CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE"

Transcripción

1 CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE El objetivo de este curso es la presentación de las técnicas econométricas básicas, tanto clásicas como modernas, y su tratamiento con las herramientas más adecuadas de cálculo automatizado. Se utilizarán los paquetes de software más habituales, como son EVIEWS, STATA, SAS, SPSS, STATGRAPHICS y EXCEL, para abordar de modo sencillo el trabajo econométrico. En cuanto a la metodología, los capítulos se iniciarán con la exposición de los conceptos y notas teóricas adecuadas, para resolver a continuación una variedad de ejercicios que cubran los conceptos expuestos. No se trata, por tanto, de hacer una exposición teórica completa con demostraciones, sino de recopilar la mayor parte de los conceptos econométricos e ilustrarlos con la práctica a través de las herramientas de software adecuadas y más habituales en el trabajo econométrico práctico. El contenido comienza tratando en profundidad el modelo lineal de regresión múltiple (hipótesis, estimación, inferencia y predicción), así como el tratamiento de los problemas de autocorrelación, heteroscedasticidad, multicolinealidad, no linealidad, falta de normalidad y mala especificación del modelo. A continuación se profundiza en los modelos del análisis de la varianza, la covarianza y los modelos mixtos. El último bloque de contenido se ocupa del análisis univariante de series temporales incluyendo modelos deterministas, modelos ARIMA, modelos de intervención y modelos de la función de transferencia. El temario exhaustivo del curso se presenta a continuación: Capítulo 1. Modelo lineal de regresión múltiple. Hipótesis, Estimación, inferencia y predicción Modelo lineal de regresión múltiple Hipótesis en el modelo lineal Hipótesis relativas a la perturbación aleatoria Hipótesis relativas a los regresores Hipótesis relativas al vector de parámetros Hipótesis relativas a la forma funcional Estimación del modelo lineal por mínimos cuadrados ordinarios MCO Estimación del modelo lineal por máxima verosimilitud Inferencia en el modelo por mínimos cuadrados ordinarios MCO Predicciones Predicciones puntuales y en media Capacidad predictiva de un modelo

2 Selección de modelos de regresión Análisis de los residuos Modelo lineal con restricciones Regresión con variables cualitativas: variables ficticias Modelos de regresión con variables cualitativas Variables ficticias en el análisis estacional Variables ficticias en la regresión por tramos Capítulo 2. Modelo lineal de regresión múltiple. Herramientas de software EVIEWS y el trabajo básico con el modelo de regresión múltiple SPSS y el trabajo básico con el modelo de regresión múltiple STATGRAPHICS y el trabajo básico con el modelo de regresión múltiple SAS y el trabajo básico con el modelo de regresión múltiple EXCEL y el trabajo básico con el modelo de regresión múltiple STATA y el trabajo básico con el modelo de regresión múltiple Capítulo 3. Autocorrelación, heteroscedasticidad, multicolinealidad, no linealidad y normalidad Modelos con autocorrelación Detección de la autocorrelación Estadístico DW de Durbin-Watson Estadístico h de Durbin Estadístico D4 de Wallis (datos trimestrales) Razón de Von Neumann Prueba de Breusch-Godfrey Soluciones para la autocorrelación Método de mínimos cuadrados generalizados Método de Prais-Winsten Método iterativo de Cochrane-Orcutt Método de Durbin Modelos con heteroscedasticidad Detección de la heteroscedasticidad Contraste de Goldfeld-Quandt Contraste de Glesjer Contraste W de White Contraste RESET de Ramsey Contraste de Breush-Pagan Heteroscedasticidad condicional. Contrastes ARCH y GARCH Contraste de rangos Soluciones para la heteroscedasticidad Mínimos Cuadrados Generalizados y Mínimos Cuadrados Ponderados Ajuste de White Soluciones para la heteroscedasticidad condicional: modelos ARCH y GARCH Multicolinealidad Detección de la multicolinealidad Soluciones para la multicolinealidad Normalidad residual El problema de la falta de normalidad en los residuos Soluciones para la falta de normalidad en los residuos No linealidad y errores de especificación Error de especificación en la selección de las variables explicativas Error de especificación en la forma funcional

3 Exogeneidad y regresores estocásticos El método de las variables instrumentales El estimador de mínimos cuadrados en dos etapas MC2E El contraste de Hausman Análisis de la influencia Influencia a priori (Leverage) Distancia de Mhalanobis Criterio de los residuos eliminados Influencia a posteriori: estadísticos de Cook y DFFITS Capítulo 4. Herramientas para tratar autocorrelación, Heteroscedasticidad y otros problemas Tratamiento de la autocorrelación y la heteroscedasticidad con Eviews Eviews y los modelos ARCH Y GARCH Endogeneidad, variables instrumentales y mínimos cuadrados en dos etapas con Eviews SPSS y modelos con regresores estocásticos. Variables instrumentales y M.C. en dos fases SPSS y modelos con heteroscedasticidad y multicolinealidad. Mínimos cuadrados ponderados SPSS y modelos con autocorrelación. Métodos M.V., COCHRANE-ORCUTT y PRAIS- WINSTEN STATGRAPHICS, heteroscedasticidad, autocorrelación y multicolinealidad SAS y la multicolinealidad, autocorrelación y heteroscedasticidad SAS y los modelos ARCH Y GARCH STATA y la multicolinealidad, autocorrelación y heteroscedasticidad Capítulo 5. Modelos del análisis de la varianza y la covarianza, Modelo Lineal General y modelos mixtos Modelos del análisis de la varianza y la covarianza Modelo ANOVA con un solo factor. Efectos fijos y aleatorios Contrastes múltiples de igualdad de medias Contrastes múltiples de igualdad de varianzas Modelo ANOVA con dos factores. Efectos fijos, aleatorios y mixtos Modelo ANOVA con tres factores Modelo en cuadrado latino Modelos ANCOVA de la covarianza simple Modelo con un factor y un covariante Modelo con dos factores y un covariante Modelos con dos factores y dos covariantes Análisis multivariante de la varianza (MANOVA) Análisis multivariante de la varianza con un factor Análisis multivariante de la varianza con dos factores Análisis multivariante de la covarianza (MANCOVA) Modelo Lineal General (GLM) Modelos lineales mixtos Capítulo 6. Herramientas para los modelos del análisis de la varianza, la covarianza y los modelos mixtos SPSS y el modelo ANOVA de un factor SPSS y los modelos ANOVA y ANCOVA univariantes

4 de uno y varios factores SPSS y la estimación de las componentes de la varianza en modelos ANCOVA de efectos mixtos SPSS y los modelos MANOVA y MANCOVA multivariantes de uno y varios factores SPSS y los modelos del análisis de la varianza y la covarianza con medidas repetidas SPSS y los modelos lineales mixtos Análisis de la varianza simple y múltiple con SAS: Procedimiento ANOVA Análisis de la varianza y la covarianza con SAS: Procedimiento GLM Componentes de la varianza en SAS. Procedimiento VARCOMP Modelos jerárquicos (anidados) en SAS: Procedimiento NESTED Procedimiento GLM SAS y los modelos mixtos. PROC MIXED STATA y el análisis de la varianza-covarianza, el modelo GLM y los modelos mixtos STATGRAPHICS y los modelos del análisis de la varianza y la covarianza Capítulo 7. Análisis univariante de series temporales. Modelos ARIMA, intervención y función de transferencia Series temporales Descomposición clásica de una serie temporal Tendencia de una serie temporal: ajuste analítico, medias móviles y diferencias Variaciones estacionales: medias móviles, diferencias estacionales y variables ficticias Variaciones cíclicas Predicción y suavizado de series temporales. Métodos autoproyectivos Deterministas Suavizado por medias móviles Suavizado lineal de Holt Suavizado exponencial de Brown Suavizado estacional de Winters Predicciones incondicionales estocásticas Modelos ARIMA: Primeros conceptos... Series temporales y procesos estocásticos. Características Procesos estocásticos estacionarios. Funciones de autocorrelación y autocorrelación parcial Series temporales estacionarias. Detección de la estacionariedad Modelos autorregresivos AR(p) Modelos de medias móviles MA(q) Modelos ARMA(p,q) Modelos ARIMA(p,d,q) La metodología Box Jenkins en modelos ARIMA Identificación de modelos ARIMA Estimación de modelos ARIMA(p,d,q) Diagnóstico, validación o contraste de modelos ARIMA(p,d,q) Predicción en modelos ARIMA Series temporales estacionales. Detección de la estacionalidad Modelos estacionales puros Modelos autorregresivos estacionales AR(P)s Modelos de medias móviles estacionales MA(Q)s Modelos estacionales ARMA(P,Q)s Modelos ARIMA(P,D,Q)s estacionales puros

5 Identificación de modelos estacionales puros Modelos estacionales generales Modelos estacionales generales con parte regular autorregresiva. Identificación Modelos estacionales generales con parte regular de media móvil. Identificación Identificación de modelos estacionales ARIMA(p,d,q)(P,D,Q)s Estimación de modelos estacionales ARIMA(p,d,q)(P,D,Q)s Validación de modelos ARIMA(p,d,q)(P,D,Q)s y predicción Modelos de intervención Variables escalón e impulso Modelo de intervención general Identificación de modelos de intervención Valores atípicos (Otliers) Tipos de outliers Outliers aditivos (AO) Outliers innovacionales (IO) Outliers de cambio en nivel (LS) Outliers de cambio temporal (TC) Modelo univariante de la función de transferencia Identificación, estimación y validación del modelo de la función de transferencia Etapas de la identificación, estimación y validación del modelo de la función de transferencia Modelos de la función de transferencia estacionales... Capítulo 8. Herramientas para el análisis univariante de series temporales. Eviews y la identificación, estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s Eviews y los modelos ARIMA y de intervención Tramo/Seats X11 ARIMA X12 ARIMA Eviews y los métodos de medias móviles: Alisados exponenciales y de Holt Winters SAS y la identificación, estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s Procedimiento ARIMA Procedimiento X11 Procedimiento X12 SPSS y la identificación de modelos ARIMA(p,d,q)(P,D,Q)s SPSS y la estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s STATGRAPHICS y la identificación de modelos ARIMA(p,d,q)(P,D,Q)s STATGRAPHICS y la estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s STATGRAPHICS y la identificación y predicción automática de modelos ARIMA(p,d,q)(P,D,Q)s Suavizado y variaciones estacionales en SAS, SPSS y STATGRAPHICS Suavizado con SPSS Variaciones estacionales con SPSS Suavizado con STATGRAPHICS

6 Variaciones estacionales y componentes de una serie con STATGRAPHICS Suavizado con SAS SAS y los modelos de intervención y función de transferencia STATA y los modelos ARIMA(p,d,q)(P,D,Q)s Suavizado con STATA

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

MÓDULO: MÉTODOS CUANTITATIVOS

MÓDULO: MÉTODOS CUANTITATIVOS MÓDULO: MÉTODOS CUANTITATIVOS 1.- Nombre del módulo y las asignaturas: Métodos Cuantitativos Econometría Avanzada Econometría Financiera 2.-Número de créditos ECTS: Econometría Avanzada: 6 ECTS. Econometría

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Tema 5: Planteamiento de los modelos de series temporales. Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II

Tema 5: Planteamiento de los modelos de series temporales. Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II Tema 5: Planteamiento de los modelos de series temporales Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II 1 Parte II. Modelos univariantes de series temporales Tema

Más detalles

Econometría Financiera

Econometría Financiera Econometría Financiera El objetivo de este curso es desarrollar en forma didáctica y sencilla, los fundamentos del análisis econométrico de los mercados financieros. Al mismo tiempo que, guiamos al alumno

Más detalles

1.8. Número de créditos/credit allotment

1.8. Número de créditos/credit allotment 1.1. ASIGNATURA/COURSE TITLE Estadística y Econometría para Finanzas/Statistics and Econometrics in Finance 1.2. Código /Course number 30521 1.3. Materia/ Content area Estadística, Econometría, Finanzas./Statistics,

Más detalles

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco Datos de Panel Guía para el uso de Eviews Alfredo Baronio Ana Vianco Departamento de Matemática y Estadística Facultad de Ciencias Económicas Universidad Nacional de Río Cuarto Noviembre de 2014 1 Contenido

Más detalles

Plan de Trabajo Docente

Plan de Trabajo Docente Plan de Trabajo Docente Rendimiento académico (Art. 20 punto 11) OCA 1560/11) correspondiente a: Asignatura: ECONOMETRÍA II Ciclo Académico: 2014 Conceptos Total Inscriptos Método A (sin descontar ausentes)

Más detalles

SERIES TEMPORALES LIBROS Y CUADERNOS DE MATEMÁTICA. La ciencia y el arte de la modelación y los pronósticos HOLGER CAPA SANTOS

SERIES TEMPORALES LIBROS Y CUADERNOS DE MATEMÁTICA. La ciencia y el arte de la modelación y los pronósticos HOLGER CAPA SANTOS LIBROS Y CUADERNOS DE MATEMÁTICA DE LA ESCUELA POLITÉCNICA NACIONAL HOLGER CAPA SANTOS SERIES TEMPORALES La ciencia y el arte de la modelación y los pronósticos Libro de Matemática No. 14 SERIES TEMPORALES:

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

Modelos de predicción. Presentación de la asignatura

Modelos de predicción. Presentación de la asignatura Modelos de predicción Presentación de la asignatura Profesores María Jesús Sánchez Naranjo (mariajesus.sanchez@upm.es) Carolina García-Martos (garcia.martos@upm.es) Qué esperáis de esta asignatura? Qué

Más detalles

Regresión con heterocedasticidad y autocorrelación

Regresión con heterocedasticidad y autocorrelación Regresión con heterocedasticidad y autocorrelación Tema 6 Regresión con heterocedasticidad La heterocedasticidad significa que var( i ) cte Es la norma, no la excepción, en especial con datos transversales

Más detalles

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE ESTADÍSTICO Y ECONOMÉTRICOS Nº 004 TI CMACT

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE ESTADÍSTICO Y ECONOMÉTRICOS Nº 004 TI CMACT "AÑO DE LA UNIÓN NACIONAL FRENTE A LA CRISIS EXTERNA". INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE ESTADÍSTICO Y ECONOMÉTRICOS Nº 004 TI CMACT 1. NOMBRE DEL AREA Departamento de Tecnología de Información

Más detalles

DEPARTAMENTO DE ANÁLISIS ECONÓMICO PROGRAMA DE ECONOMÍA POLÍTICA, HOMOLOGACIÓN DEL TÍTULO DE LICENCIADO EN ECONOMÍA

DEPARTAMENTO DE ANÁLISIS ECONÓMICO PROGRAMA DE ECONOMÍA POLÍTICA, HOMOLOGACIÓN DEL TÍTULO DE LICENCIADO EN ECONOMÍA DEPARTAMENTO DE ANÁLISIS ECONÓMICO PROGRAMA DE ECONOMÍA POLÍTICA, HOMOLOGACIÓN DEL TÍTULO DE LICENCIADO EN ECONOMÍA BLANCO, J. M. y J. AZNAR. Introducción a la Economía: Teoría y Práctica. Mc Graw- Hill.

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

CUERPO SUPERIOR FACULTATIVO, OPCIÓN ESTADÍSTICA

CUERPO SUPERIOR FACULTATIVO, OPCIÓN ESTADÍSTICA CUERPO SUPERIOR FACULTATIVO, OPCIÓN ESTADÍSTICA I.-ESTADÍSTICA GENERAL Y MUESTREO Tema 1.-Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de la probabilidad. Sucesos independientes.

Más detalles

Presentación de la tercera edición Autores

Presentación de la tercera edición Autores ÍNDICE DE CAPÍTULOS Presentación de la tercera edición Autores 1 Introducción a los métodos de la epidemiología y la bioestadística... 1 M.A. Martínez-González, A. Sánchez-Villegas, J. de Irala 1.1. Estadística,

Más detalles

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5 Estadística Industrial Universidad Carlos III de Madrid Series temporales Práctica 5 Objetivo: Análisis descriptivo, estudio de funciones de autocorrelación simple y parcial de series temporales estacionales.

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística PROGRAMA DE ESTUDIOS A. Antecedentes Generales. - Nombre de la asignatura : Taller de herramientas Estadísticas - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : LCP

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Modelo Econométrico sobre el Turismo

Modelo Econométrico sobre el Turismo Modelo Econométrico sobre el Turismo Ruth Rubio Rodríguez Miriam Gómez Sánchez Mercados 3ºA GMIM Índice Planteamiento del Problema..4 1. Estadísticos Descriptivos...5 2. Matriz Correlaciones 5 3. Gráfico

Más detalles

Introducción a la Identificación de sistemas

Introducción a la Identificación de sistemas Ingeniería de Control Introducción a la Identificación de sistemas Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Modelos deterministas

Más detalles

CARTA DESCRIPTIVA. Clave: ECO Créditos: 8. Conocimientos: Probabilidad y estadística. Algebra lineal. Econometría I.

CARTA DESCRIPTIVA. Clave: ECO Créditos: 8. Conocimientos: Probabilidad y estadística. Algebra lineal. Econometría I. I. Identificadores de la asignatura CARTA DESCRIPTIVA Clave: ECO121600 Créditos: 8 Materia: Econometría II Departamento: Ciencias Sociales Instituto: Ciencias Sociales Modalidad: Presencial Programa: Licenciatura

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

Revista Ingenierías Universidad de Medellín ISSN: Universidad de Medellín Colombia

Revista Ingenierías Universidad de Medellín ISSN: Universidad de Medellín Colombia Revista Ingenierías Universidad de Medellín ISSN: 1692-3324 revistaingenierias@udem.edu.co Universidad de Medellín Colombia Pérez Ramírez, Fredy Ocaris; Fernández Castaño, Horacio Análisis de la volatilidad

Más detalles

PRÁCTICA 11. VALORES ANÓMALOS OUTLIERS Y EFECTO CALENDARIO

PRÁCTICA 11. VALORES ANÓMALOS OUTLIERS Y EFECTO CALENDARIO PRÁCTICA 11. VALORES ANÓMALOS OUTLIERS Y EFECTO CALENDARIO Los modelos ARIMA constituyan una forma práctica de representar la dinámica de una serie. Ye hemos introducido en las prácticas anteriores el

Más detalles

Elaboración de un modelo econométrico.

Elaboración de un modelo econométrico. 1 Elaboración de un modelo econométrico. Con este documento se presenta una guía que puede servir al alumno de las asignaturas de Econometría para elaborar un informe o proyecto en el que se recojan los

Más detalles

Breve Introducción a las Series Temporales

Breve Introducción a las Series Temporales Breve Introducción a las Series Temporales 1 Series Temporales Colección de observaciones tomadas de forma secuencial en el tiempo {X t } t T. La hipótesis de independencia entre las observaciones puede

Más detalles

UPLA: Facultad de Ciencias Administrativas y Contables 1

UPLA: Facultad de Ciencias Administrativas y Contables 1 TEORÍA ES ALGO QUE SE HACE, NO ALGO QUE SE DICE QUE SE HACE N.N. 1 Universidad Peruana Los Andes Facultad de Ciencias Administrativas y Contables Métodos Cuantitativos de Negocios CAPITULO 2: MODELOS DE

Más detalles

PREDICIENDO EL PBI: QUÉ APORTAN LOS MÉTODOS CUANTITATIVOS? Versión Preliminar. Julio de 2002

PREDICIENDO EL PBI: QUÉ APORTAN LOS MÉTODOS CUANTITATIVOS? Versión Preliminar. Julio de 2002 PREDICIENDO EL PBI: QUÉ APORTAN LOS MÉTODOS CUANTITATIVOS? Versión Preliminar Julio de 2002 Elena Cuadrado Fernando Lorenzo Virginia Queijo Abstract En este trabajo se analizan las potencialidades y debilidades

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS FACULTAD: CIENCIAS ADMINSITRATIVAS Y CONTABLES CARRERA: ADMINISTRACIÓN DE EMPRESAS Asignatura/Módulo: Métodos Cuantitativos Aplicados a la Código: Administración Plan de estudios:

Más detalles

DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE VALLADOLID

DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE VALLADOLID d e p a r t a m e n t o d E 0.8 300 0.6 I O 0.4 250 0.2 50 100 200 150 200 250 www.eio.uva.es 300 150 universidad de valladolid e s t a d í s t i c a Ver.norm media desv. estand. o p e r a t i v a i n

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Diseño Asistido por Computadora Ingeniería Industrial Clave de la asignatura: (Créditos) SATCA 1 OPN-1307 0-6-6 2.- PRESENTACIÓN Caracterización

Más detalles

Econometría de Económicas

Econometría de Económicas Econometría de Económicas Casos 1 y 3 Análisis de diferentes formas funcionales en un modelo de Comercio Exterior. El problema de la heterocedasticidad. Curso 004-005 Profesoras Amparo Sancho Guadalupe

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

Series de Tiempo. Una Introducción

Series de Tiempo. Una Introducción Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Modelo de Predicción de Demanda Convencional de Gas. Autor: Alberto Ramirez Varas Tutor: Victor M. Ruiz Morcillo

Modelo de Predicción de Demanda Convencional de Gas. Autor: Alberto Ramirez Varas Tutor: Victor M. Ruiz Morcillo Modelo de Predicción de Demanda Convencional de Gas Autor: Alberto Ramirez Varas Tutor: Victor M. Ruiz Morcillo Fecha: 06/11/2015 Índice 1 Introducción... 1 1.1 Datos Demanda de Gas a nivel nacional...

Más detalles

Inmediatamente Impactante

Inmediatamente Impactante 2016 MEC. MASTER EN ECONOMETRÍA MEC. MASTER EN ECONOMETRIA 12 meses Enfoque práctico y currículum transformador Modalidad complemtante a distancia Online Ofrecemos una educación profunda con E-Views, SPSS,

Más detalles

CAUSALIDAD Y COINTEGRACION EN MODELOS ECONOMETRICOS: Aplicaciones a los países de la OCDE y limitaciones de los tests de cointegración

CAUSALIDAD Y COINTEGRACION EN MODELOS ECONOMETRICOS: Aplicaciones a los países de la OCDE y limitaciones de los tests de cointegración University of Santiago de Compostela. Faculty of Economics. Econometrics * Working Paper Series Economic Development. nº 61 CAUSALIDAD Y COINTEGRACION EN MODELOS ECONOMETRICOS: Aplicaciones a los países

Más detalles

DIPLOMADO EN ESTADÍSTICA APLICADA

DIPLOMADO EN ESTADÍSTICA APLICADA DIPLOMADO EN ESTADÍSTICA APLICADA DIPLOMADO EN ESTADÍSTICA APLICADA FUNDAMENTACIÓN El Diplomado en Estadística Aplicada posibilitará la actualización profesional y el desarrollo de competencias específicas

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelación con ARMA Método Box-Jenkins: Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): Time Series Analysis: Forecasting and

Más detalles

FACULTAD DE ENFERMERÍA Y FISIOTERAPIA FACULTAD DE ENFERMARÍA Máster en I e I en Cuidados de Salud

FACULTAD DE ENFERMERÍA Y FISIOTERAPIA FACULTAD DE ENFERMARÍA Máster en I e I en Cuidados de Salud PROGRAMA Oficial de Posgrado de la Universidad de Cádiz PLAN DE ESTUDIOS 0860 Máster en Innovación e Investigación en Cuidados de Salud COORDINADOR Mª Antonia Jesús de la Calle MÓDULO COMÚN ASIGNATURA

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA

TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA TÉCNICAS DE PROYECCIÓN DE MERCADO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS DE INGENIERÍA ÁMBITO DE LA PROYECCIÓN TÉCNICAS DE PROYECCIÓN DE MERCADO Ámbito de la proyección Situación presente Situación proyectada

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

N832 PRONÓSTICO PARA LA TOMA DE DECISIONES

N832 PRONÓSTICO PARA LA TOMA DE DECISIONES DES: Económico Administrativo Programa(s) Educativo(s): LAF Tipo de materia: EspecíficaObligatoria Clave de la materia: N832 Semestre: 8 Semestre UNIVERSIDAD AUTONOMA DE CHIHUAHUA Clave: 08MSU0017H FACULTAD

Más detalles

SERIES TEMPORALES. Isabel Molina Peralta. Departamento de Estadística Universidad Carlos III de Madrid. Roland Fried

SERIES TEMPORALES. Isabel Molina Peralta. Departamento de Estadística Universidad Carlos III de Madrid. Roland Fried SERIES TEMPORALES Isabel Molina Peralta Departamento de Estadística Universidad Carlos III de Madrid Roland Fried Department of Statistics Technique University of Dormund 1 CONTENIDO 0. Introducción. 1.

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

GRADO EN ECONOMIA SEGUNDO CURSO

GRADO EN ECONOMIA SEGUNDO CURSO GRADO EN ECONOMIA SEGUNDO CURSO Asignatura Estadística II Código 802354 Módulo Métodos cuantitativos Materia Carácter Obligatorio Presenciales 2,7 Créditos 6 No presenciales 3,3 Curso 2 Semestre 3 Estadística

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Análisis Multivariante de Datos en Psicología. Ana María López Curso

Análisis Multivariante de Datos en Psicología. Ana María López Curso Análisis Multivariante de Datos en Psicología Ana María López Curso 2006-2007 2007 Análisis Multivariante de Datos en Psicología Créditos teóricos: 2.5 Créditos prácticos: 2 PROGRAMA DE CONTENIDOS TEÓRICOS

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

Tabla de datos de la asignatura Asignatura: Métodos Estadísticos de la Ingeniería

Tabla de datos de la asignatura Asignatura: Métodos Estadísticos de la Ingeniería INGENIERO INDUSTRIAL Tabla de datos de la asignatura Asignatura: Métodos Estadísticos de la Ingeniería Titulación: INGENIERO INDUSTRIAL Ciclo: 1 Curso: 2 Carácter: Obligatoria Duración: Cuatrimestral Créditos

Más detalles

FACULTAD DE CIENCIAS JURÍDICAS Y ECONOMICAS

FACULTAD DE CIENCIAS JURÍDICAS Y ECONOMICAS FACULTAD DE CIENCIAS JURÍDICAS Y ECONOMICAS PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE ESTADÍSTICA II 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad: Departamento/Instituto:

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 26 - Junio - 2.8 Primera Parte - Test Nota : En la realización de este examen sólo esta permitido utilizar calculadoras que, a lo sumo, tengan funciones

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

Diplomado Especializado en Gestión del Riesgo de Crédito

Diplomado Especializado en Gestión del Riesgo de Crédito Diplomado Especializado en Gestión del Riesgo de Crédito 2015 1er Diplomado Especializado en Gestión del Riesgo de Crédito Objetivo Proveer a los participantes de los conocimientos teóricos y prácticos

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID ECONOMETRIA PRIMER PARCIAL 17 DE ENERO DE 2008 1.- A) La transformación estacionaria es SOLUCIONES

Más detalles

GRADO EN FINANZAS, BANCA Y SEGUROS TERCER CURSO

GRADO EN FINANZAS, BANCA Y SEGUROS TERCER CURSO Facultad de Ciencias Económicas y Empresariales GRADO EN FINANZAS, BANCA Y SEGUROS TERCER CURSO Asignatura Medición de riesgos Código 804985 Módulo Análisis Económico de entidades financieras y de seguros

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

Carrera: Ingeniería Bioquímica SATCA * 3-2-5

Carrera: Ingeniería Bioquímica SATCA * 3-2-5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Estadística Carrera: Ingeniería Bioquímica Clave de la asignatura: BQF-1007 SATCA * 3-2-5 2.- PRESENTACIÓN Caracterización de la asignatura. Esta asignatura

Más detalles

Series temporales. Series temporales

Series temporales. Series temporales Series temporales Series temporales Una serie temporal es una variable cuya evolución se sigue a lo largo del tiempo. Para obtenerla tomaremos observaciones de la variable a intervalos regulares de tiempo.

Más detalles

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES 1. CARRERA: Profesorado en Química 2. ASIGNATURA: Estadística y Probabilidad 3. AÑO LECTIVO: 2016 UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES 4. CARACTERES DE LA ASIGNATURA: Obligatoria 5.

Más detalles

CAPÍTULO VI PRONÓSTICO DE OPERACIONES. ADMINISTRACIÓN DE LA PRODUCCIÓN Enfoque Estratégico de la Calidad

CAPÍTULO VI PRONÓSTICO DE OPERACIONES. ADMINISTRACIÓN DE LA PRODUCCIÓN Enfoque Estratégico de la Calidad CAPÍTULO VI PRONÓSTICO DE OPERACIONES ADMINISTRACIÓN DE LA PRODUCCIÓN LOS PRONÓSTICOS Y EL CICLO OPERATIVO OPERACIONES PRONÓSTICO LOGISTICO PRONÓSTICO OPERACIONES/TECNOLOGICO PRONÓSTICO LABORAL FINANZAS

Más detalles

Técnicas y Métodos de Análisis Espacial. Seminario Análisis Espacial Nathaly de los Ángeles Mazo Septiembre 16 de 2010

Técnicas y Métodos de Análisis Espacial. Seminario Análisis Espacial Nathaly de los Ángeles Mazo Septiembre 16 de 2010 Técnicas y Métodos de Análisis Espacial Seminario Análisis Espacial Nathaly de los Ángeles Mazo Septiembre 16 de 2010 Consideraciones iníciales para el análisis espacial Abstracción (Transformación) El

Más detalles

Series de Tiempo. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencias de la Computación

Series de Tiempo. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencias de la Computación Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Semestre Primavera 2008 Tópicos en Minería de Datos Series de Tiempo Nombre: Gonzalo Ríos Profesor: Carlos Hurtado Fecha: 14 de Noviembre

Más detalles

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Apellidos, nombre Chirivella González, Vicente (vchirive@eio.upv.es) Departamento Centro Estadística e Investigación Operativa

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

PE - Probabilidad y Estadística

PE - Probabilidad y Estadística Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 GRADO EN INGENIERÍA

Más detalles

El Análisis de la Regresión a través de SPSS

El Análisis de la Regresión a través de SPSS El Análisis de la Regresión a través de SPSS M. D olores M artínez M iranda Profesora del D pto. E stadística e I.O. U niversidad de G ranada Referencias bibliográficas. Hair, J.F., Anderson, R.E., Tatham,

Más detalles

Métodos Prentice Hall, Inc. 4 1

Métodos Prentice Hall, Inc. 4 1 Métodos Cuantitativos i de Negocios Capítulo 3 Pronósticos y Simulación PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 7e Operations Management, 9e 2008 Prentice

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

Año académico GUÍA DOCENTE ESTADÍSTICA II Grado en Psicología. Profesorado: Jaume March

Año académico GUÍA DOCENTE ESTADÍSTICA II Grado en Psicología. Profesorado: Jaume March Año académico 2014-15 GUÍA DOCENTE ESTADÍSTICA II Grado en Psicología Profesorado: Jaume March Información general de la asignatura Denominación Carácter ESTADÍSTICA II Troncal Número de créditos ECTS

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Estadística FAD - 15 Galaz Lorca, Mirtha Kazmier, Leonard Hanke, John; Wichern, Dean

Estadística FAD - 15 Galaz Lorca, Mirtha Kazmier, Leonard Hanke, John; Wichern, Dean 17 - Estadística FAD - 15 Galaz Lorca, Mirtha Aplicaciones Estadísticas para el Sector Financiero. Curso de Formación a Distancia Mediatizado por Tecnología. Santiago, Chile: IEB, 2005. POBLACION Y CENSO;

Más detalles

ANÁLISIS DE SERIES TEMPORALES CON SPSS

ANÁLISIS DE SERIES TEMPORALES CON SPSS MODELOS SERIES TEMPORALES Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández ANÁLISIS DE SERIES TEMPORALES CON SPSS El análisis clásico

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Univariadas) Carlos Capistrán Carmona ITAM Serie de tiempo Una serie de tiempo es una sequencia de valores

Más detalles