INECUACIONES LINEALES CON DOS INCÓGNITAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INECUACIONES LINEALES CON DOS INCÓGNITAS"

Transcripción

1 pág.1 INECUACIONES LINEALES CON DOS INCÓGNITAS Llamamos inecuación de primer grado con dos incógnitas es una desigualdad algebraica que se puede transformar en otra equivalente a una de las siguientes formas: ax + by > c ax + by c ax + by < c ax + by c Los pasos a seguir para encontrar las soluciones son los siguientes: a c 1º.- Se considera la función: y x asociada a la inecuación y se dibuja su gráfica, que es una b b recta. 2º.- Las soluciones buscadas son los infinitos puntos de uno de los dos semiplanos que determina esa recta. Para decidir cuál de los dos semiplanos es la solución, se toma un punto P cualquiera que no pertenezca a la recta, y se sustituyen sus coordenadas en la inecuación; si la verifican, el semiplano al que pertenece P es la solución. En caso contrario la solución será el otro semiplano. 3º.- Estudiamos la inclusión o no de la recta o frontera en la solución (dependerá de si tenemos o no los signos y ). Ejemplo: Resolvamos la inecuación: x + y < 2 Representemos la ecuación asociada x + y = 2 y = 2 x. Todo punto de esta recta puede escribirse de la forma (x,2-x). Puntos de la recta son: (-2,4), (- 1,3) (0,2), (1,1) y (2,0). Si tomamos los puntos (-1,4), (0,3), (0,4), (1,2),, que están situados por encima de la recta, ninguno de ellos cumple la inecuación x + y < 2. Los puntos (-1,1), (0,0), (0,1), (1,0) (1,-1),, situados por debajo de la recta x + y = 2, cumplen todos ellos la inecuación x + y < 2. Por tanto, las soluciones de la inecuación x + y < 2 son todos los puntos del semiplano situado por debajo de la recta. Ejercicio: (1 pág. 98) Encuentra el conjunto de soluciones de las inecuaciones siguientes: a) x y 7 0 b) 2 y 3 0 x c) y 3 d) x 5 SISTEMAS DE INECUACIONES CON DOS INCÓGNITAS Un sistema de inecuaciones lineales con dos incógnitas es el conjunto de dos o más inecuaciones de primer grado, que deben satisfacerse a la vez. Para su resolución, se procede de la manera siguiente: - Se resuelve cada inecuación por separado. - El conjunto solución del sistema, también llamado región factible, está formado por las soluciones comunes a todas las inecuaciones. Ejemplo: resolvamos el sistema lineal con dos incógnitas: 3x 4y 3x 0 y 4 5x y 10 y 5x 10 4y 3x 0 5x y 10. El semiplano solución es el marcado arriba y a la izquierda.. El semiplano solución es el marcado a la derecha.

2 pág.2 La intersección de ambos semiplanos es la solución del sistema. Ejercicio: (3 pág. 98) Encuentra el conjunto de puntos del plano que verifica el siguiente sistema de inecuaciones: 6 y 30 5x 2y 100 6x y 30 x 2y 20 PROGRAMACIÓN LINEAL. DEFINICIONES A veces, un problema de producción, financiero, de estrategia militar, etc, puede tener distintas soluciones. En este caso, hemos de investigar la solución más conveniente. Este es un problema que se presenta con frecuencia en las empresas. Se puede planificar la producción de diversas formas, minimizando costes o maximizando beneficios. La programación lineal es un conjunto de técnicas que pretende optimizar (maximizar o minimizar) una función lineal de varias variables llamada función objetivo sujeta a una serie de restricciones expresadas por medio de ecuaciones o inecuaciones lineales. En todo problema de programación lineal se trata de hallar los posibles valores óptimos de una función de la forma: z = z 1x 1 + z 2x z nx n condicionada a que se cumplan las ecuaciones o inecuaciones: a11x1 a12x2... a1 n xn b1 a 21x1 a22x2... a2n xn b2... a m1x1 am2 x2... amn xn bm Con el signo se indica uno de éstos símbolos: =, <, >,,. Si el valor óptimo buscado es el máximo, se dice maximizar la función, si es el mínimo, minimizar la función. La función z se llama función objetivo. Las ecuaciones o inecuaciones condicionantes son las restricciones. El conjunto de puntos del recinto plano que delimitan las rectas representativas del sistema constituyen la llamada región factible.

3 pág.3 Ejemplo 1: Una fábrica de bombones tiene almacenados 500 kg de chocolate, 100 kg de almendras y 85 kg de frutas. Produce dos tipos de cajas: la de tipo A contiene 3 kg de chocolate, 1 kg de almendras y 1 kg de frutas; la de tipo B contiene 2 kg de chocolate, 1,5 kg de almendras y 1 kg de frutas. Los precios de las cajas de tipo A y B son 13 y 13,50, respectivamente. Cuántas cajas debe fabricar de cada tipo para maximizar su venta? Primero simplificamos el problema construyendo una tabla: A B TOTAL (kg) CHOCOLATE ALMENDRA 1 1,5 100 FRUTAS PRECIO 13 13,50 Expresamos con ecuaciones e inecuaciones la información descrita: Sea x = nº de cajas de tipo A Sea y = nº de cajas de tipo B Entonces, z=13x+13,50y, representa la cantidad de pesetas obtenida por la venta de cajas y, por lo tanto, es la que debemos maximizar (función objetivo). Las restricciones del problema vienen dadas por las siguientes inecuaciones: 3x + 2y 500 x + 1,5y 100 x + y 85 x 0 y 0. La región factible del ejemplo anterior sería:

4 pág.4 PROGRAMACIÓN LINEAL PARA DOS VARIABLES. MÉTODOS DE RESOLUCIÓN. Método analítico: Teorema fundamental: Si existe una solución única que maximice o minimice una función lineal objetivo, esta debe hallarse en uno de los vértices de la región factible. Ejemplo 1: Evaluamos la función z=13x+13,50y en cada vértice, para ver en cuál de ellos se obtiene el valor máximo: z(p) = = 1105 z(q) = ,5 30 = = 1120 z( R) = ,5 100/1,5 = 900 z(o) = 0 Por tanto, la función z alcanza su valor máximo en el punto Q=(55,30). Consecuentemente, el fabricante deberá producir 55 cajas del tipo A y 30 del tipo B. Un problema de programación lineal tiene infinitas soluciones cuando dos vértices de la región factible son solución óptima. En este caso, todos los puntos que están situados sobre el segmento que une los dos vértices son también soluciones óptimas. Ejemplo 2: Calcula la solución que hace mínima la función z=x+y, sujeta a las restricciones siguientes. Cuántas soluciones hay? x 0 y 0 x + y 10 4x + 3y 60 Los vértices de la región factible son: A=(10,0); B=(15,0); C=(0,20); D=(0,10). Probamos en la función objetivo cada uno de los vértices: z(a) = =10 z(b) = =15 z( C) = =20 z(d)= = 10 El valor mínimo se obtiene en los vértices A y D. Por tanto, el problema tiene infinitas soluciones: los puntos A=(10,0), D=(0,10) y todos los que pertenecen al segmento AD. Un problema de programación lineal puede que no tenga solución debido a dos razones: - porque la región factible sea vacía. - porque la región factible no esté acotada y no se alcance nunca el valor óptimo.

5 pág.5 Método gráfico: Para hallar gráficamente la solución de un problema de programación lineal de dos variables es conveniente seguir los siguientes pasos: 1. Se representa la recta mx + ny = 0, obtenida de la función objetivo f(x,y) = mx + ny. 2. Se dibuja la región factible. 3. Se desplaza paralelamente la recta mx + ny = 0 hacia la derecha y/o izquierda, hasta que pase por los puntos más alejados de la región factible. El punto común con la región factible más alejado hacia la derecha es el óptimo máximo, el más alejado hacia la izquierda es el óptimo mínimo. Si en algún caso nos ocurriera que dos vértices alcanzasen el máximo valor de la función objetivo, entonces los alcanzarían también todos los puntos del segmento que los une. Por tanto, las soluciones se encuentran sobre vértices o lados de la región factible. Ejemplo 3: Una empresa dedicada a la reparación de componentes eléctricos recibe el encargo de reparar ordenadores y consolas de videojuegos. La empresa dispone de dos talleres de reparación. El primero puede emplear 300 horas de trabajo, y necesita emplear 6 horas para cada ordenador y 5 para cada consola. El segundo dispone de 200 horas y necesita 2 horas para reparar cada ordenador y 5 para cada consola. Las ganancias netas que obtiene la empresa son de 100 por ordenador y 100 por consola. La empresa desea una ganancia máxima. Responde a las cuestiones siguientes: A. Formula algebraicamente el programa lineal correspondiente. B. Encuentra, si existe, la región factible de soluciones. C. Obtén, utilizando el método gráfico, las cantidades idóneas que deben repararse de cada artículo para maximizar la ganancia de la empresa. D. Responde a la cuestión anterior, utilizando el método analítico. Simplificamos el problema construyendo una tabla: Ordenadores Consolas Recursos Taller 1 (h) Taller 2 (h) BENEFICIOS Llamamos x al número de ordenadores que puede reparar cada taller e y al número de consolas que puede reparar cada uno de los talleres. A. El programa lineal correspondiente al problema es: Maximizar: z = 100x + 100y Sujeto a las restricciones: 6x + 5y 300 2x + 5y 200 x 0 y 0

6 pág.6 B. La región factible de soluciones está limitada por los vértices: O=(0,0); P=(50,0); Q=(25,30); R=(0,40). C. Desplazando la recta 100x + 100y, se obtiene el beneficio máximo para el punto Q=(25,30) de la región factible. D. Obtenemos el mismo resultado si evaluamos la función objetivo en cada uno de los vértices de la región de soluciones. En estos puntos, la función objetivo toma los siguientes valores: z(o) = 0 z(p) = 5000 z(q) = 5500 z( r)= 4000 Luego el máximo beneficio obtenido por la empresa es de 5500, siempre que repare 25 ordenadores y 30 consolas. Ejercicio: (8 pág. 98) Maximiza la función z 3x 2y y 2x 0 3y x 1 0 x 2, en el dominio definido por las inecuaciones siguientes:

7 pág.7 TRES PROBLEMAS CLÁSICOS. El problema de producción Una fábrica se dedica a producir distintos objetos, para los que utiliza distintos productos que posee en cuantía limitada. Deseamos averiguar, conociendo los precios de venta de cada uno de los objetos, qué cantidad ha de producir de cada uno de ellos para maximizar los ingresos por ventas. Ejemplo 4: En una bollería deseamos fabricar para el día de la fiesta local dos tipos de bollos A y B. El bollo de tipo A tiene 500 gramos de masa y 250 gramos de crema. El bollo de tipo B tiene 250 gramos de masa y 250 gramos de crema. Si disponemos de 20 kg de masa y 15 kg de crema y el precio de venta lo fijamos en 2 el bollo A y 1,50 el bollo B, cuántos bollos de cada tipo tenemos que fabricar para que el beneficio sea máximo? Bollo A Bollo B Disponible Variable x y gr de masa 500x 250y gr de crema 250x 250y Ingresos 2x 1,5y z=2x+1,5y Las restricciones son: x 0 y 0 500x + 250y x + 250y Los vértices de la región factible son: A=(0,0); B=(40,0); C=(0,60); D=(20,40). Resolución analítica: z(a) = 0 z(b) = 80 z( C) = 90 z(d)= 100 La producción óptima la obtenemos en el vértice D=(20,40), para 20 bollos del tipo A y 40 bollos del tipo B.

8 pág.8 El problema de la dieta Una granja se dedica a la cría de una determinada clase de animales que se alimentan de varias clases de piensos que contienen distintas clases de nutrientes (vitaminas, grasas, proteínas, ). El problema consiste en determinar la cantidad de cada uno de los alimentos que han de constituir la dieta diaria de los animales, teniendo en cuenta que, en la misma, debe haber unas cantidades mínimas de los citados nutrientes y de forma que el coste sea mínimo. Ejemplo 5: Un ganadero debe suministrar un mínimo de 30 mg de vitamina A y de 35 mg de tipo B por kg de pienso a sus animales. Dispone de dos clases de pienso R y S cuyos contenidos en mg de las vitaminas A y B por kg de pienso vienen dados en la siguiente tabla: R S A 6 6 B 5 10 El pienso R vale 40 /kg y el S vale 60 /kg. Cuántos kg de cada clase debe mezclar para suministrar el pienso de coste mínimo? Pienso R Pienso S Disponible Variable (kg) x y Vitamina A 6x 6y 30 Vitamina B 5x 10y 35 Coste 40x 60y Z=40x+60y Minimizar Las restricciones son: x 0 y 0 6x + 6y 30 x + y 5 5x + 10y 35 x + 2y 7

9 pág.9 La región factible no está acotada superiormente, pero como tenemos que minimizar la función, si existe solución. Los vértices de la región factible son: A=(7,0); B=(0,5); C=(3,2). Resolución analítica: z(a) = 280 z(b) = 300 z( C) = 240 La producción óptima la obtenemos en el vértice C=(3,2), para 3 kg de pienso del tipo R y 2 kg de pienso del tipo S. El problema del transporte Una empresa posee fábricas en varias ciudades en las que produce un determinado producto. Este producto lo comercializa en distintos puntos de venta. Cada fábrica posee una capacidad de producción de un determinado número de unidades y cada uno de los puntos de venta ha de recibir un determinado número de unidades. Cuántas unidades de cada producto hay que producir en cada fábrica para que el coste del transporte sea mínimo? Ejemplo 6: Dos fábricas de coches A y B producen 4000 y 5000 coches de un determinado modelo que se distribuyen en tres ciudades R, S y T que admiten 2000, 3000 Y 4000 coches. El coste del transporte en euros viene dado en la siguiente tabla: R S T A B Cómo deben distribuirse los coches para que el coste del transporte sea mínimo? En euros, el planteamiento es el siguiente: R S T Disponible Reciben A x y 4000-x-y 4000 B 2000-x 3000-y x+y 5000 Coste x y x-20y z=-70x+10y Minimizar Las restricciones son: x 0 y x - y 0 x + y x 0 x y 0 y 3000 x + y 0 Los vértices de la región factible son: A=(0,0); B=(2000,0); C=(0,3000); D=(2000,2000); E=(1000,3000).

10 pág.10 Resolución analítica: z(a) = z(b) = z(c) = z(d) = z(e) = La producción óptima la obtenemos en el vértice B=(2000,0), es decir, para la siguiente distribución: R S T A B PASOS PARA RESOLVER UN PROBLEMA DE PROGRAMACIÓN LINEAL CON GEOGEBRA Comienza construyendo una tabla con los datos, para simplificar el problema. Escribe la función objetivo y las restricciones. Encuentra la región factible y halla la posición de los vértices. Evalúa el valor de la función objetivo en los vértices. Compara tus resultados siguiendo el protocolo de la construcción. Utiliza el deslizador para valorar lo que sucede.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Inecuaciones. Objetivos

Inecuaciones. Objetivos 5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán PROGRAMACIÓN LINEAL El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán a optimizar funciones lineales sujetas a una serie de restricciones

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

Sistemas de ecuaciones y de inecuaciones

Sistemas de ecuaciones y de inecuaciones Nombre................................... Curso:....... 4R 4.º ESO método de igualación: x + y = 0 x y = 5 método de sustitución: 4x + y = x + y = Resuelve los siguientes sistemas por el método de reducción:

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

Teoría Tema 1 Sistema de inecuaciones - Programación lineal

Teoría Tema 1 Sistema de inecuaciones - Programación lineal página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

TEMA 4 PROGRAMACIÓN LINEAL

TEMA 4 PROGRAMACIÓN LINEAL Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Tema 4. Programación lineal

Tema 4. Programación lineal 71 Tema 4. Programación lineal 1. Introducción a la Programación Lineal La programación lineal es una herramienta matemática que permite encontrar la solución óptima minimizar costos o maximizar beneficios

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Sistemas de inecuaciones de primer grado con dos incógnitas

Sistemas de inecuaciones de primer grado con dos incógnitas SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

UNIDAD 4 Programación lineal

UNIDAD 4 Programación lineal UNIDD 4 Programación lineal Pág. 1 de 8 1 Un mayorista de frutos secos tiene almacenados 1 800 kilos de avellanas y 420 kilos de almendras para hacer dos tipos de mezclas, que embala en cajas como se indica

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita.

I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita. Inecuaciones Contenidos 1. Inecuaciones de primer grado con una incógnita Definiciones Inecuaciones equivalentes Resolución Sistemas de inecuaciones 2. Inecuaciones de segundo grado con una incógnita Resolución

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos) Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es: Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad Hoja de trabajo personal Nº 1. EVALUACIÓN INICIAL Uso de los signos de desigualdad. Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalos sobre la

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Departamento de Matemáticas IES Giner de los Ríos

Departamento de Matemáticas IES Giner de los Ríos Departamento de Matemáticas IES Giner de los Ríos La programación lineal hace historia: El puente aéreo de Berlín En 1946 comienza el largo período de la guerra fría entre la antigua Unión Soviética (URSS)

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

CAPÍTULO 4: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS

CAPÍTULO 4: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS 59 CAPÍTULO 4: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación lineal con dos incógnitas es una expresión en la que dos expresiones lineales están relacionadas entre sí por

Más detalles

Aplicaciones de la derivada 7

Aplicaciones de la derivada 7 Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no

Más detalles

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d El Plano Cartesiano EDUCACIÓN MATEMATICA 1/10 El plano cartesiano o sistema de ejes coordenados debe su nombre al matemático francés Rene Descartes, es utilizado principalmente en la Geometría Analítica

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles