIDAS DE DISPERSIÓN CAPÍTULO 15 MEDIDAS DE DISPERSIÓN En el capítulo anterior se estudiaron las medidas de tendencia central, que son un indicador de cómo los datos se agrupan o concentran en una parte central del conjunto.

Más detalles

Prueba de hipótesis Por Tevni Grajales

Prueba de hipótesis Por Tevni Grajales Prueba de hipótesis Por Tevni Grajales Antes de entrar en el tema de esta sección, quisiera que me permitieran hacer un breve repaso de algunas de las cosas que hemos considerado en temas anteriores, como

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

Tema 7: Modelos de diseños de experimentos

Tema 7: Modelos de diseños de experimentos Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso

Más detalles

LS5168 Gestión de Proyectos Tecnológicos Juan Antonio Maestro / Javier García. La etapa de Control. Curso 2009-2010

LS5168 Gestión de Proyectos Tecnológicos Juan Antonio Maestro / Javier García. La etapa de Control. Curso 2009-2010 La etapa de Control Curso 2009-2010 Qué es el Control? El control es la etapa en la que se verifica que el desarrollo del proyecto está en línea con el Plan de Proyecto generado en la etapa de Planificación.

Más detalles

11. PRUEBAS NO PARAMÉTRICAS

11. PRUEBAS NO PARAMÉTRICAS . PRUEBAS NO PARAMÉTRICAS Edgar Acuña http://math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ PRUEBAS NO PARAMÉTRICAS Se estudiarán las pruebas noparamétricas, las cuales

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 13 de agosto

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 Departamento de Pruebas Nacionales División de Evaluación de Logros de Aprendizaje AGENCIA DE CALIDAD DE LA EDUCACIÓN Índice 1.

Más detalles

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6.1 INTRODUCCION El aumentar el numero de factores en un diseño 2 k crece rápidamente el numero de tratamientos y por tanto el numero de corridas experimentales.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Repartido de Ciencias. Conceptos Básicos.

Repartido de Ciencias. Conceptos Básicos. Repartido de Ciencias. Conceptos Básicos. Concepto de MAGNITUD: cantidad física que se utiliza para expresar Leyes. Esta cantidad se define cuando se han establecido un conjunto de procedimiento o recetas

Más detalles

CAPITULO III PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS

CAPITULO III PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS CAPITULO III PRESENTACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS A continuación se presentan los cuadros estadísticos, gráficos acerca de la capacidad y los factores asociados a la resiliencia, estudiados

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc.

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. Objetivo: Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. CALC: MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central sirven como puntos de

Más detalles

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una TEST DE HIPÓTESIS Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una provincia según un indicador: mortalidad de recién nacidos con peso 1.000 gr. Supongamos, como ejemplo,

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo.

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. Mediante el modelo de Hertz o Simulación de Montecarlo, trataremos

Más detalles

DISEÑOS EXPERIMENTALES

DISEÑOS EXPERIMENTALES CAPITULO I DISEÑOS EXPERIMENTALES 1.1 ASPECTOS GENERALES El Diseño de Experimentos tuvo su inicio teórico a partir de 1935 por Sir Ronald A. Fisher, quién sentó la base de la teoría del Diseño Experimental

Más detalles

Comparaciones múltiples

Comparaciones múltiples Capítulo 3 Comparaciones múltiples 3.. ntroducción En este capítulo explicaremos algunas técnicas para analizar con mayor detalle los datos de un experimento, con posterioridad a la realización del Análisis

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Notas del curso de Introducción a los métodos cuantitativos

Notas del curso de Introducción a los métodos cuantitativos Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una

Más detalles

www.atalayadecristo.org

www.atalayadecristo.org Marzo 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo

Más detalles

Encuesta de. Ocupación Hotelera

Encuesta de. Ocupación Hotelera Encuesta de Ocupación Hotelera - 1-1. Contenido 1. Contenido... 1 2. Introducción... 2 3. Resumen Ejecutivo... 2 4. Objetivos del Estudio... 3 4.1. General... 3 4.2. Específicos... 3 5. Distribución de

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas UNIVERSIDD DON OSO DEPRTMENTO DE IENIS SI LORTORIO DE FISI SIGNTUR: FISI TENI I. OJETIVO GENERL LORTORIO 2: VETORES Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares

Más detalles

Contabilidad de Costos

Contabilidad de Costos Contabilidad de Costos 1 Sesión No. 4 Nombre: Control y Evaluación de los Elementos del Costo Contextualización Qué es la valuación de inventarios? Los inventarios es uno de los conceptos más importantes

Más detalles

08/10/2008. 1.Introducción

08/10/2008. 1.Introducción Herramientas de la Metrología en Sistemas de Calidad Seminario Aseguramiento de la Calidad de las Mediciones en los Procesos Industriales Sr. Rodrigo Ramos P. - Jefe LCPN-ME Rodrigo Miércoles Ramos 8 de

Más detalles

ESTIMACIÓN DEL RIESGO AL USAR MÉTODOS DE EVALUACIÓN ERGONÓMICA DE PUESTOS DE TRABAJO.

ESTIMACIÓN DEL RIESGO AL USAR MÉTODOS DE EVALUACIÓN ERGONÓMICA DE PUESTOS DE TRABAJO. ESTIMACIÓN DEL RIESGO AL USAR MÉTODOS DE EVALUACIÓN ERGONÓMICA DE PUESTOS DE TRABAJO. : M.C. Francisco Octavio López Millán, M.C. Enrique Javier de la Vega Bustillos. M.C. Martha E. Díaz Muro. Profesores

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

SIIGO WINDOWS. Proceso de Recupera. Cartilla I

SIIGO WINDOWS. Proceso de Recupera. Cartilla I SIIGO WINDOWS Proceso de Recupera Cartilla I Tabla de Contenido 1. Presentación. 3 2. Proceso de Recupera... 4 Presentación El presente documento ofrece una explicación sencilla acerca de la ejecución

Más detalles

DIAGNÓSTICO DEL TRANSPORTE URBANO EN CHILE

DIAGNÓSTICO DEL TRANSPORTE URBANO EN CHILE DIAGNÓSTICO DEL TRANSPORTE URBANO EN CHILE ANÁLISIS E INDICADORES PARA 28 CIUDADES CHILENAS FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL INDUSTRIAL UNIVERSIDAD DIEGO PORTALES, Junio de 2012 Vergara

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

VIABILIDAD Y GESTIÓN ECONÓMICA DE LOS PROGRAMAS DE ACTUACIÓN INTEGRADA

VIABILIDAD Y GESTIÓN ECONÓMICA DE LOS PROGRAMAS DE ACTUACIÓN INTEGRADA MASTER EN PLANIFICACIÓN TERRITORIAL, MEDIOAMBIENTAL Y URBANA VIABILIDAD Y GESTIÓN ECONÓMICA DE LOS PROGRAMAS DE ACTUACIÓN INTEGRADA 2.- VIABILIDAD ECONÓMICA DE PROYECTOS URBANOS Abril 2009 Sara Mur Estada

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular Ejercicio muestral para corroborar la autenticidad de las firmas en las solicitudes de Consulta Popular El artículo 33 de la Ley General de Consulta Popular establece lo siguiente: Artículo 33. El Instituto,

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2012/01/27 Revisión No. 1 AC-DO-F-8 Página 1 de 3 ESTADÍSTICA DESCRIPTIVA CÓDIGO 14241 PROGRAMA TECNOLOGÍA EN CONTABILIDAD Y TRIBUTARIA ÁREA DE FORMACIÓN CIENCIAS

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A.

GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A. GUIA FACIL PARA EL CALCULO DEL ESTADO DE CUENTA BANCO DE FINANZAS S.A. 1. Calculo del pago de contado: a. Al saldo anterior. b. Súmele los consumos, débitos del mes y los intereses generados en el corte

Más detalles

Pruebas t para muestras pareadas

Pruebas t para muestras pareadas AGRO 55 LAB 1 Pruebas t para muestras pareadas PARTE I. Incluya en cada caso todos los pasos necesarios para probar las hipótesis correspondientes, una gráfica con t tab (t crítico), el cálculo del t obs

Más detalles

PRÁCTICA 3 EJERCICIOS RESUELTOS

PRÁCTICA 3 EJERCICIOS RESUELTOS PRÁCTICA 3 Un estadístico podría meter su cabeza en un horno y sus pies en hielo, y decir que en promedio se encuentra bien. EJERCICIOS RESUELTOS EJERCICIO 1 Los psicólogos que trabajan en un Centro de

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

2ª PRUEBA 26 de febrero de 2016

2ª PRUEBA 26 de febrero de 2016 2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el

Más detalles

Medir con cámaras infrarrojas

Medir con cámaras infrarrojas El pie diabético es una degeneración de la estructura vascular de los pies. Surge a partir de que se produce un engrosamiento vascular y el flujo sanguíneo se atrofia. Con el paso del tiempo se forman

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD CICLO: I-2015 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Control Estadístico parte I Entorno Lugar de Ejecución:

Más detalles

ORGANIZACIÓN DE DATOS

ORGANIZACIÓN DE DATOS CAPÍTULO 13 ORGANIZACIÓN DE DATOS Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección de datos, para lo cual se emplean

Más detalles

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los

Más detalles

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

Sesión No. 7. Contextualización. Nombre: Sistemas de ecuaciones lineales

Sesión No. 7. Contextualización. Nombre: Sistemas de ecuaciones lineales Matemáticas 1 Sesión No. 7 Nombre: Sistemas de ecuaciones lineales Contextualización En un principio debemos de saber que en realidad para resolver adecuadamente un sistema de ecuaciones lineales consideremos

Más detalles