Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple"

Transcripción

1 Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Tema 4. Problema de fereca etadítca e el modelo de regreó leal múltple. Itervalo de cofaza y cotrate para lo coefcete de regreó... Itervalo de cofaza para lo coefcete de regreó... Cotrate de hpóte para lo coefcete de regreó.. Itervalo de cofaza para la varaza. 3. Cotrate couto obre lo coefcete. 3.. Decompocó báca y cotrate de regreó. 3.. Iterpretacó de lo cotrate. 4. Correlacó e regreó múltple. 4.. El coefcete de determacó. 4.. El coefcete de determacó corregdo. Método de egreó Grado e Etadítca y Emprea Tema 4 /3. Itervalo de cofaza y cotrate para lo coefcete de regreó. Modelo: Y X U, U ~ NM (, I) perplao de Yˆ Xˆ, ˆ (X'X) X'Y regreó: Yˆ X(X'X) X' Y Y.. Itervalo de cofaza para lo coefcete de regreó. ˆ ˆ ~ (, N q ) ~ N (,) q dode q e el elemeto (+,+) de la matrz (X X) -. Pueto que, e geeral, erá decoocda, utlzaremo como etmador de la varaza, y etoce: ˆ ~ t q El tervalo de cofaza para el parámetro al vel (-)% e: IC ˆ ( ) t dode t - / e el percetl (- /)% de la ley t de Studet co -- grado de lbertad y q e el elemeto (+,+) de la matrz (X X) -. q Método de egreó Grado e Etadítca y Emprea Tema 4 3/3 Eemplo (Eercco 7): allar u I.C. para lo coefcete de regreó y del Eercco 4 (coumo de 8 provca epañola), co u vel de cofaza del 95%. Debemo calcular (para =,): IC ˆ ( ) t q Modelo etmado: y= x +.397x, dode x =º de automóvle por habtate, x =º de teléfoo por habtate, y= coumo. La varaza redual e =33.83 (, =5.8); --=5, (-)=.95, t - / = t.975 = X'X ( X'X) Suttuyedo e obtee lo guete tervalo para y :.53.57(5.8) , (5.8) , 574 I. C.( ). I. C.( ). 3 q.5 4 q 5.38 Método de egreó Grado e Etadítca y Emprea Tema 4 4/3.. Cotrate de hpóte para lo coefcete de regreó (cotrate de hpóte para u olo coefcete) póte de lo cotrate (o de lo tet): : : : (a) (b) (c) : : : Etadítco de cotrate: ˆ t ~ t q dode q e el elemeto (+,+) de la matrz (X X) -. Para u vel de gfcacó fado, la regoe de rechazo o: (a) (c) t t t, (b) t t, t, t t t, t t, / / / dode t -, t, t -/ o, repectvamete, lo percetle (- )%, % y (- /)% de la ley t de Studet co -- grado de lbertad.

2 Método de egreó Grado e Etadítca y Emprea Tema 4 5/3 póte del cotrate: Etadítco de cotrate: Cotrate de gfcacó dvduale : : ˆ t ~ t q dode q e el elemeto (+,+) de la matrz (X X) -. Para u vel de gfcacó fado, la regó de rechazo e: t t t t /, / /, dode t -/ e el percetl (- /)% de la ley t de Studet co -- grado de lbertad. Método de egreó Grado e Etadítca y Emprea Tema 4 6/3 Jutfcacó: egla práctca para aber lo coefcete o gfcatvo ) Calcular el correpodete etadítco t. ) S t >.5, el coefcete e gfcatvo () S -- 6 y =.5, el percetl (- /)% de la ley t de Studet co -- grado de lbertad toma valore e el tervalo [.96,.45], e decr: t 96., 45 /. eproducmo parte de la tabla de la dtrbucó t de Studet. Obervad como decrece el percetl 97.5% a medda que aumeta lo grado de lbertad: g.l. t Método de egreó Grado e Etadítca y Emprea Tema 4 7/3 Eemplo (Eercco 8): ealzar cotrate de gfcacó para lo coefcete de regreó y del Eercco 4 (coumo de 8 provca epañola), co u vel de gfcacó del 5%. t : : ˆ q : t : ˆ q o e gfcatvo dvdualmete t t o e gfcatvo dvdualmete t o rechazar (.5) rechazar (.) o e puede rechazar para.5,. Método de egreó Grado e Etadítca y Emprea Tema 4 8/3 Eercco 8 (cotuacó): Ambo coefcete coderado dvdualmete o o gfcatvo, e decr, que tato x (º de automóvle cada habtate) como x (º de teléfoo cada habtate) o parece lcar la varable depedete y (ídce de coumo global) medate u modelo leal. Atecó! Tal vez í podría lcar coutamete la varable y. Dpoemo de muy poca obervacoe (=8 dato). La tuacó podría cambar aumetáramo el tamaño de la muetra. El verdadero modelo podría er o leal.

3 Método de egreó Grado e Etadítca y Emprea Tema 4 9/3. Itervalo de cofaza para la varaza Utlzado que: ~ e cotruye el tervalo de cofaza para al vel (-)%: IC ) x /, x ( / dode x -/ y x / o, repectvamete, lo percetle (- /)% y (/)% de la ley ch-cuadrado co -- grado de lbertad. E muy frecuete cotrur I.C. de ua ola cola, del tpo: IC ( ), x dode x e el percetl % de la ley ch-cuadrado co -- grado de lbertad. Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Eemplo (Eercco 9): allar u I.C. para la varaza del Eercco 4 (coumo de 8 provca epañola), co u vel de cofaza del 95%. La varaza redual e =33.83 ( =5.8), --=5, -=.95, x - / = x.975 =.8, x / = x.5 =.83. El I.C. para la varaza e: 5 5 IC ( ) 33.83, , El I.C. para la devacó típca e: IC ( ) 3.63, 4.7 El I.C. a ua ola cola para la varaza, teedo e cueta que x = x.5 =.5, e: 5 IC ( ), 33.83, Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Método de egreó Grado e Etadítca y Emprea Tema 4 /3 3. Cotrate couto obre lo coefcete (o cotrate de regreó, ANOVA) 3. Decompocó báca y cotrate de regreó Coderemo el modelo: y x... x u,. Queremo cotratar la hpóte :... : tal que Iterpretacó: S fuera certa, el modelo quedaría y u, lo que mplcaría que fuera cuale fuee lo valore de la x, el valor de la varable repueta y ería u valor cotate. Eto gfca que, tomada de forma couta, la varable depedete o tee gua flueca (leal) obre la varable repueta y el tetar lcar el comportameto de la varable repueta a travé de u modelo leal ería u fracao. Ete cotrate e baa e la mma dea ya vta e el Tema obre el Aál de la Varaza (ADEVA o ANOVA) ) Decompocó de la varabldad: ( y y) ( yˆ y) ( y yˆ ) VT dode para =,,, yˆ ˆ ˆ x ˆ... x o lo valore autado o predcho, y o lo valore obervado, e =y -, o lo reduo. Matrcalmete: VT Y'Y y 'X'Y ˆ VE y VNE Y'Y 'X'Y ˆ dode ˆ ( ˆ, ˆ,..., ˆ )', Y ( y, y,..., y)', X e la matrz x(+) de lo regreore. VE VNE

4 Método de egreó Grado e Etadítca y Emprea Tema 4 3/3 Método de egreó Grado e Etadítca y Emprea Tema 4 4/3 ) Etadítco F Se puede probar que la hpóte ula :... e certa, etoce VT ~ y VE ~ Ademá, abemo que VNE ~ Y que VE y VNE o depedete. Por tato, VE VE F VNE ~ F, echazamo la hpóte ula de o gfcacó couta, :..., cuado F F,, dode F,-- e el percetl (-)% de la ley F de Fher co y -- grado de lbertad. ) Tabla ANOVA (o ADEVA) Fuete de varacó Modelo Error Total Suma de Cuadrado (SC) Grado de lbertad (gl) Cocete o varaza (cuadrado medo) VE ˆ 'X' Y y ' ˆ X'Y y e VNE Y' Y 'X'Y ˆ Y'Y ' X' Y -- Y' Y y VT Y' Y y - y cotrate F e Método de egreó Grado e Etadítca y Emprea Tema 4 5/3 Fórmula útle e el cálculo de la tabla ANOVA (o ADEVA) Sea X la matrz de regreore x(+), Y el vector de repueta x. Se calcula la matrz X X y el vector X Y. Se etma el vector de coefcete: ˆ (X' X) X'Y Se obtee el vector Y ˆ Xˆ de valore predcho. Se calcula la uma de cuadrado: VE VNE VT ( y ( y y) ( yˆ y) yˆ ) 'X'Y ˆ y Y'Y 'X'Y ˆ Y'Y y Método de egreó Grado e Etadítca y Emprea Tema 4 6/3 3. Iterpretacó de lo cotrate Dremo que u cotrate de hpóte e gfcatvo cuado e rechaza la hpóte ula co u vel de gfcacó meor que. cao cotrate couto F de Fher cotrate dvduale t de Studet gfcatvo todo gfcatvo gfcatvo alguo gfcatvo 3 gfcatvo guo gfcatvo 4 o gfcatvo todo gfcatvo 5 o gfcatvo alguo gfcatvo 6 o gfcatvo guo gfcatvo. Toda la varable lcatva fluye e la repueta.. Solamete algua varable lcatva fluye e la repueta, por lo que deberíamo elmar la o gfcatva. 3. Multcolealdad: La varable lcatva o muy depedete etre í y, por tato, auque coutamete fluye, lo etmadore de lo efecto dvduale tee varaza muy alta y lo valore del etadítco t ˆ q o pequeño y o gfcatvo. 4. y 5. Multcolealdad epecal: Ocurre cuado do varable fluye mucho obre la repueta, pero e etdo cotraro, de maera que u efecto couto puede er o gfcatvo, auque u efecto dvduale í lo ea. (Cao poco frecuete). 6. Ngua de la varable fluye. Sólo podemo coclur que lo efecto de la varable lcatva o e detecta e la muetra. Por eemplo, ua varable e matee aproxmadamete cotate, u efecto obre la repueta o erá detectable.

5 Método de egreó Grado e Etadítca y Emprea Tema 4 7/3 Método de egreó Grado e Etadítca y Emprea Tema 4 8/3 Eemplo (Eercco ): Co lo dato del Eercco 4 (coumo de 8 provca epañola), realzar el cotrate de regreó para u vel de gfcacó del 5%. : :algú para, Para u vel de gfcacó =.5, la regla de decó erá: rechazar F >F,-- Cotrumo la tabla ANOVA, teedo e cueta que: 74 y 88, 8 ˆ ' X'Y , Y'Y 634, 8, F,-- =F.5,5=5.79 ˆ VE ' X'Y y 8.84, VNE Y'Y ' ˆ X'Y 69.6, VT Y'Y y 88. Eercco (cotuacó): La tabla ANOVA e Fuete S.C. g.l. varaza cotrate VE F=5.6 VNE VT Pueto que F =5.6> F.5,5=5.79, rechazamo la hpóte ula. E decr, el cotrate couto í e gfcatvo. ecordemo que al realzar lo cotrate dvduale (véae la trapareca 7 del Tema 4) obteíamo que, para u vel de gfcacó del 5%, gua de la do varable era gfcatva, dvdualmete. Por tato, etaríamo ate ua tuacó de Multcolealdad (cao 3). Veremo como tratar eto problema e el Tema 5). Método de egreó Grado e Etadítca y Emprea Tema 4 9/3 Método de egreó Grado e Etadítca y Emprea Tema 4 /3 4. Correlacó e regreó múltple. 4.. Coefcete de Determacó Se defe como la proporcó de la varabldad total que queda lcada por el modelo de regreó múltple. ( yˆ y) ˆ VE ' X'Y y VT Y'Y y ( y y) Icoveete: aumeta empre cuado e aumeta el úmero de regreore, auque éto o ea gfcatvo. E decr, empre puede cremetare artfcalmete el valor de añadedo ueva varable. e muy eble a la formulacó del modelo y a la eleccó de la varable repueta. E decr, e poble etmar do modelo formalmete détco y co la mma capacdad predctva pero que coduce a valore dtto de. Pueto que VT=VE+VNE, - e la proporcó de la varabldad total o lcada por el modelo de regreó. Propocó: (Demotracó) y ( De la relacó ateror podemo ver cómo aumeta empre al aumetar : y ) y

6 Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Se defe como: Coefcete de Correlacó Múltple y mde el grado de relacó leal etre lo regreore x,,x y la varable repueta y. Propedade: ). Cuado = exte ua relacó fucoal exacta etre la repueta y lo regreore. ) e el coefcete de correlacó leal (de Pearo) etre Y e. 4.. El coefcete de determacó corregdo (aduted ) Para evtar que el efecto que ufre cuado e añade ueva varable, e defe el coefcete de determacó corregdo como: Y'Y 'X'Y ˆ VNE ~ VT y y Y'Y Éte e utlza para comparar la efcaca de dtto modelo de regreó, coderádoe meor modelo aquél co mayor coef. de determacó autado. La guete propocó poe de mafeto la relacó etre el coef. de determacó y el coef. de determacó autado. Propocó: (Demotracó) ~ ( ) Método de egreó Grado e Etadítca y Emprea Tema 4 3/3 Eemplo (Eercco ): Co lo dato del eemplo del coumo de 8 provca epañola, calcular el coefcete de determacó y el coefcete de determacó corregdo. El coefcete de determacó e: VE VT 88 El coefcete de determacó ugere que el 86% de la varabldad de la repueta y queda lcada por el modelo de regreó múltple; queda lcar el - 86=4% de la varabldad de y. Ademá, el grado de relacó leal etre (= x +.397x ) e y e elevado, pueto que =(.8576) / =.96. El coefcete de determacó corregdo e: ~ ( 7 ) (.8576).86 5

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (II) Magdalena Cladera Munar Departament d Economia Aplicada Universitat de les Illes Balears Aál etadítco báco (II) Magdalea Cladera Muar mcladera@ub.e Departamet d Ecooma Aplcada Uvertat de le Ille Balear CONTENIDOS Covaraza y correlacó. Regreó leal mple. REFERENCIAS Alegre, J. y Cladera, M.

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Análisis de Regresión Lineal Simple.

Análisis de Regresión Lineal Simple. Aál de Regreó Leal mple. Itroduccó Regreó mple Método de lo mímo cuadrado Propedade de lo etm. m. cuadrado Predccó Evaluacó de la tedad de la relacó leal Ejercco Itroduccó E mu frecuete ecotrar proceo

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacó de varo tratameto o grupo Mucha preguta de vetgacó e educacó, pcología, egoco, dutra ceca aturale tee que ver co la comparacó de varo grupo o tratameto. Ya etudamo como comparar dfereca

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN

CAPÍTULO 3. ANÁLISIS DE REGRESIÓN CAPÍTULO 3. ANÁLISIS DE REGRESIÓN Leccó 0: Regreó leal Smple La palabra Regreó fue utlzada por prmera vez por Frac Galto, (.8.9) e u etudo de Bología obre la hereca, doe él oto que la caracterítca promedo

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos Aplcacó de Mcrooft Ecel a la Químca Aalítca: valdacó de método aalítco Joé Marco Jurado Departameto de Químca Aalítca 1 de abrl de 008 1 Etadítca báca 11 Cocepto de poblacó y muetra E etadítca, e defe

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

0(=&/$6*$6(26$6. i = (3)

0(=&/$6*$6(26$6. i = (3) 0(&/$6$6(26$6,1752'8&&,21 E la erodáca, para poder realzar aál de prera eguda le, e ecearo coocer la propedade terodáca de la utaca de trabajo, coo o, por ejeplo, la eergía tera, la etalpía la etropía.

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

PROBABILIDAD y ESTADÍSTICA II

PROBABILIDAD y ESTADÍSTICA II UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regoal Sa Ncolá PROBABILIDAD ESTADÍSTICA II UNIDAD Nº Lcecatura e Eeñaza de la Matemátca Año 011 Mg. Lucía C. Sacco Lcecatura e Eeñaza de la Matemátca FRSN - UTN

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

1. Análisis de la Varianza

1. Análisis de la Varianza . Aál de la Varaza Curo - Etadítca. Do tratameto Comparacó de do tratameto A B 5,3 9,6 39,4 47, 6,3 5,9 39, 3, 48, 33, 34,, 69,8 34, 3,3 9,5 45, 43,8 46,4 4,9 Sea deea comparar do tratameto para reducr

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

UNIVERSITAT ROVIRA I VIRGILI

UNIVERSITAT ROVIRA I VIRGILI UNIVERSITAT ROVIRA I VIRGILI Departamet de Químca Aalítca Químca Orgàca PARÁMETROS CUALIMÉTRICOS DE MÉTODOS ANALÍTICOS QUE UTILIZAN REGRESIÓN LINEAL CON ERRORES EN LAS DOS VARIABLES Te Doctoral FRANCISCO

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Tema 3: Valoración financiera de conjuntos de capitales 1

Tema 3: Valoración financiera de conjuntos de capitales 1 Tea 3: aloracó facera de cojuto de captale. alor facero de u cojuto de captale Se deoa valor facero de u cojuto de captale e u oeto t τ, a u ua facera e dcho puto. Aí, dado u cojuto de captale (, t,(,

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO TESIS DIVISIÓN DE CIENCIAS FORESTALES MÉTODOS DE MUESTREO LICENCIADO EN ESTADÍSTICA ROXANA IVETTE ARANA OVALLE

UNIVERSIDAD AUTÓNOMA CHAPINGO TESIS DIVISIÓN DE CIENCIAS FORESTALES MÉTODOS DE MUESTREO LICENCIADO EN ESTADÍSTICA ROXANA IVETTE ARANA OVALLE UIVRSIDAD AUTÓOMA CHAPIGO DIVISIÓ D CICIAS FORSTALS MÉTODOS D MUSTRO TSIS Que como requto parcal para Obteer el Título de: LICCIADO STADÍSTICA PRSTA: ROAA IVTT ARAA OVALL Capgo, Texcoco, do. de Méxco Juo,

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Figura 1

Figura 1 Regresó Leal Smple 7 Regresó Leal Smple 7. Itroduccó Dra. Daa Kelmasky 0 E muchos problemas cetífcos teresa hallar la relacó etre ua varable (Y), llamada varable de respuesta, ó varable de salda, ó varable

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

PRÉSTAMOS DE TÉRMINO AMORTIZATIVO CONSTANTE EN TÉRMINOS REALES

PRÉSTAMOS DE TÉRMINO AMORTIZATIVO CONSTANTE EN TÉRMINOS REALES PRÉSTAMOS DE TÉRMINO AMORTIZATIVO CONSTANTE EN TÉRMINOS REALES Salvador Cruz Rambaud Departameto de Dreccó y Getó de Emprea Uverdad de Almería e-mal: cruz@ual.e Joé Gozález Sáchez Departameto de Método

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1

Análisis de Regresión y Correlación. Material Preparado por Olga Susana Filippini y Hugo Delfino 1 Aálss de Regresó y Correlacó Materal Preparado por Olga Susaa Flpp y Hugo Delfo ORIGEN HISTÓRICO DEL TÉRMINO REGRESlÓN El térmo regresó fue troducdo por Fracs Galto. E u famoso artículo Galto platea que,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Santiago de la Fuente Fernández. Análisis de variables categóricas

Santiago de la Fuente Fernández. Análisis de variables categóricas Satago de la Fuete Ferádez Aálss de varables categórcas Satago de la Fuete Ferádez Aálss de varables categórcas VARIABLES CUALITATIVAS Aálss de varables categórcas Las varables cualtatvas so aquellas cuyos

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 4: Medidas de Dispersión para Datos Crudos

Curso de Estadística Unidad de Medidas Descriptivas. Lección 4: Medidas de Dispersión para Datos Crudos Curo de Etadítca Udad de Medda Decrptva Leccó 4: Medda de Dperó para Dato Crudo Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Recoocer el gfcado del cocepto de dperó aplcado a

Más detalles

t-student y F-Snedecor

t-student y F-Snedecor t-studet y F-Sedecor Itroducció La prueba t-studet e utiliza para cotratar hipótei obre media e poblacioe co ditribució ormal. Tambié proporcioa reultado aproimado para lo cotrate de media e muetra uficietemete

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33 SIMULACION TECNICA PARA IMITAR EN UN COMPUTADOR LAS OPERACIONES DE LOS SISTEMAS DEL MUNDO REAL A MEDIDA QUE EVOLUCIONAN EN EL TIEMPO, MEDIANTE MODELOS QUE LOS REPRESENTAN DE FORMA REALISTA Deartamet d'eio

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

3 Regresión lineal múltiple: estimación y propiedades

3 Regresión lineal múltiple: estimación y propiedades 3 Regresó leal múltple: estmacó y propedades Ezequel Urel Uversdad de Valeca Versó 09-013 3.1 El modelo de regresó leal múltple 1 3.1.1 Modelo de regresó poblacoal y fucó de regresó poblacoal 3.1. Fucó

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

Contraste sobre la media de una distribución Normal de varianza conocida

Contraste sobre la media de una distribución Normal de varianza conocida Cotrate de hipótei etadítica E la primera parte de la iferecia etadítica e ha abordado el problema de la etimació de parámetro, e ella e ha vito cómo cotruir etimadore de parámetro poblacioale, e ha iitido

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Capítulo V Análisis de regresión y correlación

Capítulo V Análisis de regresión y correlación Capítulo V Aálss de regresó y correlacó Itroduccó E la vestgacó estadístca es muy frecuete ecotrar varables que está relacoadas o asocadas etre sí de algua maera, como se estudó e el capítulo ateror. Exste

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno Fluo de Poteca DC co odelacó de Icertdumres Aplcado al Caso Chleo Resume Rodrgo Palma B. rodpalma@cec.uchle.cl Chrsta Jeldres H. celdres@cec.uchle.cl Area de Eergía Departameto de Igeería Eléctrca Uversdad

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

Estimación espacial del precio de la vivienda mediante métodos de Krigeado(*)

Estimación espacial del precio de la vivienda mediante métodos de Krigeado(*) ESTADÍSTICA ESPAÑOLA Vol. 48, Núm. 6, 6, pág. a 4 Etmacó epacal del preco de la vveda medate método de Krgeado* por JOSÉ ª ONTERO LORENZO y BEATRIZ LARRAZ IRIBAS Uverdad de Catlla-La acha RESUEN E dudable

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica Itroduccó La Estadístca de Idcadores Hosptalaros proporcoa u cojuto de dcadores báscos que stetza los recursos de persoal y de dotacó, ya sea stalada o e fucoameto, de que dspoe los establecmetos sataros

Más detalles