INECUACIONES LINEALES CON DOS INCÓGNITAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INECUACIONES LINEALES CON DOS INCÓGNITAS"

Transcripción

1 pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes formas: ax + by > c ax + by c ax + by < c ax + by c Los pasos a seguir para encontrar las soluciones son los siguientes: a c 1º.- Se considera la función: y x asociada a la inecuación y se dibuja su gráfica, que es una b b recta. 2º.- Las soluciones buscadas son los infinitos puntos de uno de los dos semiplanos que determina esa recta. Para decidir cuál de los dos semiplanos es la solución, se toma un punto P cualquiera que no pertenezca a la recta, y se sustituyen sus coordenadas en la inecuación; si la verifican, el semiplano al que pertenece P es la solución. En caso contrario la solución será el otro semiplano. 3º.- Estudiamos la inclusión o no de la recta o frontera en la solución (dependerá de si tenemos o no los signos y ). Ejemplo: Resolvamos la inecuación: x + y < 2 Representemos la ecuación asociada x + y = 2 y = 2 x. Todo punto de esta recta puede escribirse de la forma (x,2-x). Puntos de la recta son: (-2,4), (- 1,3) (0,2), (1,1) y (2,0). Si tomamos los puntos (-1,4), (0,3), (0,4), (1,2),, que están situados por encima de la recta, ninguno de ellos cumple la inecuación x + y < 2. Los puntos (-1,1), (0,0), (0,1), (1,0) (1,-1),, situados por debajo de la recta x + y = 2, cumplen todos ellos la inecuación x + y < 2. Por tanto, las soluciones de la inecuación x + y < 2 son todos los puntos del semiplano situado por debajo de la recta. Ejercicio: (1 pág. 98) Encuentra el conjunto de soluciones de las inecuaciones siguientes: a) x y 7 0 b) 2 y 3 0 x c) y 3 d) x 5 SISTEMAS DE INECUACIONES CON DOS INCÓGNITAS Un sistema de inecuaciones lineales con dos incógnitas es el conjunto de dos o más inecuaciones de primer grado, que deben satisfacerse a la vez. Para su resolución, se procede de la manera siguiente: - Se resuelve cada inecuación por separado. - El conjunto solución del sistema, también llamado región factible, está formado por las soluciones comunes a todas las inecuaciones. Ejemplo: resolvamos el sistema lineal con dos incógnitas: 3x 4y 3x 0 y 4 5x y 10 y 5x 10 4y 3x 0 5x y 10. El semiplano solución es el marcado arriba y a la izquierda.. El semiplano solución es el marcado a la derecha.

2 pág.2 La intersección de ambos semiplanos es la solución del sistema. Ejercicio: (3 pág. 98) Encuentra el conjunto de puntos del plano que verifica el siguiente sistema de inecuaciones: 6 y 30 5x 2y 100 6x y 30 x 2y 20 PROGRAMACIÓN LINEAL. DEFINICIONES A veces, un problema de producción, financiero, de estrategia militar, etc, puede tener distintas soluciones. En este caso, hemos de investigar la solución más conveniente. Este es un problema que se presenta con frecuencia en las empresas. Se puede planificar la producción de diversas formas, minimizando costes o maximizando beneficios. La programación lineal es un conjunto de técnicas que pretende optimizar (maximizar o minimizar) una función lineal de varias variables llamada función objetivo sujeta a una serie de restricciones expresadas por medio de ecuaciones o inecuaciones lineales. En todo problema de programación lineal se trata de hallar los posibles valores óptimos de una función de la forma: z = z 1x 1 + z 2x z nx n condicionada a que se cumplan las ecuaciones o inecuaciones: a11x1 a12x2... a1 n xn b1 a 21x1 a22x2... a2n xn b2... a m1x1 am2 x2... amn xn bm Con el signo se indica uno de éstos símbolos: =, <, >,,. Si el valor óptimo buscado es el máximo, se dice maximizar la función, si es el mínimo, minimizar la función. La función z se llama función objetivo. Las ecuaciones o inecuaciones condicionantes son las restricciones. El conjunto de puntos del recinto plano que delimitan las rectas representativas del sistema constituyen la llamada región factible.

3 pág.3 Ejemplo 1: Una fábrica de bombones tiene almacenados 500 kg de chocolate, 100 kg de almendras y 85 kg de frutas. Produce dos tipos de cajas: la de tipo A contiene 3 kg de chocolate, 1 kg de almendras y 1 kg de frutas; la de tipo B contiene 2 kg de chocolate, 1,5 kg de almendras y 1 kg de frutas. Los precios de las cajas de tipo A y B son 13 y 13,50, respectivamente. Cuántas cajas debe fabricar de cada tipo para maximizar su venta? Primero simplificamos el problema construyendo una tabla: A B TOTAL (kg) CHOCOLATE ALMENDRA 1 1,5 100 FRUTAS PRECIO 13 13,50 Expresamos con ecuaciones e inecuaciones la información descrita: Sea x = nº de cajas de tipo A Sea y = nº de cajas de tipo B Entonces, z=13x+13,50y, representa la cantidad de pesetas obtenida por la venta de cajas y, por lo tanto, es la que debemos maximizar (función objetivo). Las restricciones del problema vienen dadas por las siguientes inecuaciones: 3x + 2y 500 x + 1,5y 100 x + y 85 x 0 y 0. La región factible del ejemplo anterior sería:

4 pág.4 PROGRAMACIÓN LINEAL PARA DOS VARIABLES. MÉTODOS DE RESOLUCIÓN. Método analítico: Teorema fundamental: Si existe una solución única que maximice o minimice una función lineal objetivo, esta debe hallarse en uno de los vértices de la región factible. Ejemplo 1: Evaluamos la función z=13x+13,50y en cada vértice, para ver en cuál de ellos se obtiene el valor máximo: z(p) = = 1105 z(q) = ,5 30 = = 1120 z( R) = ,5 100/1,5 = 900 z(o) = 0 Por tanto, la función z alcanza su valor máximo en el punto Q=(55,30). Consecuentemente, el fabricante deberá producir 55 cajas del tipo A y 30 del tipo B. Un problema de programación lineal tiene infinitas soluciones cuando dos vértices de la región factible son solución óptima. En este caso, todos los puntos que están situados sobre el segmento que une los dos vértices son también soluciones óptimas. Ejemplo 2: Calcula la solución que hace mínima la función z=x+y, sujeta a las restricciones siguientes. Cuántas soluciones hay? x 0 y 0 x + y 10 4x + 3y 60 Los vértices de la región factible son: A=(10,0); B=(15,0); C=(0,20); D=(0,10). Probamos en la función objetivo cada uno de los vértices: z(a) = =10 z(b) = =15 z( C) = =20 z(d)= = 10 El valor mínimo se obtiene en los vértices A y D. Por tanto, el problema tiene infinitas soluciones: los puntos A=(10,0), D=(0,10) y todos los que pertenecen al segmento AD. Un problema de programación lineal puede que no tenga solución debido a dos razones: - porque la región factible sea vacía. - porque la región factible no esté acotada y no se alcance nunca el valor óptimo.

5 pág.5 Método gráfico: Para hallar gráficamente la solución de un problema de programación lineal de dos variables es conveniente seguir los siguientes pasos: 1. Se representa la recta mx + ny = 0, obtenida de la función objetivo f(x,y) = mx + ny. 2. Se dibuja la región factible. 3. Se desplaza paralelamente la recta mx + ny = 0 hacia la derecha y/o izquierda, hasta que pase por los puntos más alejados de la región factible. El punto común con la región factible más alejado hacia la derecha es el óptimo máximo, el más alejado hacia la izquierda es el óptimo mínimo. Si en algún caso nos ocurriera que dos vértices alcanzasen el máximo valor de la función objetivo, entonces los alcanzarían también todos los puntos del segmento que los une. Por tanto, las soluciones se encuentran sobre vértices o lados de la región factible. Ejemplo 3: Una empresa dedicada a la reparación de componentes eléctricos recibe el encargo de reparar ordenadores y consolas de videojuegos. La empresa dispone de dos talleres de reparación. El primero puede emplear 300 horas de trabajo, y necesita emplear 6 horas para cada ordenador y 5 para cada consola. El segundo dispone de 200 horas y necesita 2 horas para reparar cada ordenador y 5 para cada consola. Las ganancias netas que obtiene la empresa son de 100 por ordenador y 100 por consola. La empresa desea una ganancia máxima. Responde a las cuestiones siguientes: A. Formula algebraicamente el programa lineal correspondiente. B. Encuentra, si existe, la región factible de soluciones. C. Obtén, utilizando el método gráfico, las cantidades idóneas que deben repararse de cada artículo para maximizar la ganancia de la empresa. D. Responde a la cuestión anterior, utilizando el método analítico. Simplificamos el problema construyendo una tabla: Ordenadores Consolas Recursos Taller 1 (h) Taller 2 (h) BENEFICIOS Llamamos x al número de ordenadores que puede reparar cada taller e y al número de consolas que puede reparar cada uno de los talleres. A. El programa lineal correspondiente al problema es: Maximizar: z = 100x + 100y Sujeto a las restricciones: 6x + 5y 300 2x + 5y 200 x 0 y 0

6 pág.6 B. La región factible de soluciones está limitada por los vértices: O=(0,0); P=(50,0); Q=(25,30); R=(0,40). C. Desplazando la recta 100x + 100y, se obtiene el beneficio máximo para el punto Q=(25,30) de la región factible. D. Obtenemos el mismo resultado si evaluamos la función objetivo en cada uno de los vértices de la región de soluciones. En estos puntos, la función objetivo toma los siguientes valores: z(o) = 0 z(p) = 5000 z(q) = 5500 z( r)= 4000 Luego el máximo beneficio obtenido por la empresa es de 5500, siempre que repare 25 ordenadores y 30 consolas. Ejercicio: (8 pág. 98) Maximiza la función z 3x 2y y 2x 0 3y x 1 0 x 2, en el dominio definido por las inecuaciones siguientes:

7 pág.7 TRES PROBLEMAS CLÁSICOS. El problema de producción Una fábrica se dedica a producir distintos objetos, para los que utiliza distintos productos que posee en cuantía limitada. Deseamos averiguar, conociendo los precios de venta de cada uno de los objetos, qué cantidad ha de producir de cada uno de ellos para maximizar los ingresos por ventas. Ejemplo 4: En una bollería deseamos fabricar para el día de la fiesta local dos tipos de bollos A y B. El bollo de tipo A tiene 500 gramos de masa y 250 gramos de crema. El bollo de tipo B tiene 250 gramos de masa y 250 gramos de crema. Si disponemos de 20 kg de masa y 15 kg de crema y el precio de venta lo fijamos en 2 el bollo A y 1,50 el bollo B, cuántos bollos de cada tipo tenemos que fabricar para que el beneficio sea máximo? Bollo A Bollo B Disponible Variable x y gr de masa 500x 250y gr de crema 250x 250y Ingresos 2x 1,5y z=2x+1,5y Las restricciones son: x 0 y 0 500x + 250y x + 250y Los vértices de la región factible son: A=(0,0); B=(40,0); C=(0,60); D=(20,40). Resolución analítica: z(a) = 0 z(b) = 80 z( C) = 90 z(d)= 100 La producción óptima la obtenemos en el vértice D=(20,40), para 20 bollos del tipo A y 40 bollos del tipo B.

8 pág.8 El problema de la dieta Una granja se dedica a la cría de una determinada clase de animales que se alimentan de varias clases de piensos que contienen distintas clases de nutrientes (vitaminas, grasas, proteínas, ). El problema consiste en determinar la cantidad de cada uno de los alimentos que han de constituir la dieta diaria de los animales, teniendo en cuenta que, en la misma, debe haber unas cantidades mínimas de los citados nutrientes y de forma que el coste sea mínimo. Ejemplo 5: Un ganadero debe suministrar un mínimo de 30 mg de vitamina A y de 35 mg de tipo B por kg de pienso a sus animales. Dispone de dos clases de pienso R y S cuyos contenidos en mg de las vitaminas A y B por kg de pienso vienen dados en la siguiente tabla: R S A 6 6 B 5 10 El pienso R vale 40 /kg y el S vale 60 /kg. Cuántos kg de cada clase debe mezclar para suministrar el pienso de coste mínimo? Pienso R Pienso S Disponible Variable (kg) x y Vitamina A 6x 6y 30 Vitamina B 5x 10y 35 Coste 40x 60y Z=40x+60y Minimizar Las restricciones son: x 0 y 0 6x + 6y 30 x + y 5 5x + 10y 35 x + 2y 7

9 pág.9 La región factible no está acotada superiormente, pero como tenemos que minimizar la función, si existe solución. Los vértices de la región factible son: A=(7,0); B=(0,5); C=(3,2). Resolución analítica: z(a) = 280 z(b) = 300 z( C) = 240 La producción óptima la obtenemos en el vértice C=(3,2), para 3 kg de pienso del tipo R y 2 kg de pienso del tipo S. El problema del transporte Una empresa posee fábricas en varias ciudades en las que produce un determinado producto. Este producto lo comercializa en distintos puntos de venta. Cada fábrica posee una capacidad de producción de un determinado número de unidades y cada uno de los puntos de venta ha de recibir un determinado número de unidades. Cuántas unidades de cada producto hay que producir en cada fábrica para que el coste del transporte sea mínimo? Ejemplo 6: Dos fábricas de coches A y B producen 4000 y 5000 coches de un determinado modelo que se distribuyen en tres ciudades R, S y T que admiten 2000, 3000 Y 4000 coches. El coste del transporte en euros viene dado en la siguiente tabla: R S T A B Cómo deben distribuirse los coches para que el coste del transporte sea mínimo? En euros, el planteamiento es el siguiente: R S T Disponible Reciben A x y 4000-x-y 4000 B 2000-x 3000-y x+y 5000 Coste x y x-20y z=-70x+10y Minimizar Las restricciones son: x 0 y x - y 0 x + y x 0 x y 0 y 3000 x + y 0 Los vértices de la región factible son: A=(0,0); B=(2000,0); C=(0,3000); D=(2000,2000); E=(1000,3000).

10 pág.10 Resolución analítica: z(a) = z(b) = z(c) = z(d) = z(e) = La producción óptima la obtenemos en el vértice B=(2000,0), es decir, para la siguiente distribución: R S T A B PASOS PARA RESOLVER UN PROBLEMA DE PROGRAMACIÓN LINEAL CON GEOGEBRA Comienza construyendo una tabla con los datos, para simplificar el problema. Escribe la función objetivo y las restricciones. Encuentra la región factible y halla la posición de los vértices. Evalúa el valor de la función objetivo en los vértices. Compara tus resultados siguiendo el protocolo de la construcción. Utiliza el deslizador para valorar lo que sucede.

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

Unidad 2 Modelos de optimización

Unidad 2 Modelos de optimización Unidad 2 Modelos de optimización Objetivos Al nalizar la unidad, el alumno: Construirá modelos matemáticos de optimización. Resolverá problemas prácticos con el método gráfico. Matemáticas para negocios

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

Si a = 0, O = 101 = 0. Corolario 6.16. 1x1 5 a, si y sólo si -a I x I a.

Si a = 0, O = 101 = 0. Corolario 6.16. 1x1 5 a, si y sólo si -a I x I a. -a = la1 > a Si a = 0, O = 101 = 0. Corolario 6.16. 1x1 5 a, si y sólo si -a I x I a. PROBLEMAS 6.1 1. Dése la prueba del corolario 6.5 y del teorema 6.6. 2. Pmébese que si a < b, - b < -a. 3. Dado -5

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES

1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES 1º BACHILLERATO CCSS - MATEMÁTICAS - PROBLEMAS DE FUNCIONES ˆ PÁGINA 131, EJERCICIO 32 Esteban tiene dos teléfonos, uno jo y uno móvil. Las curvas de la gura representan el gasto mensual en euros de cada

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo:

Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: EJEMPLO. Sobre dos alimentos diferentes tenemos la siguiente información por kilogramo: limento Calorías Proteínas (gr Precio (ptas B allar el coste mínimo de una dieta formada sólo por este tipo de alimentos

Más detalles

Capítulo VI DESIGUALDADES E INECUACIONES

Capítulo VI DESIGUALDADES E INECUACIONES Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene

ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene 8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen, CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando

Más detalles

Planteamiento del problema del servidor de video

Planteamiento del problema del servidor de video Universidad Politécnica de Cartagena Escuela Técnica Superior de IngenieI ería de Telecomunicación PRÁCTICAS DE REDES DE ORDENADORES Propuesta del Trabajo de Prácticas 2011 Evaluación de políticas de admisión

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002

Posible solución al examen de Investigación Operativa de Sistemas de junio de 2002 Posible solución al examen de Investigación Operativa de Sistemas de junio de 00 Problema (,5 puntos): Resuelve el siguiente problema utilizando el método Simplex o variante: Una compañía fabrica impresoras

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS Solucionario 5 Inecuaciones ACTIVIDADES INICIALES 5.I. rdena de menor a mayor los siguientes números. a), 6 8, 4 y 7 b) 0,v,, y 0, 4 5 5 0 90 5 a) 75 ; 6 8 7 ; 4 80 y 7 70 7 6 8 4 4 00 5 00 5 00 0 00 0

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema EXÁMEN DICIEMBRE 5º. Resolver e interpretar el sistema º. Discutir el sistema según los valores de º. La suma de tres cifras de un número es 5 si se intercambia la primera por la segunda el número aumenta

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO CRITERIOS DE EVALUACIÓN 1. Utilizar los números racionales, sus operaciones

Más detalles

Tema 7. Problemas de ecuaciones de primero y segundo grado

Tema 7. Problemas de ecuaciones de primero y segundo grado Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud).

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud). Materia: Matemática de Séptimo Tema: Área de rectángulos Qué pasaría si los padres de Ed le estuvieran comprando una cama nueva y él tuviera que decidir qué tamaño de cama es mejor para él? En un principio

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 2010. Apellidos Nombre. DNI / NIE Centro de examen

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 2010. Apellidos Nombre. DNI / NIE Centro de examen CALIFICACIÓN: Consejería de Educación, Ciencia Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 010 Resolución de de maro de 010 (DOCM de de maro) DNI

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

TERMOQUÍMICA PAU ASTURIAS

TERMOQUÍMICA PAU ASTURIAS TERMOQUÍMICA PAU ASTURIAS 1. (PAU 08) La observación experimental de H con respecto al producto T S, para una reacción simple, A B, permite la representación gráfica de la figura: Observando, la misma,

Más detalles

Manual Gran Hotel. El inventario por destino nos da todas las existencias de los artículos en el destino seleccionado.

Manual Gran Hotel. El inventario por destino nos da todas las existencias de los artículos en el destino seleccionado. 11. Inventarios Desde esta pantalla obtenemos los inventarios. Aparecen los botones de los inventarios posibles: 11.1. Inventario por destino El inventario por destino nos da todas las existencias de los

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA ANÁLISIS DIMENSIONAL. HOMOGENEIDAD TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S MAGNITUDES

Más detalles