Tema 6: Transistores FET. Contenidos 6.1 Introducción 6.2 Clasificación 6.3 MOSFET 6.4 FET de Puerta de Unión 6.5 Efectos de Segundo Orden

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6: Transistores FET. Contenidos 6.1 Introducción 6.2 Clasificación 6.3 MOSFET 6.4 FET de Puerta de Unión 6.5 Efectos de Segundo Orden"

Transcripción

1 Tema 6: Trasistores FET. Coteidos 6.1 troducció 6. Clasificació 6.3 MOFET 6.4 FET de uerta de Uió 6.5 Efectos de egudo Orde 1

2 6.1 troducció Field Effect Trasistor, FET Trasistores de Efecto Camo Es ua familia formada or diferetes tios de trasistores u ricial característica: La modulació de la itesidad del disositivo e fució del camo eléctrico, ε alicado (E los trasistores biolares el cotrol de la itesidad C es a través de ) etajas frete a los trasistores biolares: - Ruido + medacia de Etrada, Z i. - Área + Facilidad de fabricació e itegració esvetajas frete a los trasistores biolares: - A

3 6. Clasificació FET e uerta Aislada, MOFET e uerta de Uió JFET Eriquecimieto elexió MEFET JFET Caal, NMO Caal, MO Caal, NMO Caal, MO N MEFET NFET FET 3

4 6.3 MOFET MOFET caal eriquecimieto (NMO de eriquecimieto) N+ W N+ L MO Metal olisilicio (ates Metal) Oxido (aislate) io emicoductor i, UTRA gate, uerta drai, dreador source, fuete bulk, sustrato isositivo de 4 Termiales = 0 (uerta Aislada) Tamaños geométricos: W Acho del Trasistor L Logitud del Trasistor 4

5 NMO de eriquecimieto U =0 N + N+ Los diodos o deseados, siemre debe de estar olarizados e iversa No existe osible camio de coducció ara los electroes etre el dreador y la fuete UTRA = 0 E geeral, esta situació ocurre si < Tesió umbral del Trasistor 5

6 NMO de eriquecimieto Qué ocurre si >? N + N+ e - e - e - e - U Zoa Lieal u Ohmica del Trasistor NMO > or defiició los e- se mueve de la fuete al dreador Observemos que la tesió > 0!! Esta es la característica ricial de u NMO de eriquecimieto or lo tato: 0 erá la tesió alicada la que os diga qué es la fuete y qué el dreador 6

7 Ecuacioes - del Trasistor NMO de eriquecimieto A artir de ahora y ara simlificar el estudio (y como ocurre ormalmete) la fuete y el sustrato estará cortocircuitados, = La carga libre que hay e el caal es: Q C Q 0 Cox ox t ox ox ( ) i [F/m ] ε ox Cte. dieléctrica del medio (io ) t ox Esesor del óxido J i ahora > 0 Q C ( ) A q q ; rof caal Q rof W caal Aq ox Q W Q W es la tesió e cada uto del caal d dy 7

8 Ecuacioes - del Trasistor NMO de eriquecimieto L QW dy 0 0 d dy C L ox W ( WC ox ( ) 0 ) d de dode odemos obteer la exresió fial de la itesidad: C ox W L k ( ' C C ox ox W L ) k Trascoductacia del roceso β Trascoductacia del disositivo W/L Razó de Asecto ( ) Ecuació de la Zoal Lieal del Trasistor NMO 8

9 Ecuacioes - del Trasistor NMO de eriquecimieto Es ua ecuació arabólica que alcaza u máximo ara u determiado = 0 E el máximo estamos e el uto de ich-off Qué está ocurriedo físicamete?: E el laboratorio sólo observamos la arte de la izquierda A 300A ich-off 00A 100A 0A

10 Ecuacioes - del Trasistor NMO de eriquecimieto i ahora < : ara calcular la e esta zoa, basta co derivar la exresió que ya coocemos co resecto e igualar a ( ) Zoa de aturació del Trasistor NMO La itesidad e esta regió o es 0 debido al gra camo eléctrico desde el uto de ich-off hasta el dreador 10

11 Cuadro de Ecuacioes - del Trasistor NMO de eriquecimieto Zoa de Corte Corte 0 io + + Zoa Lieal u Ohmica ( ) Ohmica io + + Zoa de aturació ( ) io

12 Curvas del Trasistor NMO de eriquecimieto 1

13 N NMO de delexió N E el roio roceso de fabricació se realiza ua zoa que ue y. ifusió hecha durate el roceso de fabricació Así, co ua tesió =0 ya existe caal Co = 0 existe regioes de delexió, ero aú existe u camio de coducció etre y ero si (egativa) etoces las regioes de delexió se solaa y o existe camio de coducció ( = 0) 13

14 NMO de delexió N + N+ ifusió hecha durate el roceso de fabricació Coclusió: El trasistor NMO de delexió fucioa exactamete igual que uo de eriquecimieto salvo que < 0 Las ecuacioes y zoas de oeració so las mismas (ma) 40 U () Ya hay caal formado U () () 14

15 MOFET de caal (MO) de eriquecimieto ímbolo + io + < 0 MOFET de caal (MO) de delexió ímbolo + + > 0 15

16 Cuadro de Ecuacioes - del Trasistor MO Zoa de Corte 0 Zoa Lieal u Ohmica ( Zoa aturació ) k ' k C ' W L ox + + Corte Ohmica aturació + + ( ) + + Regla Nemotécica NMO MO 16

17 6.4 JFET JFET Trasistor de efecto camo co uerta de uió (Juctio Field Effect Trasistor) MEFET, Metal-C-FET Existe tios JFET 17

18 MEFET + + Este disositivo arovecha la alta movilidad del Asa velocidad esidad de itegració meor La y el forma u diodo chottky (metal-), de forma que si está olarizada e iversa, bajo la uerta se crea ua regió de delexió. Esta regió de delexió modula la corriete que circula etre y Así, si <, el caal etre las regioes + o tedrá ortadores libres = 0 < 0 ara que la estructura fucioe correctamete el diodo chottky debe estar olarizado e iversa = 0 18

19 Cuadro de ecuacioes - del trasistor MEFET Zoa de Corte 0 Zoa Lieal u Ohmica ( ) tah Zoa de aturació ( ) tah 19

20 MEFET El arámetro α aarece debido a que e el Asa la movilidad o es costate sio que: μ = μ(ε) 0.3: El diodo chottky tiee ua d ~ 0.6. Así si < 0.6 =0 ara calcular el uto de oeració utilizaremos aroximacioes sucesivas: 1. Tomamos tah(α ) ~ 1. Resolvemos la ecuació, ecotrado 3. olvemos a calcular tah(α ).. E circuitos digitales, a veces se olariza e directo el diodo chottky = (, ) 0

21 JFET de Caal y N N N Caal N Caal 1

22 JFET de Caal, NFET Uió olarizada iversamete Caal e forma ua zoa de vaciamieto libre de ortadores de carga La secció del caal deede de la tesió U N Zoa de de aciamieto trasició i se itroduce ua cierta tesió la corriete or el caal deederá de

23 JFET de Caal, NFET (baja) U (baja) U El caal se estrecha U N U (baja) Etre y se tiee ua resistecia que varía e fució de 3

24 JFET de Caal, NFET U +U U =0. U =-1. U 1 U U N =-. U U El acho del caal deede tambié de la tesió asado u límite la corriete deja de crecer co Eso ocurre cuado se estragula el caal or el lado del dreador = Tesió de ich-off La tesió es equivalete a la de u MOFET ara u NFET < 0 y ara u FET > 0 4

25 Cuadro de ecuacioes - del trasistor NFET Zoa de Corte 0 Zoa Lieal u Ohmica ( ) Zoa de aturació ( ) W 4 L 3t N i ε i ermitividad del ilicio W, L, t acho, largo y esesor del caal 5

26 JFET de Caal, FET U +U U =0. N N U =-1. U 1 U U =-. U U 6

27 Cuadro de ecuacioes - del trasistor FET Zoa de Corte 0 Zoa Lieal u Ohmica ( ) Zoa de aturació ( ) W L 4 3t N i A ε i ermitividad del ilicio W, L, t acho, largo y esesor del caal 7

28 A veces, los fabricates esecifica de forma idirecta el valor de β, utilizado el arámetro. AT 0 (NFET) 8

29 Resistecia cotrolada or tesió e u FET i e u trasistor FET o MOFET cualquiera (suogamos u NFET) oerado e su Zoa Lieal hacemos ( ) 1 r 1 r O ( ) r r O Resistecia de alida r r O 1 ( ) 9

30 6.5 Efectos de egudo orde a) Efecto ustrato + + Hasta ahora hemos estudiado las ecuacioes co y cortocircuitados ero, qué sucede si o lo está? T La tesió umbral,, cambia: F F F otecial de Fermi, usualmete 0.3 Coeficiete de efecto sustrato, usualmete 0.3 1/ 30

31 6.5 Efectos de egudo orde b) Efecto Early o Modulació del Caal E aturació, el caal se corta ates de llegar al reador L~ L + + L L Las curvas de itesidad e zoa de aturació tiee ua ligera icliació hacia arriba Ese feómeo se uede modelar e las ecuacioes de saturació de la siguiete forma: ( ) 1 A A Tesió Early, usualmete etre 0 y 100 Tambié se defie: 1 A Factor de Modulació del Caal ( ) ; ro A A r r r O A 31

32 6.5 Efectos de egudo orde c) Tesió de Rutura Haciedo i < Z se roduce la rutura del diodo comieza a circular itesidad or avalacha + + Tesió de rutura or avalacha 3

33 6.5 Efectos de egudo orde d) Efectos de la Temeratura T ( T) ( ) T a( T T T O O ); 3/ a m /º K Hidalgo Lóez, José A.; Ferádez Ramos Raquel; Romero áchez, Jorge (014). Electróica. OCW-Uiversidad de Málaga. htt://ocw.uma.es. ajo licecia Creative Commos Attributio- NoCommercial-hare-Alike 3.0 ai 33

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor Tema 7. l trasistor Tema 7. l trasistor Objetivos: teder cualitativamete el fucioamieto de los trasistores de uió y de efecto camo. oocer alguas alicacioes de trasistores. hockley, ardee, rattai (1948)

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

Semiconductores. Dr. J.E. Rayas Sánchez

Semiconductores. Dr. J.E. Rayas Sánchez Semicoductores Alguas de las figuras de esta resetació fuero tomadas de las ágias de iteret de los autores del texto: A.R. Hambley, Electroics: A To-Dow Aroach to Comuter-Aided Circuit Desig. Eglewood

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

JUNTURA METAL SEMICONDUCTOR

JUNTURA METAL SEMICONDUCTOR JUNTURA METAL SEMICONUCTOR. EQUILIBRIO E SISTEMAS E FERMI EN CONTACTO Supogamos dos sistemas co eergías de Fermi diferetes. esigamos como E F, ; g, ();f F, ();, () y v, () a las eergías de Fermi, la fució

Más detalles

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO OBJETIOS: Se pretede cotrolar la temperatura de u ambiete reducido (e este caso la cabia de ua icubadora para eoatos),

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

2. Tecnologías del silicio

2. Tecnologías del silicio 2. Tecologías del silicio 2.1. Itroducció. 2.2. Familias lógicas 2.3. Trasistores MOS, riciio de fucioamieto 2.4. Iversores MOS y CMOS. 2.5. Tecologías CMOS 2. Tecologías del silicio 2.1. Itroducció. 2.2.

Más detalles

1.3- Amplificadores con un transistor de efecto de campo

1.3- Amplificadores con un transistor de efecto de campo 1.3- Amplificadores co u trasistor de efecto de campo 1.3.1- Cofiguracioes básicas y polarizació 1.3.- Modelo de señal pequeña del JFET 1.3.3- Amplificador fuete comú 1.3.4- Amplificador compuerta comú

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

2.1 - F.e.m de las máquinas de corriente alterna lineales planas

2.1 - F.e.m de las máquinas de corriente alterna lineales planas - CÁLCULO PARAMÉTRICO DE MÁQUINAS LINEALES.1 - F.e.m de las máquias de corriete altera lieales laas El valor medio de la.e.m. iducida e ua esira de aso diametral, ideedietemete de la orma esacial o de

Más detalles

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA.2µm A. Herrera-Favela y F. Sadoval-Ibarra Electroics Desig Grou CINESTA, Guadalajara Uit Prol. Lóez-Mateos Sur 590, 45235 Guadalajara JAL. (México) aherrera@gdl.civestav.mx

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007 Objetivos Transistor MOFET ELEMENTO ACTO EL07 EMETRE 007 El transistor de efecto de camo MOFET y la tecnología CMO (6 semanas Construcción, símbolo, clasificación. Funcionamiento. Curvas características

Más detalles

:: OBJETIVOS [3.1] :: PREINFORME [3.2]

:: OBJETIVOS [3.1] :: PREINFORME [3.2] :: OBJETIVOS [3.] Verificar que la resistecia equivalete a ua asociació de resistecias e serie se obtiee sumado aritméticamete las resistecias coectadas Verificar que la resistecia equivalete a ua asociació

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT)

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT) INTROUCCIÓN ección de una celdilla elemental Fuente Puerta TEMA 6. TRANITOR BIPOLAR E PUERTA AILAA (IBT) 6.1. INTROUCCIÓN 6.2. TECNOLOÍA E FABRICACIÓN Y CURVA CARACTERÍTICA I-V 6.3. FUNCIONAMIENTO EL TRANITOR

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

COLECCIóN DE EJERCICIOS RESUELTOS DISPOSITIVOS ELECTRONICOS Y FOTONICOS II

COLECCIóN DE EJERCICIOS RESUELTOS DISPOSITIVOS ELECTRONICOS Y FOTONICOS II COLECCIó DE EJERCICIOS RESUELTOS DISPOSITIOS ELECTROICOS Y FOTOICOS II Problema E u MESFET defia, explicado su setido físico y obteiedo expresioes que permita calcularlos, los siguietes parámetros: a)

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL Pablo Olvera Araa Cetro Nacioal de Metroloía, CENAM Resume E el esamble istó cilidro

Más detalles

Tema 5: Modelos Discretos de Canal

Tema 5: Modelos Discretos de Canal ema 5: Modelos Discretos de Caal Caales discretos Sistema de trasmisió (segú Shao) Iformació trasmitida Codificació de fuete bits Codificació de caal bits Modulació Señales [W, dbw] rasmisor Iformació

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009.

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009. IES Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua Relació de Ejercicios de Cotrastes de Hiótesis. Poecia Adaluza de Matemáticas Alicadas a las CCSS II del año 29. Ejercicio 1. La altura e cm. de

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule.

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule. Capítulo 3 Corriete cotiua y resistecia eléctrica 3.1 Itroducció 3.2 Corriete cotiua y corriete altera 3.3 Corriete y movimieto de cargas 3.4 Itesidad y desidad de corriete 3.5 Ley de Ohm. Resistecia 3.6

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Práctica de Física AJUSTE DE UNA RECTA

Práctica de Física AJUSTE DE UNA RECTA Práctica de Física AJUSTE DE UNA RECTA Calcular el valor medio y error de ua serie de valores Ajustar los datos experimetales mediate ua depedecia lieal La determiació de ua magitud física está sujeta

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos.

OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos. TEMA 7 OPTICA EOMÉTRICA Otica eométrica La trasmisió de la luz: Rayos de luz La Ótica eométrica describe la Trasmisió de la luz basádose E la aroximació de los rayos Ω Haz de luz Rayo Rayo lim Haz de luz

Más detalles

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica. Compuertas lógicas ópticas

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica. Compuertas lógicas ópticas Uiversidad de Costa Rica Facultad de Igeiería Escuela de Igeiería Eléctrica IE 5 Proyecto Eléctrico Compuertas lógicas ópticas Por: Pierre va der Laat Ulate, 943654 Ciudad Uiversitaria Rodrigo Facio Diciembre

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles