GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GESTIÓN ACADÉMICA GUÍA DIDÁCTICA"

Transcripción

1 PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la radicación y la aritmación para representar situaciones matemáticas y no matemáticas y para resolver problemas. Analizo en representaciones gráficas cartesianas los comportamientos de cambio de funciones específicas pertenecientes a familias de funciones polinómicas, racionales, eponenciales y arítmicas. INDICADORES DE DESEMPEÑO: Formula y soluciona problemas utilizando procedimientos de funciones eponenciales y arítmicas. EJE(S) TEMÁTICO(S): FUNCIÓN EXPONENCIAL. *Definición *Análisis gráfica de las funciones eponenciales *Ecuaciones eponenciales FUNCIÓN LOGARÍTMICA *Concepto de aritmo *Definición de función arítmica *Análisis gráfico de la función arítmica *Propiedades de los aritmos *Ecuaciones arítmicas *Sistemas de ecuaciones arítmicas René Descartes ( ) Filósofo y matemático francés. ORIENTACIONES 1) Observaciones sobre el desarrollo de la guía 2)Lectura teto guía (seguir correctamente las instrucciones dadas, 3)Eplicación por parte del docente atención y concentración durante las eplicaciones, 4)Desarrollo del taller asignado en grupo o individual. leer comprensivamente, orden y pulcritud 5)Socialización del trabajo desarrollado. en el desarrollo de la guía ). 6) Se valorarán todos los momentos de la guía. EXPLORACIÓN Determine la alternativa que continúa en la secuencia de figuras mostradas. CONCEPTUALIZACIÓN

2 PÁGINA: 2 de 8 FUNCIÓN EXPONENCIAL La función eponencial se define con una base constante cuyo eponente es el valor variable, es decir: f() = a Con a > 0 y a 1, R Se llama función eponencial de base a, siendo a un número real positivo y distinto de 1, a la función f:r R f() = a Esta función se escribe también como f() = ep a y se lee «eponencial en base a de». Recordemos las propiedades de la potenciación 1. a = 1, 2.-, Características de la función eponencial Son de la forma y=a, con a>0. Su dominio es R y el rango es R + Es continua. Si a>1 es creciente y decreciente si 0<a<1. Corta al eje OY en (0,1),porque a 0 = 1, y no tiene intercepto en el eje,pasa por (1,a) El eje OX es asíntota horizontal. 7) 6) a -n = 1/a n, 5.-, GRÁFICA FUNCIÓN EXPONENCIAL a) Si a > 0, la función es creciente en R Ejemplos de funciones eponenciales 1. La función y = 2 es una función eponencial de base 2. Algunos de los valores que toma esta función, f:r R f(-3) = 2 - ³ = 1/2³ = 1/8, f(-1/2) = 2-1/2 = 1/2 1/2 = 1/ 2 f(1) = 2¹ = 2, En este caso, para = 0, y = a = 1 para = 1, y = a¹ = a Para cualquier, la función es creciente y siempre positiva Como caso particular se representa la función y = 2. b) Si la función 0 < a < 1, es decreciente en R,; 2. La función y = 1/2 es una función eponencial de base 1/2. Alguno de los valores que toma esta función, f: R R, son: f(-4) = 2-4 = 1/2 4 = 1/16 f(0) = (1/2) = 1 f(2) = (1/2) ² = ¼ PROPIEDADES DE LA FUNCIÓN EXPONENCIAL Para = 0, y = a = 1 Para = 1, y = a¹ = a Para cualquier la función es decreciente y siempre positiva. Como caso particular se representa la función y = (1/2). RELACIONANDO LAS DOS FUNCIONES y = a 1.- para = 0, la función toma el valor 1: f(0) = a = para = 1, la función toma el valor a: f(1) = a¹ = a

3 PÁGINA: 3 de la función es positiva para cualquier valor de : f( ) > 0.Esto es debido a que la base de la potencia, a, es positiva, y cualquier potencia de base positiva da como resultado un número positivo. 4.- Si la base de la potencia es mayor que 1, a>1, la función es creciente. 5.- Si la base de la potencia es menor que 1, a<1, la función es decreciente. Crecimiento eponencial La función eponencial se presenta en multitud de fenómenos de crecimiento animal, vegetal, económico, etc. En todos ellos la variable es el tiempo. En el crecimiento eponencial, cada valor de y se obtiene multiplicando el valor anterior por una cantidad constante a. Donde k es el valor inicial (para t=0), t es el tiempo transcurrido y a es el factor por el que se multiplica en cada unidad de tiempo. Si 0<a<1 se trata de un decrecimiento eponencial. Ejemplo. En un laboratorio tienen un cultivo bacteriano, si su peso se multiplica por 2 cada día, cuál es su crecimiento si el peso inicial es 3 gr? Peso inicial: 3 gr Crecimiento: por =12 Aplicaciones La función eponencial sirve para describir cualquier proceso que evolucione de modo que el aumento (o disminución) en un pequeño intervalo de tiempo sea proporcional a lo que había al comienzo del mismo. A continuación se ven tres aplicaciones: Crecimiento de poblaciones. Interés del dinero acumulado. Desintegración radioactiva. Ejemplo. Un pueblo tiene 600 habitantes y su población crece anualmente un 3%. Cuántos habitantes habrá al cabo de 8 años? P = ECUACIONES Y SISTEMAS DE ECUACIONES EXPONENCIALES. Las ecuaciones en las que la incógnita aparece como eponente son ecuaciones eponenciales. No hay ninguna fórmula general que indique cómo resolver cualquier ecuación eponencial. Sólo la práctica ayuda a decidir, en cada caso, qué camino tomar. f() 0 3 1= =6 7) 8) ( ) 9) Ejercicio: solución de ecuaciones eponenciales 1) Resolver = 1/8 SOLUCIÓN: Epresando 1/8 como potencia de 2: = 1/2 3 = ² = -3 Basta ahora con resolver esta ecuación de segundo grado. 1 - ² = - 2)Resolver = 320 SOLUCIÓN: En algunas ecuaciones es necesario hacer un cambio de variable para su resolución. Teniendo en cuenta las propiedades de las potencias, la ecuación puede escribirse: ³ 2 = = 320 Epresando 4 como potencia de dos, 4.2 ² = 320 Se hace el cambio de variable 2 = y, (por tanto 2 ². = y ²) y se obtiene: 4 y ² + 8 y = 320 Basta ahora con resolver esta ecuación: y ² + 2 y - 80 = 0 Para resolver estas ecuaciones hay que tener presente algunos

4 PÁGINA: 4 de 8 resultados y propiedades: 1) a = a y = y 2) 3) a m.a n = a m+ n 4) 5) 6) Se deshace ahora el cambio y = 2 y 1 = -10 = 2. No es posible encontrar un que verifique esta condición (2 es siempre positivo) y 2 = 8 = 2 La solución es, por tanto, = 3 Resolver FUNCIÓN LOGARÍTMICA La función inversa de la eponencial La función arítmica en base a es la función inversa de la eponencial en base a. ( ) con En la figura se puede ver la inversa de la función eponencial. Resolución: Al observar estas gráficas podemos concluir que: El dominio de la función arítmica es:.. El recorrido de la función arítmica es:.. Gráfica función arítmica a) Si a la función es creciente para > 0. Nota: El aritmo cuya base es e (número irracional = ) lo llamamos aritmo neperiano o aritmo natural y se escribe como Ejemplos: b) Si 0 < a < 1la función es decreciente para > 0. 1) ( ) y ) ( ) 5 10 Funciones arítmicas Son las que asocian a cada número su aritmo en una cierta base, a, y= a. Su dominio son los reales positivos y el recorrido es IR Es continua Si a>1 es creciente y decreciente si 0<a<1. Corta al eje OX en (1,0) y pasa por (a,1) El eje OY es asíntota vertical. Observa que si la base de la función arítmica es un número mayor que 1 la gráfica es CRECIENTE y si 0<a<1 es un número menor que 1 la gráfica será es DECRECIENTE.

5 PÁGINA: 5 de 8 5 y 5 10 LOGARITMOS DEFINICIÓN: El aritmo se define como: n=, b > 0 y a 1 Se lee de la forma n es el aritmo de b en base a. Ejemplos: con ) ) en particular si tenemos (ya que la base de ln es e) ) 6)Logaritmo de la raíz. Log a = a b Logaritmos decimales Son aquellos aritmos que tienen base 10, el cual al ser escrito suele omitirse, es decir: Log 10 = X 10 = 10 1 =1 100 = 10 2 = = 10 3 = = 10 4 = 4, etc Cuando queremos calcular aritmos en cualquier otra base tenemos que recurrir a la fórmula del cambio de base ECUACIONES LOGARÍTMICAS Una ecuación arítmica es aquella en la que la incógnita aparece en una epresión afectada por un aritmo. Así en la ecuación 2 = 1 + ( - 0,9), en la que la incógnita aparece tras el signo de aritmo, es arítmica. Para resolver este tipo de ecuaciones se utiliza la siguiente propiedad: 1) Para resolverlas se deben igualas los aritmos, es decir, que tengan ambas bases iguales. Log a b = a c b= c Un sistema de ecuaciones arítmicas es un sistema formado por ecuaciones arítmicas. Por ejemplo, + y³ = 5 /y = 1 Por otra parte: b) Si la función es decreciente para. a) Si la función es creciente para. 0,1 = 10-1 = -1 0,01 = 10-2 = -2 (Si la base no aparece es 10) PROPIEDADES: ) ( ) ) ( ) Resuelve la ecuación 2 = 1 + ( - 0,9). solución: ² = 10 + ( - 0 9) ² = [10 ( - 0 9)] ² = 10 ( - 0 9) ² = ² = 0 aplicando la fórmula general = = (10 ± )/2 = (10 ± 64)/2 = (10 ± 8)/2 = 5 ± 4 Hay dos soluciones: = 9 y = 1 Ecuaciones eponenciales que se resuelven utilizando aritmos Resolver la ecuación 2 = 57. Solución: Tomando aritmos en ambos miembros, 2 = = 57 = 57/ 2 = 1,7558/0,3010 = 5,8332 Resolución de sistemas de ecuaciones arítmicas + y³ = 5 1) Resolver el sistema: /y = 1 Solución: y³ = 10 5 y³ = 10 5 /y = 10 /y = 10 = 10.y 10 y 4 = 10 5 y 4 = 10 4 y = 10 (El resultado y = -10 no tiene sentido.) Como = 10 y = = 100 APLICACIÓN DE LOS LOGARITMOS A LAS ECUACIONES EXPONENCIALES Una ecuación eponencial puede ser resuelta cuando sus bases son iguales, cuando no son iguales, se pueden usar aritmos para resolver estas ecuaciones. Ej.: 2 = 3 Como las bases no son iguales se aplica aritmo a ambos lados de la igualdad; 2 = 3 Por propiedad de aritmo de una potencia: 2 =. 3

6 PÁGINA: 6 de 8 Ecuaciones con aritmos Resuelve la ecuación: 4 = = = =400 2 =400 =±20 Despejando resulta: Ejemplo Representa y estudia las funciones a) f()=2 3 Dominio=(0,+ ) Recorrido= Asíntota: =0 ACTIVIDADES DE APROPIACIÓN 1.-Determina el valor de : a) 2 3 b) d) 2 e) g) 3 2 h) j) 2 k) 5 c), 3 f) 0 3 i) )El tamaño de cierto cultivo de bacterias se multiplica por cada 30 minutos. Si suponemos que el cultivo tiene inicialmente 5 millones de bacterias, dentro de cuántas horas tendrá 320 millones de bacterias?. 11)En qué se convierte al cabo de 15 años un capital de $ al 5,5% anual? 2)Desarrolla aplicando las propiedades de los aritmos: a) (2ab) 5 d) a b h) 2a 4 b 3 a 2a b) 4 c) 3 2 f) e) ab 3a 3 b i) c Calcula: 5 j) 3)Calcula el número: a) cuyo aritmo en base 6 es 3. b) cuyo aritmo en base 4 es -3. c) cuyo aritmo en base 10 es 2. d) cuyo aritmo en base 1/2 es -3. e) cuyo aritmo en base 1/5 es 2. 4)Representa y estudia las funciones a) f()=4 2 b) f()= a) f()= = )Resuelve las ecuaciones eponenciales: a) =16 b) =93 c) =8 d) =1 e) =1 6)Aplicando las propiedades de los aritmos resuelve las ecuaciones: a) (32+2) 2 (4-) = 0 b) 2 (-16) = 2 ab 2y g) 2 12) Para qué valores de la función indicada es decreciente?: a) f()= b) f()= )Calcula en cada caso aplicando la definición de aritmo: f) 1/81= c) 381= g) 1/525= d) 3(1/9)= h) 1/2(1/16)= 14)Representa y estudia las funciones a) f()= = Cuál es el área de los rectángulos de la figura? 16. Cuál es el valor de en la ecuación Área = base altura

7 PÁGINA: 7 de 8 c) 2 = -2 d) 2 ( 16) 2 e) ) Solucionar el sistema: + y = 2 - y = 20 8)Construye una tabla de valores de una función eponencial en cada caso y escribela epresión algebraica. a) f(-2)=2/9, y constante de crecimiento 3 b) f(0)=3, y constante de decrecimiento ¼ 9)Calcula en cuánto se convierte un capital de $ colocado al 4,5% anual durante 3 años = 155? A) 1 B) 2 C) 3 D) 1/3 E) Cuál de las siguientes afirmaciones es FALSA? A) El aritmo de 1 en cualquier base, siempre es 0. B). a a = 2 C) La base de un aritmo no puede ser negativa D) El aritmo de una suma es el producto de los aritmos E) El aritmo de un cociente es la diferencia de los aritmos SOCIALIZACIÓN 1) Puesta en común del trabajo desarrollado. 2) Retroalimentación de posibles dudas. 3) Evaluación escrita del tema visto. 4)Se evalúa la participación activa de todos los estudiantes. 5) Revisión de corrrecciones. 6) Revisión del trabajo desarrollado COMPROMISO 1)Resuelve las siguientes ecuaciones: 1) ) ) 4 3 e ) ) )Resolver la ecuación = /2 3)Reduce a un solo aritmo a) a + b b) y 1 1 c) y 2 2 d) 4)Resolver la ecuación = /2 5)Resolver la ecuación = 1/40 6)Resolver 4³. = )Desarrolla aplicando las propiedades de los aritmos: a) (2ab) = 2 + a + b 3a 3 a 4 b) c) a b 5 a 4 b 8) Resolver el sistema: y = y = 128

8 PÁGINA: 8 de 8 ELABORÓ REVISÓ APROBÓ NOMBRES YAIRA RINCON ALEXANDRA URIBE CARGO Docentes de Área Jefe de Área Coordinador Académico

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

Funciones racionales, exponenciales y logarítmicas

Funciones racionales, exponenciales y logarítmicas Funciones racionales, eponenciales y logarítmicas Contenidos 1. Funciones racionales Función de proporcionalidad inversa Las asíntotas Otras funciones racionales 2. Funciones eponenciales Características

Más detalles

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA.

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. DP. - AS - 9 Matemáticas ISSN: 988-79X SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. PROPIEDADES INMEDIATAS 00 log a a 00 log a 00 log a a 00 a a log Calcula algebraicamente el valor de las epresiones o el

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes

Más detalles

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera

Más detalles

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15 GUIA DE TRABAJO PRACTICO Nº 5 PAGINA Nº 86 GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 5 OBJETIVOS: Lograr que el Alumno: Interprete las Funciones Eponenciales Distinga Modelos Matemáticos epresados mediante

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

MATE3012 Lección 12. Funciones Logarítmicas. 1/19/2013 Prof. José G. Rodríguez Ahumada 1 de 19

MATE3012 Lección 12. Funciones Logarítmicas. 1/19/2013 Prof. José G. Rodríguez Ahumada 1 de 19 MATE30 Lección Funciones Logarítmicas /9/03 Prof. José G. Rodríguez Ahumada de 9 Actividades. Teto: Capítulo 6 - Sección 6.3 Logaritmos. Ejercicios de Práctica: Páginas 6, 7; problemas impares al 60; Use

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA

FUNCIONES EXPONENCIAL Y LOGARÍTMICA FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante

Más detalles

Unidad 1 Lección 1.2. Funciones Logarítmicas. 23/04/2014 Prof. José G. Rodríguez Ahumada 1 de 19

Unidad 1 Lección 1.2. Funciones Logarítmicas. 23/04/2014 Prof. José G. Rodríguez Ahumada 1 de 19 Unidad Lección. Funciones Logarítmicas /04/04 Prof. José G. Rodríguez Ahumada de 9 Actividades. Referencias: Capítulo 4 - Sección 4. Funciones Logarítmicas; Ejercicios de Práctica: Páginas 49, 50 y 5:

Más detalles

SOLUCIONARIO Función exponencial

SOLUCIONARIO Función exponencial SOLUCIONARIO Función eponencial SGUICES06MT1-AV1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Función eponencial Ítem Alternativa 1 E C C 4 D C 6 C 7 D 8 E 9 D Comprensión 10 A 11 C 1 B Comprensión 1 A 14 D Comprensión

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

y x, se llama función potencial, y cuando además el exponente es un y 5.

y x, se llama función potencial, y cuando además el exponente es un y 5. 7 CAPÍTULO : FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS.. FUNCIONES EXPONENCIALES.. Función eponencial Ha dos tipos de funciones cua epresión analítica o fórmula es una potencia: Si la variable

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

matemáticas 4º ESO exponenciales y logaritmos

matemáticas 4º ESO exponenciales y logaritmos coleio martín códa departamento de matemáticas matemáticas º ESO eponenciales logaritmos eponenciales una eponencial es cualquier epresión de la forma: a donde a (que se denomina base) es un número distinto

Más detalles

Taller de Matemáticas IV

Taller de Matemáticas IV Taller de Matemáticas IV Universidad CNCI de Méico Temario. Funciones polinomiales factorizables.. Teorema del residuo.. Teorema del factor... Raíces (ceros) racionales de funciones polinomiales.. Teorema

Más detalles

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en: Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Introducción a las Funciones Logarítmicas MATE 3171

Introducción a las Funciones Logarítmicas MATE 3171 Introducción a las Funciones Logarítmicas MATE 3171 Logaritmos de base a Anteriormente repasamos que para 0 < a < 1 o a > 1, la función exponencial f(x) = a x es uno-a-uno, y por lo tanto tiene una función

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES 1. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

COL LEGI INTERNACIONAL SEK-CATALUNYA ÀMBIT CIENTÍFICO TÈCNIC MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS SEK-CATALUNYA SISTEMA EDUCATIU SEK

COL LEGI INTERNACIONAL SEK-CATALUNYA ÀMBIT CIENTÍFICO TÈCNIC MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS SEK-CATALUNYA SISTEMA EDUCATIU SEK MATEMÀTIQUES ESO / NOM I COGNOMS EVALUACIÓN DE LA UNIDAD : SEK-CATALUNYA COL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aula INTEL LIGENT AUTOEVALUACIÓN UNIDAD :FUNCIONES II, EXPONENCIALES Y LOGARITMOS Ámbito

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

2 x. log = logaritmo, por definición, debe ser positiva, es decir, x > 0. Luego x=2. 8 no es exacto, pues

2 x. log = logaritmo, por definición, debe ser positiva, es decir, x > 0. Luego x=2. 8 no es exacto, pues EXPONENCIALES Y LOGARÍTMICAS PROFESOR: ANTONIO PIZARRO http://ficuspnticmeces/apis000 ) Hallar el eponente al que ha que elevar 7 para obtener 0 Piden hallar para que 7 0 7 7 7 7 ) Calcular el aritmo en

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

TEMARIO: PRIMERA EVALUACIÓN LOGARITMOS: DEFINICIÓN. PROPIEDADES. ECUACIONES LOGARÍTMICAS. RADICALES: OPERACIONES. RACIONALIZACIÓN Y SIMPLIFICACIÓN.

TEMARIO: PRIMERA EVALUACIÓN LOGARITMOS: DEFINICIÓN. PROPIEDADES. ECUACIONES LOGARÍTMICAS. RADICALES: OPERACIONES. RACIONALIZACIÓN Y SIMPLIFICACIÓN. TEMARIO: PRIMERA EVALUACIÓN LOGARITMOS: DEFINICIÓN. PROPIEDADES. ECUACIONES LOGARÍTMICAS. RADICALES: OPERACIONES. RACIONALIZACIÓN Y SIMPLIFICACIÓN. EXPONENTES FRACCIONARIOS. ARITMÉTICA MERCANTIL: INTERÉS

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

Tema 2. FUNCIONES REALES DE VARIABLE REAL

Tema 2. FUNCIONES REALES DE VARIABLE REAL UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento

Más detalles

Chapter Audio Summary for McDougal Littell Algebra 2

Chapter Audio Summary for McDougal Littell Algebra 2 Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación

Más detalles

RESUMEN DEL MÓDULO. Aprendizajes Esperados

RESUMEN DEL MÓDULO. Aprendizajes Esperados RESUMEN DEL MÓDULO MÓDULO: INTRODUCCIÓN A LA MATEMÁTICA UNIDAD DE COMPETENCIA: Resolver problemas matemáticos relacionados con el mundo de la economía, los negocios, la tecnología y otros fenómenos socioeconómicos,

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

7. EXPONENCIALES Y LOGARITMOS

7. EXPONENCIALES Y LOGARITMOS 7. EXPONENCIALES Y LOGARITMOS En esta Unidad estudiaremos y analizaremos las funciones y ecuaciones eponenciales y logarítmicas. Comenzaremos con las funciones eponenciales para luego continuar con ecuaciones

Más detalles

Tercero Medio MATEMÁTICA

Tercero Medio MATEMÁTICA Guía de ejercitación Funciones: eponencial, logarítmica raíz cuadrada Programa Tercero Medio MATEMÁTICA I. Mapa conceptual FUNCIONES Son de la forma Son de la forma Son de la forma f() = a f() = log a

Más detalles

NÚMEROS REALES 2, FUNCIONES ORIENTADOR: ESTUDIANTE: FECHA:

NÚMEROS REALES 2, FUNCIONES ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA : PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: NÚMEROS REALES, FUNCIONES SEGUNDO EJES TEMÁTICOS La recta numérica Suma de Números Enteros Resta de

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

INSTITUCIÓN EDUCATIVA RODOLFO LLINÁS RIASCOS. ÁREA: Matemáticas ASIGNATURA: Cálculo GRADO: 11 _ DOCENTE: Henry Herrera S AÑO: 2013

INSTITUCIÓN EDUCATIVA RODOLFO LLINÁS RIASCOS. ÁREA: Matemáticas ASIGNATURA: Cálculo GRADO: 11 _ DOCENTE: Henry Herrera S AÑO: 2013 INSTITUCIÓN EDUCATIVA RODOLFO LLINÁS RIASCOS ÁREA: Matemáticas ASIGNATURA: Cálculo GRADO: 11 _ DOCENTE: Henry Herrera S AÑO: 2013 PERÍODO 1º CONTENIDOS MEDIATIZADORES Características y propiedades de los

Más detalles

Tema 1: Otros tipos de ecuaciones. En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado.

Tema 1: Otros tipos de ecuaciones. En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado. Tema 1: Otros tipos de ecuaciones En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado. Ecuaciones polinómicas Caso general: son las formadas por un polinomio igualado a cero.

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial . Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:

Más detalles

Sol: a) x=3; b) x=25; c) x=1/5; d) x=9; e) x=5/2; f) x=4; g) 3/2; h) x=-3; i) -2; j) -2; k) x=3/4; l) x=3; m) x=2/3; n) x=-1/2.

Sol: a) x=3; b) x=25; c) x=1/5; d) x=9; e) x=5/2; f) x=4; g) 3/2; h) x=-3; i) -2; j) -2; k) x=3/4; l) x=3; m) x=2/3; n) x=-1/2. ejercicioseamenes.com FUNCION EXPONENCIAL. Halla "": a) b) /6 - d) e) f) g) 8 h) - - i) j) 6 k) 8 Sol: a) ; b) -; ; d) /; e) -/; f) "; g) 7/; h) "; i) /; j) /; k) -/. Halla "": a) 7 / b) / d) / 7 e) f)

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

LOGARITMOS página 147

LOGARITMOS página 147 LOGARITMOS página 147 página 148 INSTITUTO VALLADOLID PREPARATORIA 8 LOGARITMOS 8.1 CONCEPTOS Y DEFINICIONES Una función exponencial es aquella en la que la variable está en el exponente. Ejemplos de funciones

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

e. Ninguna de las anteriores

e. Ninguna de las anteriores uupr Departamento de Ciencias Matemáticas RUM MATE Tercer Eamen Parcial de noviembre de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada pregunta minuciosamente. No se permite el uso

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

La asignatura de Matemática estimula el desarrollo de diversas habilidades:

La asignatura de Matemática estimula el desarrollo de diversas habilidades: La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,

Más detalles

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011 MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

ECUACIONES Y SISTEMAS

ECUACIONES Y SISTEMAS http://catedu.es/matryc ECUACIONES Y SISTEMAS ÍNDICE 1.- ECUACIONES Y SOLUCIONES 2.- ECUACIONES POLINÓMICAS 2.1.- Ec. polinómicas de 1º grado 2.2.- Ec. polinómicas de 2º grado 2.3.- Ec. bicuadradas 2.4.-

Más detalles

Guía de Materia Matemáticas Funciones

Guía de Materia Matemáticas Funciones Guía de Materia Matemáticas Funciones Funciones Definición: Una función de en es una relación de en en la que cada elemento del conjunto se relaciona con uno solo un elemento de Ejemplo f a m n b q r c

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

IES DIONISIO AGUADO LA FUNCION LOGARITMO

IES DIONISIO AGUADO LA FUNCION LOGARITMO LA FUNCION LOGARITMO En tu calculadora hay dos teclas que todavía no has usado, son las designadas por y Ln. Si haces 00 el resultado es, si haces 000 el resultado es, si haces el resultado es 0, si haces

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved. 4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

DEPARTAMENTO DE MATEMATICAS MATEMÁTICAS: DEL BACHILLERATO A LA UNIVERSIDAD

DEPARTAMENTO DE MATEMATICAS MATEMÁTICAS: DEL BACHILLERATO A LA UNIVERSIDAD DEPARTAMENTO DE MATEMATICAS MATEMÁTICAS: DEL BACHILLERATO A LA UNIVERSIDAD Cali, Noviembre 2.005 1 ESTANDARES BÁSICOS DE COMPETENCIAS EN MATEMÁTICAS Y EL PROYECTO EDUCATIVO INSTITUCIONAL (P. E. I.) Esp.

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias

Más detalles

MATEMÁTICAS. PRIMERO DE E.S.O.

MATEMÁTICAS. PRIMERO DE E.S.O. MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍODO DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍODO DESCRIPCIÓN DE CONTENIDOS GRADO: 7º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Carina Candelario UNIDAD Nº 3 NOMBRE DE LA UNIDAD: Operemos con números Racionales Aplicar las operaciones de números fraccionarios comunes y decimales,

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles