Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud."

Transcripción

1 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como la media, moda, varianza. Población Es el conjunto sobre el cual se hace un estudio estadístico. Por ejemplo, si vamos a estudiar las notas obtenidas en matemáticas por todos los alumnos de 1º de ESO, la población es el conjunto de dichos jóvenes. Muestra Es un subconjunto de la población. Se toma una muestra cuando la población es muy numerosa y ha de ser elegida de forma aleatoria. El tamaño de la muestra es el número de elementos que la forman. En el ejemplo anterior, una muestra puede ser los alumnos de 1º de ESO que tengan una e en su nombre. Variable estadística Es cada uno de los rasgos que se estudia en una población. Cualitativa Los valores son cualidades: color de pelo, equipo de fútbol preferido. Cuantitativa Los valores que toma son números: Número de hijos, nº de televisores en casa Discretas Continuas Cuando los valores son aislados: número de Pueden tomar cualquier valor consolas en los hogares, número de faltas a dentro de un intervalo. Peso, clase de los alumnos de 2º estatura, temperatura,.. Tablas de frecuencias Para estudiar y analizar los datos se utilizan una tablas llamadas tablas de frecuencias. Ejemplo: Estas son las edades de un grupo de alumnos: 14, 15, 13, 13, 14 15, 15, 18, 14, 13 15, 13, 14, 15, 16 14, 15, 13, 13, 15 Tabla de frecuencias xi fi Fi hi Hi % 30% % 55% % 90% % 95% % 100% Suma N 100% =20 x i son los valores que aparecen en los datos. En la tabla se escriben ordenados de menor a mayor. f i se llama frecuencia absoluta y es el número de veces que aparece el dato x i. Por ejemplo, el número 7 de la columna f i significa que hay 7 alumnos con 15 años. La suma de las frecuencias absolutas es igual al número total de datos. En nuestro caso,20. F i se llama frecuencia absoluta acumulada y se calcula sumando uno a uno los valores de la columna f i. F i representa el número de datos que hay menores o iguales al correspondiente x i. Por ejemplo, el número 11 de la columna F i indica que hay 11 alumnos con 14 años o menos. h i se llama frecuencia relativa y se calcula dividiendo f i entre el número total de datos. Se suele expresar en forma de % y nos indica el porcentaje de datos que hay iguales al valor x i correspondiente. Por ejemplo, el 30 % de la columna h i significa que hay un 30 % de alumnos con 13 años. H i se llama frecuencia relativa acumulada y se calcula sumando uno a uno los valores de la columna h i. La frecuencia relativa acumuladas se suele expresar en forma de % y nos indica el porcentaje de datos que hay menores o iguales al valor x i correspondiente. Por ejemplo, el 95 % de la columna H i significa que hau un 95% de alumnos que tienen 15 años o menos. Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

2 Ejemplo: Las notas en la materia de inglés de un grupo de alumnos ha sido: 3,1 ; 7 ; 5,6 ; 6,1 7,3 ; 4,7 ; 5,2 ; 7,1 ; 3 2,8 ; 2,9 ; 4,1 ; 4,9 ; 7,8 6,4 ; 6,2 ; 5,2 ; 5,4 ; 5,3 Nota máxima 7,8, Nota mínima 2. Tomamos, por ejemplo, intervalos de amplitud 1. clases fi Fi hi Hi [2,3) % 15% [3,4) % 25% [4,5) % 40% [5,6) % 65% [6,7) % 80% [7,8) % 100% Suma N =20 100% Observa, por ejemplo que: - Hay 5 alumnos que tienen un 5 o un 5 y pico. - Hay 16 alumnos que tienen menos de un 7. - El 10 % de los alumnos tiene un 3 o un 3 y pico. - El 25% de los alumnos tiene menos de un 4. - El porcentaje de aprobados es 100% - 15 %= 85% Tablas de frecuencias para datos cualitativos Ejemplo: Al observar la marca de coche de 20 personas se obtuvieron los siguientes resultados: SPSRR PPPRR SPRRR PSSRR Donde S = SEAT, P = PEUGEOT, R = RENAULT Valores (xi) fi Fi hi Hi SEAT % 25% PEUGEOT % 55% RENAULT % 100% Total N = % Resuelve tú la siguiente actividad: Al preguntar a los profesores del instituto sus edades se han obtenido los siguientes datos: a) Agrupa los datos en intervalos de amplitud 5 y construye la tabla de frecuencias. b) Qué porcentaje de profesores tiene menos de 40 años? c) Cuántos profesores tienen menos de 45 años? d) Qué porcentaje de profesores tiene entre 30 y 49 años (ambas edades incluidas)? Representación gráfica de los datos estadísticos Los datos obtenidos en un estudio estadístico los podemos representar con diferentes gráficos. Estos gráficos nos ayudan a analizar los datos a simple vista. Veamos a continuación los gráficos estadísticos que más se usan:

3 Diagrama de barras Se representan los valores xi en un eje horizontal y para cada valor se dibuja una barra cuya altura sea la frecuencia del valor xi correspondiente. Las barras han de ser de la misma anchura y debemos dibujarlas separadas. Uniendo los extremos superiores de las barras por su punto medio, se obtiene una poligonal llamada polígono de frecuencias. El diagrama de barras se suele utilizar para variables discretas con pocos valores y para variables cualitativas. Histograma Es similar al diagrama de barras solo que las barras aparecen unidas. Se suele utilizar para variables aleatorias continuas. Diagrama de sectores Para dibujar el diagrama de sectores se dibuja un círculo y se divide en tantos sectores (quesitos) como valores haya en los datos. Existen otros diagramas tales como los pictogramas, cartogramas, 2. MEDIDAS ESTADÍSTICAS Un gráfico nos da información útil para entender los rasgos básicos de una distribución, pero no es suficiente Para las variables cuantitativas se pueden resumir los datos mediante valores numéricos que expresen el centro de las observaciones y su dispersión respecto a esta medida de tendencia central. Medidas de centralización y posición Media aritmética: Es la suma de todos los datos dividida por el número total de datos. Se representa por x y se calcula: x f i i x = n Si los datos están agrupados en intervalos x i será la marca de clase del intervalo. Moda: Es el valor más frecuente. Mediana: Ordenados los datos de menor a mayor, la mediana es el valor que divide al conjunto de datos en dos partes iguales. Si el conjunto de datos es impar, la mediana es el valor central, y si es par será la media de los dos valores situados en el centro. Para su cálculo tendremos en cuenta que es el primer valor x i cuya H i supera el 50 % de los datos. Los cuartiles

4 Cuando los datos están ordenados de menor a mayor, los cuartiles son tres valores Q 1, Q 2 y Q 3 que dividen a los datos en 4 partes iguales. El primer cuartil Q 1 es el primer valor cuya H i supera el 25% de los datos. El segundo es el primer valor cuya H i supera el 50% de los datos (Observa que Q 2 = Me). El tercero será el que H i supere el 75% de los datos. Ejemplo Clases X i H i Q 1 = 4,5 [2,3) 2,5 15 [3,4) 3,5 25 Q 2 = Me =5,5 Q 3 = 6,5 [4,5) 4,5 40 [5,6) 5,5 65 [6,7) 6,5 80 [7,8) 7,5 100 Los percentiles Cuando los datos están ordenados de menor a mayor, los percentiles son 99 valores P 1, P 2,.P 99 que dividen a los datos en 100 partes iguales. Por ejemplo P 1 es el primer valor de x i cuya H i supera el 1%, P 2 el 2% y así sucesivamente. P 25 es el primer valor x i cuya H i supera el 25% de los datos. Luego P 25 = Q 1. De igual forma P 50 = Q 2 = Me y P 75 = Q 3. Medidas de dispersión Permiten conocer el grado de agrupamiento de los datos en torno a las medidas de centralización. Rango o recorrido: Es la diferencia entre el mayor y el menor valor de x i. Varianza: Es la media de las des σ 2 ( i ) 2 x x fi = n o σ = 2 2 x f i i 2 n x Desviación típica: Es la raíz cuadrada positiva de la varianza. Se representa por σ Coeficiente de variación σ CV =. El coeficiente de variación nos permite comparar la dispersión de dos x distribuciones de datos. En muchas ocasiones en un conjunto de datos se cumple que: - Entre x σ y x + σ se encuentran aproximadamente el 68% de los datos. - Entre x 2σ y x + 2σ se encuentran aproximadamente el 95% de los datos. - Entre x 3σ y x + 3σ se encuentran aproximadamente el 99% de los datos.

5 Un dato es atípico si está fuera de estos intervalos. Cómo se interpretan las medidas de centralización y de dispersión? Estas son las medidas estadísticas de un estudio sobre el número de roturas que sufrieron unas varillas a las que se les sometió a una prueba: Media: 0,7 Mediana: 0 Moda: 0 Desviación típica: 0,96 Coeficiente de variación: 1,37 Interpreta estas medidas estadísticas. Comparamos la media con la mediana y la moda. Como la media es 0,7 indica que el número medio de roturas es casi 1. Sin embargo, la mayoría de las varillas no ha sufrido rotura (Moda es 0) y lo mismo indica la mediana, es decir, al menos la mitad de las varillas no ha sufrido ninguna rotura durante el estudio. A continuación se estudia el valor del coeficiente de variación. 1,37 es un valor muy grande, lo cual indica que los datos no están demasiado concentrados. Posteriormente estudiamos el valor de la desviación típica y se compara con el valor de la media. Como el valor de la desviación típica es mayor que el de la media se explica el hecho de que por qué mientras la mediana y la moda indican que el mayor número de varillas no había tenido roturas, la media de roturas había sido casi 1 Al tener una desviación típica tan grande, la media no es representativa. ACTIVIDADES 1. Los siguientes datos representan las alturas, en cm, de 20 personas: a) Construye una tabla de distribución de frecuencias, agrupando los datos en intervalos de amplitud 10. b) Representa el histograma de frecuencias absolutas. 2. El número de centros de salud en 20 ciudades es: a) Calcula la media aritmética. b) Halla la moda. 3. La tabla adjunta muestra las medidas, en cm, de unos bastones de esquí: Medida en cm [100,105) [105,110) [110,115) [115,120) [120,125) Nº bastones a) Halla la media aritmética y la moda. Sol: x = 112,37. La moda estará en el intervalo [110, 115). Como primera aproximación de la moda se podría tomar la marca de la clase modal, es decir: Mo 112,5 centímetros. b) Representa el histograma de frecuencias absolutas.

6 4. Las calificaciones de Ana y Juan son las siguientes: Calificaciones de Ana: 4, 5, 6, 6, 7, 8 Calificaciones de Juan: 2, 3, 4, 4, 5, 6 Cuál de los dos alumnos tiene sus calificaciones más concentradas? Sol: Como el coeficiente de variación de Ana es 0,215 y el de Juan 0,323 se concluye que Ana tiene las notas más concentradas. 5. Dadas las siguientes variables estadísticas: a) Número de hijos de los funcionarios de un ministerio. b) Número de accidentes ferroviarios producidos cada mes durante un quinquenio. c) Actividad de ocio preferida por un grupo de alumnos. d) País de procedencia de un conjunto de inmigrantes. e) Número de multas de tráfico que impone un policía al mes durante un año. f) Grupo de rock preferido por un conjunto de alumnos. g) Distancia recorrida por un autobús urbano durante un año. Indica cuáles son variables cualitativas, cuantitativas discretas o cuantitativas continuas. Sol: Variables cualitativas: c, d, f Variables cuantitativas discretas: a, b, e Variables cuantitativas continuas: g 6. (PAU) a) Completa los datos que faltan en la siguiente tabla estadística, donde f i, F i y h i representan, respectivamente, las frecuencias absoluta, absoluta acumulada y relativa: x i f i F i h i x i f i , , , , , , , , a) Halla la media aritmética y la moda de esta distribución. b) Calcula la mediana. 7. (PAU) A un conjunto de datos de cinco números cuya media es 7,31 se le añaden los números 4,47 y 10,15. Cuál es la media del nuevo conjunto de datos? 8. (PAU) Dada la distribución estadística definida por la siguiente tabla: x i [0,5) [5,10) [10,15) [15,20) [20,25) [25,30) f i a) Calcula la media, la mediana y la moda. Sol: x = 15,17. Intervalo mediano y el modal [15,20) 2 b) Halla la varianza y la desviación típica. σ = 57,79. σ = 7, (PAU) Se tiene el siguiente conjunto de datos: a) Obtén la mediana y los cuartiles. Me = 10. Q 1 = 7, Q 2 = 10 y Q 3 = 14

7 b) Interpreta los resultados obtenidos. 10. (PAU) Los pesos, en kg, de 20 estudiantes son: a) Agrupa los datos en cinco clases de igual amplitud empezando en 37,5. b) Dibuja el histograma y el polígono de frecuencias absolutas correspondientes. c) Halla la media de los datos. Sol: 50,25 d) Calcula los cuartiles primero y tercero. Sol: Tomando las marcas de clase son 45 y 55 respectivamente 11. Una oficina bancaria ha tabulado las cantidades de dinero que retiran de sus cuentas 100 clientes en un determinado día. Euros [0,120) [120,240) [240,360) [360,480) [480,600) Clientes Halla: a) La cantidad media de dinero retirado por cliente. b) Qué porcentaje de clientes retiraron fondos por encima de la mediana? c) Halla los cuartiles Q 1, Q 2 y Q (PAU) Se han lanzado dos dados 120 veces y cada vez se ha anotado su suma. Los resultados vienen reflejados en la siguiente tabla: Sumas Nº veces a) Calcula la media y la desviación típica. b) Halla el porcentaje de valores comprendidos en los siguientes intervalos ( x σ,x + σ) y ( x 2σ, x + 2σ). 13. (PAU) En una encuesta sobre tráfico se ha preguntado a 1000 conductores sobre el número de multas recibidas. Al efectuar la tabla correspondiente, algún número ha desaparecido, por lo que disponemos de la siguiente información: Nº conductores Nº multas Halla: a) La media. b) La mediana. c) La moda. d) La desviación típica.

8 e) Los cuartiles primero y tercero. 14. El número de horas que 20 trabajadores perdieron por bajas médicas el año pasado es el siguiente: a) Construye la tabla de frecuencias agrupando los datos en intervalos de amplitud 10, indicando también las frecuencias absolutas y relativas acumuladas. b) Dibuja el histograma y el polígono de frecuencias de las frecuencias relativas. c) Halla la media de días no trabajados por trabajador. d) Calcula el coeficiente de variación.

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD º ESO UNIDAD 1 ESTADÍSTICA Y PROBABILIDAD 1 1.- CONCEPTOS BÁSICOS Estadística.- Es la ciencia que estudia conjuntos de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

Apuntes y ejercicios de Estadística para 2º E.S.O

Apuntes y ejercicios de Estadística para 2º E.S.O Apuntes y ejercicios de Estadística para 2º E.S.O 1 Introducción La Estadística es la ciencia que se encarga de recoger, organizar, describir e interpretar datos referidos a distintos fenómenos para, posteriormente,

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

REPASO DE ESTADÍSTICA DESCRIPTIVA

REPASO DE ESTADÍSTICA DESCRIPTIVA ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Ejercicios de estadística.

Ejercicios de estadística. Ejercicios de estadística..- Los siguientes números son el número de horas que intervienen alumnos en hacer deporte durante un mes:, 7,,, 5, 6, 7, 9,,, 5, 6, 6, 6, 7, 8,,, 5, 8 a) Calcula las tablas de

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

Curs MAT CFGS-15

Curs MAT CFGS-15 Curs 015-16 MAT CFGS-15 ESTADÍSTICA Tablas de frecuencia. Distribución de frecuencias La distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos,

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Tema 12. Estadística

Tema 12. Estadística Variable cuantitativa Cuando toma valores numéricos Ej: Número de hijos por familia Tema 12. Estadística Variables estadísticas Frecuencias Variable cualitativa Cuando toma valores no numéricos Ej: Medios

Más detalles

TEMA 8: ESTADÍSTICA DESCRIPTIVA.

TEMA 8: ESTADÍSTICA DESCRIPTIVA. I.E.S. Salvador Serrano de Alcaudete Departamento de Matemáticas º ESO 0 / TEMA 8: ESTADÍSTICA DESCRIPTIVA. 8. Introducción. La palabra ESTADÍSTICA procede del vocablo Estado, pues era función principal

Más detalles

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es:

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es: La estadística es una materia dedicada a la recopilación, organización, estudio y análisis de datos de un hecho en particular. La estadística descriptiva tabula, representa y describe una serie de datos

Más detalles

TEMA 7.- REPASO DE ESTADÍSTICA UNIDIMENSIONAL

TEMA 7.- REPASO DE ESTADÍSTICA UNIDIMENSIONAL TEMA 7.- REPASO DE ESTADÍSTICA UNIDIMENSIONAL 1.- INTRODUCCIÓN Y DEFINICIONES La Estadística es la rama de las Matemáticas que utiliza conjuntos de datos numéricos para obtener inferencias basadas en el

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

Estadística. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones.

Estadística. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones. Estadística 3. ESTADÍSTICA. 3.1. Conceptos básicos. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones. Población: Es el conjunto total de

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

FICHA DE REPASO: ESTADÍSTICA

FICHA DE REPASO: ESTADÍSTICA FICHA DE REPASO: ESTADÍSTICA 1. Indica la población y la muestra de los siguientes estudios estadísticos: a) El número de móviles de los alumnos de 2º de la E.S.O de nuestro instituto. b) La altura de

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000 INTRODUCCIÓN La estadística día a día esta ocupando un lugar importante en nuestra sociedad colaborando así al progreso humano y su bienestar. Aunque en sus comienzos era aplicada únicamente a asuntos

Más detalles

CUADERNO Nº 11 NOMBRE: FECHA: / / Estadística. Representar e interpretar gráficos estadísticos, y saber cuando es conveniente utilizar cada tipo.

CUADERNO Nº 11 NOMBRE: FECHA: / / Estadística. Representar e interpretar gráficos estadísticos, y saber cuando es conveniente utilizar cada tipo. Estadística Contenidos 1. Hacer estadística Necesidad Población y muestra Variables 2. Recuento y gráficos Recuento de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización y posición

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos de sus puntos. 2º. Relaciona cada texto

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

1.- Diagrama de barras

1.- Diagrama de barras 1.- Diagrama de barras Un diagrama de barras se utiliza para de presentar datos cualitativos o datos cuantitativos de tipo discreto (variables tipo II). Se representan sobre unos ejes de coordenadas, en

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DESCRIPTIVA DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N 1: CONCEPTOS BASICOS DEFINICIÓN DE ESTADÍSTICA La Estadística trata del recuento, ordenación y clasificación

Más detalles

1. Definición de Estadística

1. Definición de Estadística 1. Definición de Estadística La Estadística es la parte de las Matemáticas que estudia una serie de datos, los recuenta, los ordena y los clasifica, para poder hacer comparaciones y sacar conclusiones.

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

Estadística descriptiva y métodos diagnósticos

Estadística descriptiva y métodos diagnósticos 2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo.

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. UNIDAD: ESTADISTICA La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. La estadística puede ser descriptiva o inferencial. La estadística

Más detalles

Cuadernillo Ejercitación Medidas de posición y dispersión ESTADÍSTICA DESCRIPTIVA. Nos permite estudiar las. Medidas de tendencia central.

Cuadernillo Ejercitación Medidas de posición y dispersión ESTADÍSTICA DESCRIPTIVA. Nos permite estudiar las. Medidas de tendencia central. PROGRAMA BASE Cuadernillo Ejercitación Medidas de posición y dispersión Mapa conceptual MATEMÁTICA ESTADÍSTICA DESCRIPTIVA Medidas de posición Nos permite estudiar las Medidas de dispersión Ejemplos de

Más detalles

PÁGINA 120. Pág. 1. Unidad 12. Estadística

PÁGINA 120. Pág. 1. Unidad 12. Estadística 1 Soluciones a las actividades de cada epígrafe PÁGINA 1 1 Un fabricante de tornillos desea hacer un control de calidad. Para ello, recoge 1 de cada tornillos producidos y lo analiza. a) Cuál es la población?

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

TEMA 1: ESTADISTICA DESCRIPTIVA

TEMA 1: ESTADISTICA DESCRIPTIVA ESTADÍSTICA, CURSO 008 009 1 TEMA 1: ESTADISTICA DESCRIPTIVA 1 FUDAMETOS 11 VARIABLES ESTADISTICAS Población: conjunto completo de elementos, con alguna característica común, objeto del estudio estadístico

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

Agrupa los resultados por lotes: Rechazados, revisables y aceptados y:

Agrupa los resultados por lotes: Rechazados, revisables y aceptados y: Tema 2 1.- Clasifica en discretas o continuas las siguientes variables: a) Número de habitantes por kilómetro cuadrado b) Número de bacterias de cierto tipo, por mililitro c) Densidad de diferentes muestras

Más detalles

4 Estos son los resultados de una encuesta realizada en una comunidad autónoma sobre la actuación de su presidente.

4 Estos son los resultados de una encuesta realizada en una comunidad autónoma sobre la actuación de su presidente. 1 Di, en cada caso, cuál es la población y cuál la variable que se quiere estudiar. Especifica si es una variable cualitativa o cuantitativa, determinando, en este último caso, si es discreta o continua:

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Tema 1. Tabulación y representación gráfica de los datos

Tema 1. Tabulación y representación gráfica de los datos Tema 1. Tabulación y representación gráfica de los datos Resumen del tema 1.1. Introducción a la Estadística Estadística: ciencia que se ocupa de recoger, clasificar, representar y resumir los datos de

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Angel Francisco Arvelo Luján es un Profesor Universitario Venezolano en el área de Probabilidad y Estadística, con más de 40 años de experiencia en las más reconocidas universidades

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

Matemática. Desafío GUÍA DE EJERCITACIÓN AVANZADA. Cálculo de medidas de tendencia central y posición GUICEN040MT22-A16V1

Matemática. Desafío GUÍA DE EJERCITACIÓN AVANZADA. Cálculo de medidas de tendencia central y posición GUICEN040MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Programa Entrenamiento Matemática Cálculo de medidas de tendencia central y posición Desafío La siguiente tabla representa la distribución de frecuencias al lanzar un dado

Más detalles

Ejercicios de Estadística para 2º E.S.O

Ejercicios de Estadística para 2º E.S.O Ejercicio 1 Ejercicios de Estadística para 2º E.S.O El salario mensual, en euros, de 5 trabajadores de una empresa es el siguiente: 1500 1500 2000 2700 11000 Cuál de las tres medidas de centralización

Más detalles

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos:

ESTADISTICA. Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: ESTADISTICA Tradicionalmente la aplicación del término estadística se ha utilizado en tres ámbitos: a) Estadística como enumeración de datos. b) Estadística como descripción, es decir, a través de un análisis

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA 1. Conceptos Generales Población estadística.- Conjunto de todos los elementos sobre el que recaen las observaciones. Las poblaciones pueden ser: infinitas, p.e. extracciones con

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO CENTRO DE SERVICIOS DE APOYO AL ESTUDIANTE Glosario Media: es la puntuación promedio de un grupo de datos. Mediana: la mediana viene a ser la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES

ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES 1. La siguiente tabla presenta la distribución del número de miembros en los hogares de Araba. Contesta

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUÍA DE ESTADÍSTICA GRADO DÉCIMO GUÍA DE ESTADÍSTICA GRADO DÉCIMO MEDIDAS DE POSICIÓN Las medidas de posición son medidas que permiten dividir el conjunto de datos en partes porcentuales. Estas medidas se usan para describir la posición

Más detalles

Trabajo de Estadística 3º ESO

Trabajo de Estadística 3º ESO Pasos para realizar el trabajo Trabajo de Estadística 3º ESO 1º Organizarse en grupos de 2-3 personas 2º Elegir el problema a estudiar: Variable estadística cuantitativa discreta 3º Determinar la Población

Más detalles

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016 Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos

Más detalles

EJERCICIOS Tema 5 La información que recibimos

EJERCICIOS Tema 5 La información que recibimos EJERCICIOS Tema 5 La información que recibimos 1.- Califica las siguientes preguntas como abiertas o cerradas: a) Elige un lugar para tomar un baño: Playa - Piscina b) Indica que color o colores del arco

Más detalles

Media: x= OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Estadística. Población y muestra.

Media: x= OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Estadística. Población y muestra. Estadística INTRODUCCIÓN La presencia de la Estadística es habitual en multitud de contextos de la vida real: encuestas electorales, sondeos de opinión, etc. La importancia de la Estadística en la sociedad

Más detalles

TEMA II DISTRIBUCION DE FRECUENCIA

TEMA II DISTRIBUCION DE FRECUENCIA TEMA II DISTRIBUCION DE FRECUENCIA 1. Cuestiones preliminares sobre Distribución de Frecuencia.. Distribución de frecuencia cuando la variable es discreta. 3. Distribución de frecuencia agrupada cuando

Más detalles

OBJETIVO 1 RECONOCER Y DIFERENCIAR ENTRE POBLACIÓN Y MUESTRA NOMBRE: CURSO: FECHA:

OBJETIVO 1 RECONOCER Y DIFERENCIAR ENTRE POBLACIÓN Y MUESTRA NOMBRE: CURSO: FECHA: OBJETIVO 1 RECONOCER Y DIFERENCIAR ENTRE POBLACIÓN Y MUESTRA NOMBRE: CURSO: FECHA: POBLACIÓN Y MUESTRA Estadística es la ciencia encargada de recopilar y ordenar datos referidos a diversos fenómenos para

Más detalles

173 ESO. Actividad en el día. Seguridad en el bricolaje:

173 ESO. Actividad en el día. Seguridad en el bricolaje: Seguridad en el bricolaje: 173 ESO «Para no golpearse con el martillo en los dedos al calvar un clavo en la pared, basta sostener el clavo con las dos manos» Actividad en el día Comida 8% Libre 21% Est

Más detalles