Invariancia de escala en una cuna de Newton

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Invariancia de escala en una cuna de Newton"

Transcripción

1 Revista Colombiana de Física, vol.44, No.2, 212. Invariancia de escala en una cuna de Newton Newton s Cradle Scale Invariance Villalobos, G. a, Oquendo, W. b, Muñoz, J.D. b a Simulación de sistemas físicos, Universidad Nacional de Colombia, Bogotá b Simulación de sistemas físicos, Universidad Nacional de Colombia, Bogotá Recibido abril 1 de 21; aceptado febrero 17 de 211. Resumen En este trabajo se simula numéricamente un sistema de péndulos, conocido como la cuna de Newton, dispuestos secuencialmente y compuesto de tres partículas esféricas interactuando por medio de la Ley de Hertz. Se estudia la evolución del torque sobre la partícula del medio como función del tiempo y de la constante elástica k de las esferas. Se encuentra que existe una invariancia de escala entre el torque y k, representado por un colapso de las diferentes curvas en una forma invariante. Adicionalmente, se exploran los posibles cambios en la curva invariante al reemplazar la ley de Hertz por una ley de interacción lineal entre las esferas y al variar el número de partículas. Palabras Clave:ley de Hertz, cuna de Newton, invariancia de escala, simulación numérica. Abstract The Newton s cradle, a system of three consecutive pendulum composed by spherical particles, is simulated by a computational model. The interaction between the spheres is given by the Hertz Law. Time evolution of total applied torque acting on the middle sphere is studied, both as a function of time, and the elastic constant k of the spheres. The torque turns out to be scale invariant with respect to k, this is represented by a collapse of the different curves into a universal curve. In addition, shape changes of the invariant curve for both a linear interaction law,and a different number of spheres are also explored. PACS:2.6Cb, 2.7Ns, 45.2dc, 45.5Tn. Keywords: Hertz law, Newton s cradle, scale invariance, numerical simulation. 1. Introducción La cuna de Newton es un sistema físico compuesto por tres o más péndulos dispuestos de manera consecutiva de tal forma que en su posición de equilibrio las esferas apenas se tocan. El objetivo principal de este trabajo es estudiar la variación del torque en la partícula central como función del tiempo durante una colisión típica. Se encuentra que el torque sobre la esfera central en una cuna de Newton presenta invariancia de escala como función de la dureza de la esfera, lo cual se ilustra mediante el colapso de varias curvas de evolución temporal del torque en una sola, al escoger escalamientos apropiados en los ejes verticales y horizontales. Las interacciones entre las esferas se modelaron de la forma estándar usando la ley de Hertz [1,2]. Es de resaltar que este tipo de análisis sólo es posible mediante la simulación computacional, ya que requiere el valor del

2 G. Villalobos et al.: Invariancia de escala en una cuna... torque en intervalos de tiempo infinitesimales, lo cual es extremadamente complicado (si no imposible) de medir experimentalmente. L θ i i 1 2 x x 1 x 2 Figura 1. Cuna de Newton en su posición de equilibrio. 2. Simulación computacional de la cuna de Newton El sistema modelo está constituido por tres péndulos que en su posición de equilibrio se sitúan consecutivamente como se muestra en la Figura 1. En la modelación de la colisión entre esferas se supone que ésta ocurre en un tiempo finito y que la interacción se describe de la manera estándar por medio de la ley de Hertz [1,2], como: R x Figura 3. Esquema de un péndulo individual. El ángulo θ es la variable dinámica. La variable dinámica para cada péndulo es el ángulo que forma con la vertical, como se muestra en la Figura (3). Sobre una esfera determinada existirán dos posibles torques: uno, el asociado a la componente del peso perpendicular a la tensión y el otro, proveniente de la posible colisión con dos esferas vecinas. La dinámica de este sistema se simuló utilizando un algoritmo de elementos discretos. En cada paso de la simulación se calculan las fuerzas que actúan sobre las esferas y su aceleración. Las nuevas posiciones (en el instantet+ t) se encuentran mediante el algoritmo de integración mejorado de Verlet, propuesto por Omelyan, cuyo orden es O(dt 4 ) [3]: F = ks 1,5 (1) τ 1 = Lmgsin(θ) (2) τ 2 = Lks 1,5 i,i 1 Lks1,5 i,i+1, (3) donde k representa la dureza del material y s la distancia de interpenetración r 1 = r(t)+ v(t)ξ t v 1 = v(t)+ 1 m f[ r 1] t 2 r 2 = r 1 + v 1 (1 2ξ) t v(t+ t) = v m f[ r 2] t 2 r(t+h) = r 2 + v(t+h)ξ t, (4) 1 s Figura 2. Distancia de interpenetración s. donde ξ =, es el valor óptimo de la constante ξ que minimiza el error global total [3]. Las condiciones iniciales de la simulación se muestran en la Tabla

3 Rev. Col. Fís, 44, No. 2, 212. Tabla 1. Constantes y condiciones iniciales. Característica Valor Masa esferas (g) 1 Radio esferas (cm) Longitud péndulos (cm) 1,5cm 12cm Aceleración gravitacional cm/s 2 98 DeltaT θ ( o ) 5e 7 15 θ 1 ( o ) θ 2 ( o ) Nos interesa analizar numéricamente cómo varía el torque total sobre la esfera del medio 1, como función del tiempo, en un choque de tres esferas. Es decir, la condición inicial de un ángulo distinto de cero para la esfera de la mitad es equivalente a una velocidad inicial en el momento de la colisión. La integración numérica es la forma de conseguir estos datos experimentales, ya que en todo instante durante la simulación, es posible guardar los valores de todas las variables. Las curvas de torque como función de la constante de durezak durante un choque de tres esferas se muestran en la Figura Torque(g cm /s ) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque k=1e8 k=2e8 k=3e8 k=4e8 k=5e8 k=6e8 k=1e tiempo (s) Figura 4. Torque en la esfera central como función de la constante k de la ley de Hertz 1. Se usó un paso de tiempo de DeltaT=,5e 6. En la gráfica se diferencian claramente dos comportamientos. Inicialmente el torque aplicado actúa en el sentido positivo, esto se debe a la interacción que tiene la esfera del medio (etiqueta 1) con la esfera de la izquierda (etiqueta ). Este torque produce una velocidad angular y así mismo un desplazamiento positivo del ángulo de esta partícula, por lo cual ésta interactúa con la esfera de la derecha (etiqueta 2). La interacción con el péndulo (2) domina la segunda parte de la curva en que se aplica un torque neto negativo sobre la esfera del medio. Como se puede inferir de la Figura 4, el comportamiento ondulatorio del torque, con una región positiva y una región negativa, se presenta para diferentes valores de la constante de dureza k. Más que esto, es posible mostrar que la relación entre la constante de dureza y estas variables obedece a un escalamiento de ley de potencias, por lo cual se pueden reescalar todas estas curvas sobre una forma invariante, como se mostrará en la siguiente sección. 3. Escalamiento La primera característica sensible de escalamiento es el tiempo. Se calculó el tiempo durante el cual el torque es positivo, para los diferentes valores de la constante k, como se ve en la Figura 5. Se encuentra que la relación entre los logaritmos es lineal. Luego, existe una ley de potencias entre el tiempo de la oscilación y la constante de dureza del material. La pendiente de la recta en escala logarítmica es de,4(5), donde se utilizó un algoritmo de mínimos cuadrados. log(t) Logaritmo del tiempo durante el cual el torque es positivo contra logaritmo de la constante de dureza k 17.1 Ajuste 17 Datos Figura 5. Logaritmo del tiempo durante el cual el torque es positivo, para la colisión de tres esferas, como función del logaritmo de la constante k. La pendiente de la gráfica es de.4(5). De la misma manera se realiza la Figura 6 en la que se presenta el logaritmo del torque máximo como función del logaritmo de la constante k. En este caso, del ajuste se obtiene un exponente de,48(5), por lo tanto el torque máximo también se escala con una ley de potencias como función de la constante de dureza del material. 1 En el caso de tres esferas, la que tiene la etiqueta 1, es decir la segunda esfera. 12

4 G. Villalobos et al.: Invariancia de escala en una cuna... log(t_max) Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k Torque maximo Ajuste 6.5 Figura 6. Logaritmo del torque máximo como función del logaritmo de la constante k. La linealización por el método de los mínimos cuadrados establece una pendiente de -.48(5). Usando estos dos exponentes se realizan los reescalamientos del torque y el tiempo mediante las siguientes relaciones: τ τ = k,4 (5) t t =. (6) k,48 Esto lleva al colapso de las diferentes funciones del torque como función del tiempo en una única forma, como se muestra en la Figura 7. Tiempo reescalado = t / k Torque reescalado como funcion del tiempo k = 1e8 k = 2e8 k = 3e8 k = 4e8 k = 5e8 k = 6e8 k = 1e Torque reescalado = τ/ k.48 Figura 7. Curva invariante, para la colisión de tres esferas mediante un potencial de Hertz, después de aplicar el escalamiento mediante las ecuaciones 5 4. Interacción lineal entre esferas Para determinar si el escalamiento depende de la forma exacta de la ley de interacción, se estudió cómo varían los exponentes y la forma del torque para otro tipo de fuerza, en este caso una interacción lineal en la distancia de penetración: con s la distancia de interpenetración de las esferas. Los demás valores de la simulación se mantuvieron iguales. Se encuentra que se cumple el escalamiento, esta vez con pendientes de,49981(2) para el eje temporal y,522(7) para el torque. Es decir, los exponentes críticos dependen de la forma de la fuerza de interacción, como se muestra en las Figuras 8 y 9. log(t_max) Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k Fuerza de interaccion de tipo lineal "maxtorque.dat" u (log($1)):(log($2)) f(x) 7.6 Figura 8. Logaritmo del torque máximo como función del logaritmo de la constante k, para una interacción lineal entre las esferas, del tipo F = ks. log(t) Logaritmo del tiempo para torque positivo contra el logaritmo de la constnte de dureza k Fuerza de interaccion de tipo lineal f(x) "zerotorque.dat" u (log($1)):(log($2)) 16.6 Figura 9. Logaritmo del tiempo para torque positivo, como función del logaritmo de la constante k, para una interacción lineal entre las esferas, del tipo F = ks. En la Figura 1, se muestra la forma funcional invariante del torque como función de tiempo durante la colisión triple, utilizando la interacción lineal tipo Hooke, F = ks. F = ks, (7) 121

5 Rev. Col. Fís, 44, No. 2, 212. Torque(g cm^2/s^2) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque Fuerza de interaccion entre particulas lineal k=1e tiempo (s) Figura 1. Torque como función del tiempo, para una interacción lineal entre las esferas, del tipo F = ks. log(t) Logaritmo del tiempo para torque positivo contra el logaritmo de la constante de dureza k Fuerza de Hertz, para cinco pendulos 17 f(x) "zerotorque.dat" u (log($1)):(log($2)) 16.1 Figura 12. Logaritmo del tiempo durante el cual el torque es positivo, como función de la constante de dureza k. Se obtiene una relación de potencias, con constante k =,44(3). 5. Variación del número de esferas La parte final de este trabajo busca estudiar el cambio de la interacción como función del número de esferas. Se utilizó la ley de Hertz, ahora con cinco péndulos, nuevamente aplicando una condición inicial de velocidad a una sola de ellas, como se muestra en la Figura Figura 11. Configuración de cinco péndulos. Se estudió la variación del torque sobre la esfera número 2 (central). Se obtuvieron los exponentes de,44(3) para el eje temporal y,47(3) para el eje del torque, ambos iguales dentro del margen de error de los valores encontrados para tres esferas Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k 6 Fuerza de Hertz, para cinco esferas Datos Linearizacion 6.5 Figura 13. Logaritmo del tiempo durante el cual el torque es positivo, como función de la constante de dureza k. Se obtiene una relación de potencias, con constante k =,47(3). Torque($g cm^2/s^2$) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque k=1e8 k=2e8 k=3e8 k=4e8 k=5e8 k=6e8 k=1e tiempo (s) Figura 14. Torque como función de el tiempo, para interacción tipo Hertz y cinco esferas. La dependencia funcional del torque como función del tiempo para las diferentes constantes de rigidez, es similar al caso del choque entre tres esferas, como se 122

6 G. Villalobos et al.: Invariancia de escala en una cuna... puede ver en la gráfica correspondiente, Figura Conclusiones Se modeló la cuna de Newton usando una fuerza de Hertz y de Hooke para la interacción entre los péndulos. El objetivo fue estudiar la variación temporal del torque y determinar la existencia de exponentes críticos de escalamiento. Se encontró que estos exponentes dependen de la forma de la ley de interacción, siendo alrededor de,4(5) para el tiempo y,48(5) para el torque usando la ley de Hertz, para tres o cinco péndulos. Para una interacción lineal tipo Hooke se obtuvieron los exponentes de,49981(2) para el tiempo y,522(7) para el torque, para tres péndulos. La forma funcional del torque encontrada mediante este método se puede explicar de la siguiente forma. Inicialmente la interacción se lleva a cabo principalmente con la esfera a la izquierda, produciendo un torque en el sentido de las manecillas del reloj, que es la dirección positiva para la variación del ángulo. Esto genera una aceleración del péndulo en la dirección neta positiva y lo lleva a interactuar con la esfera que se encuentra a su izquierda. En una segunda fase, la interacción primordial se lleva a cabo con la esfera de la izquierda, aplicando un torque en el sentido negativo. La continuación natural de este trabajo consiste en encontrar, mediante aproximaciones al problema analítico, la curva que describe el torque como función del tiempo y comparar con la simulación computacional mostrada en el presente artículo. Agradecimientos La presentación de este trabajo en el XXIII Congreso Nacional de Física fue posible gracias al apoyo del centro de excelencia CEiBA, la Facultad de Ciencias y el Departamento de Física de la Universidad Nacional de Colombia - sede Bogotá. Referencias [1] H. Hertz, J. Reine angewandte Mathematik, 17, 1982, p [2] N. V. Brilliantov, F. Spahn, J-M. Hertzsch, T. Pöschel. Phys. Rev. E, 5, 1993, [3] I. P. Omelyan, I. M. Mryglod, R. Folk. Phys. Rev. E, 5, 22,

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de:

ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de: ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II Abraham Vilchis Uribe. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de: Encontrar la relación que existe entre la longitud L,

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA El cuestionario correspondiente a cada práctica de laboratorio debe

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa. Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro

Más detalles

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero. 1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Resistencia de los Materiales

Resistencia de los Materiales Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo luis.perez@usm.cl Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer

Más detalles

LABORATORIO DE MECÁNICA ANÁLISIS GRÁFICO

LABORATORIO DE MECÁNICA ANÁLISIS GRÁFICO No 0.2 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Aprender a identificar las variables que intervienen en un experimento

Más detalles

FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2008

FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2008 FÍSICA 110 CERTAMEN # FORMA R 6 de diciembre 008 AP. PATERNO AP. MATERNO NOMBRE ROL USM - PARALELO EL CERTAMEN CONSTA DE 10 PÁGINAS CON 0 PREGUNTAS EN TOTAL. TIEMPO: 115 MINUTOS IMPORTANTE: DEBE FUNDAMENTAR

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta

Más detalles

Aisladores Sísmicos Péndulo de Fricción

Aisladores Sísmicos Péndulo de Fricción «Aisladores Sísmicos Péndulo de Fricción Apoyo de Péndulo Triple «1. Aisladores sísmicos para la protección de edificios, puentes y facilidades industriales Los Apoyos de Péndulo de Fricción son aisladores

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

P2.- El escape de áncora

P2.- El escape de áncora P.- El escape de áncora. Como es bien sabido desde hace tiempo, las oscilaciones de un péndulo son isócronas, por lo que son idóneas como referencia para la medida del tiempo en los relojes. Sin embargo,

Más detalles

POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA

POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA POSTGRADO EN INGENIERIA MECATRÓNICA CONTROL DE ROBOTS 21200006 TAREA No. 4 Modelado de la fricción F. HUGO RAMIREZ LEYVA ferminhugo.ramirez@upaep.mx PUEBLA PUE. A 29 DE JUNIO DE 2006. 1. Introducción Los

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

LABORATORIO No. 6. Segunda ley de Newton

LABORATORIO No. 6. Segunda ley de Newton LABORATORIO No. 6 Segunda ley de Newton 6.1. Introducción No hay nada obvio acerca de las relaciones que gobiernan el movimiento de los cuerpos. En efecto, tomó alrededor de 4000 años de civilización para

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles