ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2"

Transcripción

1 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal. Por ejemplo tenemos la ecuación 2X + 3Y = 60 en donde X, Y >= 0 Es decir que para que se cumpla la igualdad de la ecuación nos tocaría adquirir 15 unidades de X y 10 unidades de Y respectiva mente: 2(15) + 3(10) = 60 Y la solución se daría por la misma línea recta. Pero por otra parte si en la ecuación no se quiere llegar a la totalidad del resultado se dará la ecuación en una forma diferente llamada inecuación: 2X + 3Y <= 60 en donde X, Y >= 0 Dándose como solución factible un área sombreada que depende del signo de la desigualdad. Si el signo es el <= la solución será el área inferior esa se sombreará 1

2 o si por el contrario el sigo es >= el área a sombrear será la de todos los puntos por encima de la línea obtenida. En la anterior grafica la solución más factible es la de los puntos más cerca del eje X (bajo la recta de la solución lineal ya que la ecuación es precedida por el signo >=. DEFINICION Y CONCEPTO GENERAL DE METODO GRAFICO Ahora se considerara la forma en que se pueden resolver problemas de tipo lineal, en donde la función dada se tendrá que maximizar o minimizar. Una función lineal en x y y tiene la forma: Z = ax + by Donde a y b son constantes. También se requerirá que las restricciones correspondientes estén representadas mediante un sistema de desigualdades lineales o ecuaciones en x y en y y que todas las variables sean no negativas. A un problema en el que intervienen todas estas condiciones se le denomina problema de programación lineal. La programación lineal fue desarrollada por George B. danzing a fines de la década de 1940 y se utilizo primero en la fuerza aérea de losa estados unidos 2

3 como auxiliar en la toma de decisiones. En la actualidad tiene amplia aplicación en el análisis industrial y económico. En un problema de programación lineal a la función que se desea maximizar o minimizar se le denomina función objetivo. Aunque por lo general existe una cantidad infinitamente grande de soluciones para el sistema de restricciones (a las que se denomina soluciones factibles o puntos factibles), el objetivo consiste en encontrar una de esas soluciones que represente una solución óptima (es decir una solución que del valor máximo o mínimo de la fusión objetivo). En conclusión con lo que acabamos de revisar en la parte anterior sobre las inecuaciones nos da para definir literalmente el método grafico y el método algebraico dentro del ámbito de la programación lineal. Entonces el método grafico en la programación lineal es simplemente sacar de una situación (problema) ecuaciones lineales y convertirlas en desigualdades o inecuaciones para poder graficarlas y así sacar la región mas optima dependiendo del signo de la desigualdad esa área se sombreara y esa será la solución mas optima del problema. PASOS PARA LA SOLUCION POR EL METODO GRAFICO Para llegar a una solución óptima en el método grafico se requiere seguir con una serie de pasos que podemos dar a continuación: 1. formulación del problema El primer paso para la resolución por método grafico es expresar el problema en términos matemáticos en el formato general de la programación lineal (desigualdades) con un solo fin maximizar la contribución a la ganancia. 2. graficar las restricciones El próximo paso de la solución por método grafico es la graficación de las restricciones en el plano cartesiano para establecer todas las posibles soluciones.3. obtención de la solución optima: 3

4 para encontrar la solución óptima, se grafica la función objetivo en la misma gráfica de las restricciones. Se graficara siempre la función objetivo del problema y se dará la solución de acuerdo con el símbolo que este presente en las restricción de la función objetivo. EJEMPLO: Maximizar la función objetivo: Z= 3x + y Sujeto a las restricciones: 2x + y <= 8 2x + 3y <= 12 x, y >= 0 A continuación graficamos las desigualdades planteadas en las restricciones así: 2x + y <= 8 x=0; y=8 x=0; x=4 2x + 3y <= 12 x=0; y=4 y=0; x=6 x, y>= 0 4

5 Se observa que la región factible esta conformada por los puntos A(0,0); D(0,4); B(4,0) y el punto C que es el resultado de la intersección de las 2 inecuaciones cuyo valor aproximadamente en el plano esta dado por las coordenadas (3,2). Ahora bien el problema solicita la maximización de Z = 3x + y que se obtiene precisamente en el punto C(3,2). METODO ALGEBRAICO INTRODUCCIÓN En ocasiones nos encontramos con problemas de índole magnitud, a los cuales se desea maximizar o minimizar una función sujeta a ciertas restricciones. Muchas personas califican al método algebraico, como uno de los métodos más importantes en el campo de la programación lineal. En la actualidad es una herramienta común, que se ha prestado para resolver problemas de gran magnitud; por su simplicidad, sencillez y estilo de uso cientos de empresas, compañías de todo el mundo han ahorrado miles y miles de pesos. 5

6 En este capitulo se tratara la formulación de problemas utilizando el método algebraico para la solución de problemas de programación lineal. Se hace un enfoque a la variedad de aplicaciones del método para que el estudiante interesado pueda tener una visión y ejercitar sus conocimientos. El método algebraico contempla en su desarrollo al método grafico y de la misma manera el método grafico no estaría completo sin la rigurosidad del método algebraico pues la apreciación visual que da el grafico en la solución óptima puede estar sujeta a error por parte del analista. PASOS PARA UTILIZAR EL METODO ALGEBRAICO Dado que tenemos un problema de dos variables, podemos graficar las soluciones posibles y comprender algunos puntos interesantes respecto a las relaciones lineales. Veremos la siguiente manera de obtener gráficamente las soluciones al problema planteado y luego veremos como obtenerlas algebraicamente. 1. Exprésense los datos del problema como una función objetivo y restricciones. 2. Graficar las restricciones. 3. Definir el conjunto factible. 4. Encontrar la solución óptima EJEMPLOS DESARROLLADOS A continuación se presentan el análisis algebraico y grafico de algunos problemas de programación lineal: PROBLEMA 1: Supóngase una compañía fabrica 2 tipos de artefactos, manuales y eléctricos. Cada uno de ellos requiere en su fabricación el uso de 3 maquinas: A, B y C. un artefacto manual requiere del empleo de la maquina A durante 2 horas, de una 1 en B y una 1 en C, un artefacto eléctrico requiere de 1 hora en A, 2 horas en B y 1 hora en C. supóngase además que el numero máximo de horas disponible por 6

7 mes para el uso de las tres maquinas es 180, 160 y 100, respectivamente. La utilidad que se obtiene con los artefactos manuales es de 4000 pesos y de 6000 pesos para los eléctricos. Si la compañía vende todos los artefactos que fábrica, Cuántos de ellos de cada tipo se deben elaborar con el objeto de maximizar la utilidad mensual? A B C UTILIDAD MANUALES(X) ELECTRICOS(Y) HORAS DISPONIBLES SOLUCIÓN: 1.Paso: Planteamos la función objetivo y las restricciones correspondientes: MAX Z= 4000X Y SUJETO A: 2X + Y <= 180 X + 2Y <= 160 X + Y <= Paso: Elaboramos el gráfico correspondiente a las restricciones con el fin de precisar la región factible y determinar los puntos que la conforman: 2X + Y <= 180 X=0 Y= 180 Y=0 X= 90 X + 2Y <= 160 X=0 Y=80 Y=0 X=160 X + Y <= 100 X=0 Y=100 Y=0 X=100 7

8 3. Paso: Resolvemos el sistema de ecuaciones para determinar las coordenadas del punto B y C así: Para B: X + 2Y <= 160 Para C: 2X + Y <= 180 X + Y <= 100 Y= 60 X = 80 X= 40 Y = 20 4.Paso: Con los puntos de la región factible: O(0,0) ; B(40,60) ; C(80,20) ; A(0,80); D(90,0) Maximizamos la función objetivo : MAX Z = 4000x y (0,0) 4000(0) (0) = 0 (0,80) 4000(0) (80) = (40,60) 4000(40) (60)= (90,0) 4000(90) (0) = Paso: La solución para el problema está representada por la fabricación de 40 artefactos manuales y 60 artefactos eléctricos generando una máxima utilidad de $ METODO SIMPLEX 8

9 En las lecciones anteriores vimos como resolver problemas de programación lineal a través del método grafico y el método algebraico, surgen grandes limitaciones a la hora de trabajar con estos dos métodos, es decir que no es posible darle óptima solución a un problema. Esto se debe a que el método grafico no resulta práctico cuando el número de variables se aumenta a tres, y con más variables resulta imposible de utilizar. Por otra parte el método algebraico tarda demasiado tiempo aun para problemas de pocas variables y restricciones. El mejor método para resolver un problema de programación lineal es el método simplex, ya que es un método de fácil aplicación, de tipo algorítmico y conduce a una eficiente solución del problema. PASOS PARA EL DESARROLLO DEL METODO SIMPLEX Elaborar la tabla simplex inicial. Existen cuatro variables de holgura, S1, S2, S3, y S4; una para cada restricción. 1. Si todos lo indicadores del último renglón son no negativos, entonces Z tiene un máximo cuando X1=0, X2=0 y X3=0. El valor máximo es 0. Si existen indicadores negativos, localizar la columna en la que aparezca el indicador más negativo. Esta columna señala la variable entrante. 2. Dividir cada uno de los elementos de la columna de b que se encuentran por encima de la recta punteada entre el correspondiente elemento de la columna de 9

10 la variable entrante. Se debe realizar esta división solo en los casos en los que el elemento de la variable que entra sea positivo. 3. Encerrar en un círculo el elemento de la columna de la variable entrante que corresponde al menor cociente del paso 3. Este es un elemento pivote. La variable saliente es la que se encuentra al lado izquierdo del renglón del elemento pivote. 4. Utilizar operaciones elementales sobre renglones para transformar la tabla en otra tabla equivalente que tenga un 1 en donde se encuentra el elemento pivote y 0 en las demás posiciones de esa columna. 5. La variable entrante debe reemplazar a la variable saliente en el lado izquierdo de esta nueva tabla. 6. Si todos los indicadores de la tabla nueva son no negativos, ya se tiene una solución óptima. El valor máximo de Z es el elemento del último renglón y la última columna. Ocurre esto cuando las variables se encuentran del lado izquierdo de la tabla son iguales a lo elementos correspondiente de la última columna. Todas las demás variables son ceros. Si cuando menos uno de los indicadores es negativo, se debe repetir el mismo proceso con la nueva tabla, comenzando con el paso 2. EJEMPLOS DESARROLLADOS EJEMPLO 1 Maximizar Z= 5X1+4X2 Sujeto a: X1+X2 <= 20 2X1+X2 <= 35-3X1+X2 <= 12 X1>=0, X2>=0 Este problema de programación lineal se ajusta a la forma normal. La tabla simplex inicial es: 10

11 El indicador mas negativo, -5, aparece en la columna x1. Por ello, x1 es la variable entrante. El menor cociente es 17.5, de modo que, S2 es la variable saliente. El elemento pivote es 2. Utilizando operaciones elementales sobre los renglones para obtener un 1 en la posición del pivote y 0 en las demás posiciones de esa columna, se tienen: La nueva tabla es: 11

12 Obsérvese que en el lado izquierdo, x1 reemplazó a S2. Ya que -3/2 es el indicador más negativo se debe continuar con el proceso. La variable entrante es ahora x2. El menor cociente es 5. De modo que S1 es la variable saliente y ½ es el elemento pivote. Utilizando operaciones elementales sobre renglones, se tiene: Usted podrá encontrar mas ejemplos desarrollados en el modulo. 12

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Unidad I: Programación Lineal

Unidad I: Programación Lineal Unidad I: Programación Lineal 1.1 Definición, desarrollo y tipos de modelos de investigación de operaciones Actualmente la administración está funcionando en un ambiente de negocios que está sometido a

Más detalles

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3 Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2 RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE 9.1.1 9.1.2 Para resolver una desigualdad con una variable, debes convertirla primero en una ecuación (un enunciado matemático con un signo = ) resolverla.

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

UNIDAD 6: SISTEMAS DE ECUACIONES

UNIDAD 6: SISTEMAS DE ECUACIONES UNIDAD 6: SISTEMAS DE ECUACIONES Continuamos con el estudio de la asignatura; ya hemos abordado cinco capítulos del programa de estudio: Los números reales, ecuaciones, desigualdades y algunas de las funciones

Más detalles

PROGRAMACIÓN LINEAL INGENIERÍA DE SISTEMAS FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA

PROGRAMACIÓN LINEAL INGENIERÍA DE SISTEMAS FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA Pág. 2 CRÉDITOS El módulo de estudio de la asignatura Programación Lineal del Programa Ingeniería de Sistemas es propiedad de la Corporación Universitaria Remington.

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

MATEMÁTICAS Versión impresa INECUACIONES

MATEMÁTICAS Versión impresa INECUACIONES MATEMÁTICAS Versión impresa INECUACIONES 1. INTRODUCCIÓN Imaginen que queremos abrir una nueva librería en el centro de la ciudad. Y que tenemos un presupuesto de 800 $ como máximo para comprar los libros.

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal.

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA UNIDAD CURRICULAR: INVESTIGACIÓN DE OPERACIONES PROFESOR: JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

PLE: Ramificación y Acotamiento

PLE: Ramificación y Acotamiento PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Inecuaciones. Objetivos

Inecuaciones. Objetivos 5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos 12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES Al inicio del Capítulo, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones como a

Más detalles

Teoría Tema 1 Sistema de inecuaciones - Programación lineal

Teoría Tema 1 Sistema de inecuaciones - Programación lineal página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver

Más detalles

Dirección de operaciones. SESIÓN # 2: Programación lineal

Dirección de operaciones. SESIÓN # 2: Programación lineal Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

2.3 Clasificación de modelos matemáticos.

2.3 Clasificación de modelos matemáticos. 2.3 Clasificación de modelos matemáticos. Qué es un modelo? Un modelo es una representación ideal de un sistema y la forma en que este opera. El objetivo es analizar el comportamiento del sistema o bien

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

SISTEMAS DE INECUACIONES LINEALES

SISTEMAS DE INECUACIONES LINEALES SISTEMAS DE INECUACIONES LINEALES I.- Grafique /3 +3 verifique si los siguientes puntos pertenecen o no a la recta: 1) (,) ) (,4) 3. (,) 4) (6,5) 5) (-3,) 6) (6,8) 7) (-6,) 8) (-9,5) Soluciones de Inecuaciones

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

II Concurso de Resolución de Problemas Curso

II Concurso de Resolución de Problemas Curso II Concurso de Resolución de Problemas Curso 2011-2012 Solución Solución del Problema de la distancia mínima. Hagamos una precisión preliminar sobre la distancia de un punto a una recta: En el plano, dados

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

CUESTIONARIO IO GRUPO: 204

CUESTIONARIO IO GRUPO: 204 CUESTIONARIO IO GRUPO: 204 1. Qué es la investigación de Operaciones? La Investigación de operaciones es un conjunto de técnicas matemáticas especialmente estructuradas para la torna de decisiones; en

Más detalles

Resolver desigualdades lineales - Preguntas del Capítulo. 2. Explique los pasos para graficar una desigualdad en una recta numérica.

Resolver desigualdades lineales - Preguntas del Capítulo. 2. Explique los pasos para graficar una desigualdad en una recta numérica. Resolver desigualdades lineales - Preguntas del Capítulo 1. Cómo se convierte una afirmación a una desigualdad? 2. Eplique los pasos para graficar una desigualdad en una recta numérica. 3. Cómo es la solución

Más detalles

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL Adriel R. Collazo Pedraja 2 INTRODUCCIÓN Este trabajo tiene como propósito proveer ayuda al estudiante para que pueda comprender y manejar más efectivamente

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

PLANIFICACIÓN UNIDAD 1 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases

PLANIFICACIÓN UNIDAD 1 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases PLANIFICACIÓN UNIDAD 1 MATEMÁTICA IV MEDIO BICENTENARIO CMO Aprendizajes esperados Indicador Habilidad Contenido Clases Reconocer los conjuntos numéricos y algunas de sus características. Reconocen la

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Unidad 2. Los números enteros.

Unidad 2. Los números enteros. Unidad 2. Los números enteros. Ubicación curricular en España: 6º Primaria, 1º ESO, 2º ESO. Objetos de aprendizaje: 2.1 Introducción a los números enteros. Expresar situaciones de la vida cotidiana en

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad Hoja de trabajo personal Nº 1. EVALUACIÓN INICIAL Uso de los signos de desigualdad. Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalos sobre la

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles