Invariancia de escala en una cuna de Newton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Invariancia de escala en una cuna de Newton"

Transcripción

1 Revista Colombiana de Física, vol.44, No.2, 212. Invariancia de escala en una cuna de Newton Newton s Cradle Scale Invariance Villalobos, G. a, Oquendo, W. b, Muñoz, J.D. b a Simulación de sistemas físicos, Universidad Nacional de Colombia, Bogotá b Simulación de sistemas físicos, Universidad Nacional de Colombia, Bogotá Recibido abril 1 de 21; aceptado febrero 17 de 211. Resumen En este trabajo se simula numéricamente un sistema de péndulos, conocido como la cuna de Newton, dispuestos secuencialmente y compuesto de tres partículas esféricas interactuando por medio de la Ley de Hertz. Se estudia la evolución del torque sobre la partícula del medio como función del tiempo y de la constante elástica k de las esferas. Se encuentra que existe una invariancia de escala entre el torque y k, representado por un colapso de las diferentes curvas en una forma invariante. Adicionalmente, se exploran los posibles cambios en la curva invariante al reemplazar la ley de Hertz por una ley de interacción lineal entre las esferas y al variar el número de partículas. Palabras Clave:ley de Hertz, cuna de Newton, invariancia de escala, simulación numérica. Abstract The Newton s cradle, a system of three consecutive pendulum composed by spherical particles, is simulated by a computational model. The interaction between the spheres is given by the Hertz Law. Time evolution of total applied torque acting on the middle sphere is studied, both as a function of time, and the elastic constant k of the spheres. The torque turns out to be scale invariant with respect to k, this is represented by a collapse of the different curves into a universal curve. In addition, shape changes of the invariant curve for both a linear interaction law,and a different number of spheres are also explored. PACS:2.6Cb, 2.7Ns, 45.2dc, 45.5Tn. Keywords: Hertz law, Newton s cradle, scale invariance, numerical simulation. 1. Introducción La cuna de Newton es un sistema físico compuesto por tres o más péndulos dispuestos de manera consecutiva de tal forma que en su posición de equilibrio las esferas apenas se tocan. El objetivo principal de este trabajo es estudiar la variación del torque en la partícula central como función del tiempo durante una colisión típica. Se encuentra que el torque sobre la esfera central en una cuna de Newton presenta invariancia de escala como función de la dureza de la esfera, lo cual se ilustra mediante el colapso de varias curvas de evolución temporal del torque en una sola, al escoger escalamientos apropiados en los ejes verticales y horizontales. Las interacciones entre las esferas se modelaron de la forma estándar usando la ley de Hertz [1,2]. Es de resaltar que este tipo de análisis sólo es posible mediante la simulación computacional, ya que requiere el valor del

2 G. Villalobos et al.: Invariancia de escala en una cuna... torque en intervalos de tiempo infinitesimales, lo cual es extremadamente complicado (si no imposible) de medir experimentalmente. L θ i i 1 2 x x 1 x 2 Figura 1. Cuna de Newton en su posición de equilibrio. 2. Simulación computacional de la cuna de Newton El sistema modelo está constituido por tres péndulos que en su posición de equilibrio se sitúan consecutivamente como se muestra en la Figura 1. En la modelación de la colisión entre esferas se supone que ésta ocurre en un tiempo finito y que la interacción se describe de la manera estándar por medio de la ley de Hertz [1,2], como: R x Figura 3. Esquema de un péndulo individual. El ángulo θ es la variable dinámica. La variable dinámica para cada péndulo es el ángulo que forma con la vertical, como se muestra en la Figura (3). Sobre una esfera determinada existirán dos posibles torques: uno, el asociado a la componente del peso perpendicular a la tensión y el otro, proveniente de la posible colisión con dos esferas vecinas. La dinámica de este sistema se simuló utilizando un algoritmo de elementos discretos. En cada paso de la simulación se calculan las fuerzas que actúan sobre las esferas y su aceleración. Las nuevas posiciones (en el instantet+ t) se encuentran mediante el algoritmo de integración mejorado de Verlet, propuesto por Omelyan, cuyo orden es O(dt 4 ) [3]: F = ks 1,5 (1) τ 1 = Lmgsin(θ) (2) τ 2 = Lks 1,5 i,i 1 Lks1,5 i,i+1, (3) donde k representa la dureza del material y s la distancia de interpenetración r 1 = r(t)+ v(t)ξ t v 1 = v(t)+ 1 m f[ r 1] t 2 r 2 = r 1 + v 1 (1 2ξ) t v(t+ t) = v m f[ r 2] t 2 r(t+h) = r 2 + v(t+h)ξ t, (4) 1 s Figura 2. Distancia de interpenetración s. donde ξ =, es el valor óptimo de la constante ξ que minimiza el error global total [3]. Las condiciones iniciales de la simulación se muestran en la Tabla

3 Rev. Col. Fís, 44, No. 2, 212. Tabla 1. Constantes y condiciones iniciales. Característica Valor Masa esferas (g) 1 Radio esferas (cm) Longitud péndulos (cm) 1,5cm 12cm Aceleración gravitacional cm/s 2 98 DeltaT θ ( o ) 5e 7 15 θ 1 ( o ) θ 2 ( o ) Nos interesa analizar numéricamente cómo varía el torque total sobre la esfera del medio 1, como función del tiempo, en un choque de tres esferas. Es decir, la condición inicial de un ángulo distinto de cero para la esfera de la mitad es equivalente a una velocidad inicial en el momento de la colisión. La integración numérica es la forma de conseguir estos datos experimentales, ya que en todo instante durante la simulación, es posible guardar los valores de todas las variables. Las curvas de torque como función de la constante de durezak durante un choque de tres esferas se muestran en la Figura Torque(g cm /s ) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque k=1e8 k=2e8 k=3e8 k=4e8 k=5e8 k=6e8 k=1e tiempo (s) Figura 4. Torque en la esfera central como función de la constante k de la ley de Hertz 1. Se usó un paso de tiempo de DeltaT=,5e 6. En la gráfica se diferencian claramente dos comportamientos. Inicialmente el torque aplicado actúa en el sentido positivo, esto se debe a la interacción que tiene la esfera del medio (etiqueta 1) con la esfera de la izquierda (etiqueta ). Este torque produce una velocidad angular y así mismo un desplazamiento positivo del ángulo de esta partícula, por lo cual ésta interactúa con la esfera de la derecha (etiqueta 2). La interacción con el péndulo (2) domina la segunda parte de la curva en que se aplica un torque neto negativo sobre la esfera del medio. Como se puede inferir de la Figura 4, el comportamiento ondulatorio del torque, con una región positiva y una región negativa, se presenta para diferentes valores de la constante de dureza k. Más que esto, es posible mostrar que la relación entre la constante de dureza y estas variables obedece a un escalamiento de ley de potencias, por lo cual se pueden reescalar todas estas curvas sobre una forma invariante, como se mostrará en la siguiente sección. 3. Escalamiento La primera característica sensible de escalamiento es el tiempo. Se calculó el tiempo durante el cual el torque es positivo, para los diferentes valores de la constante k, como se ve en la Figura 5. Se encuentra que la relación entre los logaritmos es lineal. Luego, existe una ley de potencias entre el tiempo de la oscilación y la constante de dureza del material. La pendiente de la recta en escala logarítmica es de,4(5), donde se utilizó un algoritmo de mínimos cuadrados. log(t) Logaritmo del tiempo durante el cual el torque es positivo contra logaritmo de la constante de dureza k 17.1 Ajuste 17 Datos Figura 5. Logaritmo del tiempo durante el cual el torque es positivo, para la colisión de tres esferas, como función del logaritmo de la constante k. La pendiente de la gráfica es de.4(5). De la misma manera se realiza la Figura 6 en la que se presenta el logaritmo del torque máximo como función del logaritmo de la constante k. En este caso, del ajuste se obtiene un exponente de,48(5), por lo tanto el torque máximo también se escala con una ley de potencias como función de la constante de dureza del material. 1 En el caso de tres esferas, la que tiene la etiqueta 1, es decir la segunda esfera. 12

4 G. Villalobos et al.: Invariancia de escala en una cuna... log(t_max) Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k Torque maximo Ajuste 6.5 Figura 6. Logaritmo del torque máximo como función del logaritmo de la constante k. La linealización por el método de los mínimos cuadrados establece una pendiente de -.48(5). Usando estos dos exponentes se realizan los reescalamientos del torque y el tiempo mediante las siguientes relaciones: τ τ = k,4 (5) t t =. (6) k,48 Esto lleva al colapso de las diferentes funciones del torque como función del tiempo en una única forma, como se muestra en la Figura 7. Tiempo reescalado = t / k Torque reescalado como funcion del tiempo k = 1e8 k = 2e8 k = 3e8 k = 4e8 k = 5e8 k = 6e8 k = 1e Torque reescalado = τ/ k.48 Figura 7. Curva invariante, para la colisión de tres esferas mediante un potencial de Hertz, después de aplicar el escalamiento mediante las ecuaciones 5 4. Interacción lineal entre esferas Para determinar si el escalamiento depende de la forma exacta de la ley de interacción, se estudió cómo varían los exponentes y la forma del torque para otro tipo de fuerza, en este caso una interacción lineal en la distancia de penetración: con s la distancia de interpenetración de las esferas. Los demás valores de la simulación se mantuvieron iguales. Se encuentra que se cumple el escalamiento, esta vez con pendientes de,49981(2) para el eje temporal y,522(7) para el torque. Es decir, los exponentes críticos dependen de la forma de la fuerza de interacción, como se muestra en las Figuras 8 y 9. log(t_max) Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k Fuerza de interaccion de tipo lineal "maxtorque.dat" u (log($1)):(log($2)) f(x) 7.6 Figura 8. Logaritmo del torque máximo como función del logaritmo de la constante k, para una interacción lineal entre las esferas, del tipo F = ks. log(t) Logaritmo del tiempo para torque positivo contra el logaritmo de la constnte de dureza k Fuerza de interaccion de tipo lineal f(x) "zerotorque.dat" u (log($1)):(log($2)) 16.6 Figura 9. Logaritmo del tiempo para torque positivo, como función del logaritmo de la constante k, para una interacción lineal entre las esferas, del tipo F = ks. En la Figura 1, se muestra la forma funcional invariante del torque como función de tiempo durante la colisión triple, utilizando la interacción lineal tipo Hooke, F = ks. F = ks, (7) 121

5 Rev. Col. Fís, 44, No. 2, 212. Torque(g cm^2/s^2) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque Fuerza de interaccion entre particulas lineal k=1e tiempo (s) Figura 1. Torque como función del tiempo, para una interacción lineal entre las esferas, del tipo F = ks. log(t) Logaritmo del tiempo para torque positivo contra el logaritmo de la constante de dureza k Fuerza de Hertz, para cinco pendulos 17 f(x) "zerotorque.dat" u (log($1)):(log($2)) 16.1 Figura 12. Logaritmo del tiempo durante el cual el torque es positivo, como función de la constante de dureza k. Se obtiene una relación de potencias, con constante k =,44(3). 5. Variación del número de esferas La parte final de este trabajo busca estudiar el cambio de la interacción como función del número de esferas. Se utilizó la ley de Hertz, ahora con cinco péndulos, nuevamente aplicando una condición inicial de velocidad a una sola de ellas, como se muestra en la Figura Figura 11. Configuración de cinco péndulos. Se estudió la variación del torque sobre la esfera número 2 (central). Se obtuvieron los exponentes de,44(3) para el eje temporal y,47(3) para el eje del torque, ambos iguales dentro del margen de error de los valores encontrados para tres esferas Logaritmo del torque maximo como funcion del logaritmo de la constante de dureza k 6 Fuerza de Hertz, para cinco esferas Datos Linearizacion 6.5 Figura 13. Logaritmo del tiempo durante el cual el torque es positivo, como función de la constante de dureza k. Se obtiene una relación de potencias, con constante k =,47(3). Torque($g cm^2/s^2$) 2e+7 1e+7 1e+7 2e+7 Torque esfera central en el primer choque k=1e8 k=2e8 k=3e8 k=4e8 k=5e8 k=6e8 k=1e tiempo (s) Figura 14. Torque como función de el tiempo, para interacción tipo Hertz y cinco esferas. La dependencia funcional del torque como función del tiempo para las diferentes constantes de rigidez, es similar al caso del choque entre tres esferas, como se 122

6 G. Villalobos et al.: Invariancia de escala en una cuna... puede ver en la gráfica correspondiente, Figura Conclusiones Se modeló la cuna de Newton usando una fuerza de Hertz y de Hooke para la interacción entre los péndulos. El objetivo fue estudiar la variación temporal del torque y determinar la existencia de exponentes críticos de escalamiento. Se encontró que estos exponentes dependen de la forma de la ley de interacción, siendo alrededor de,4(5) para el tiempo y,48(5) para el torque usando la ley de Hertz, para tres o cinco péndulos. Para una interacción lineal tipo Hooke se obtuvieron los exponentes de,49981(2) para el tiempo y,522(7) para el torque, para tres péndulos. La forma funcional del torque encontrada mediante este método se puede explicar de la siguiente forma. Inicialmente la interacción se lleva a cabo principalmente con la esfera a la izquierda, produciendo un torque en el sentido de las manecillas del reloj, que es la dirección positiva para la variación del ángulo. Esto genera una aceleración del péndulo en la dirección neta positiva y lo lleva a interactuar con la esfera que se encuentra a su izquierda. En una segunda fase, la interacción primordial se lleva a cabo con la esfera de la izquierda, aplicando un torque en el sentido negativo. La continuación natural de este trabajo consiste en encontrar, mediante aproximaciones al problema analítico, la curva que describe el torque como función del tiempo y comparar con la simulación computacional mostrada en el presente artículo. Agradecimientos La presentación de este trabajo en el XXIII Congreso Nacional de Física fue posible gracias al apoyo del centro de excelencia CEiBA, la Facultad de Ciencias y el Departamento de Física de la Universidad Nacional de Colombia - sede Bogotá. Referencias [1] H. Hertz, J. Reine angewandte Mathematik, 17, 1982, p [2] N. V. Brilliantov, F. Spahn, J-M. Hertzsch, T. Pöschel. Phys. Rev. E, 5, 1993, [3] I. P. Omelyan, I. M. Mryglod, R. Folk. Phys. Rev. E, 5, 22,

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Tema 1 (16 puntos) Dos muchachos juegan en una pendiente en la forma que se indica en la figura.

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA I. DATOS DE IDENTIFICACIÓN PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I Nombre de la materia: Laboratorio de Física Básica I Código: 2006085

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

7. Práctica. 7.1.Estudio de Levas Introducción

7. Práctica. 7.1.Estudio de Levas Introducción 7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Giróscopo

Pontificia Universidad Católica de Chile Facultad de Física. Giróscopo Pontificia Universidad Católica de Chile Facultad de Física Giróscopo A un giróscopo inicialmente balanceado en posición horizontal, ϴ = π/2, se le aplica un torque al colgar una masa m en el extremo de

Más detalles

Inercia Rotacional. Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos.

Inercia Rotacional. Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos. Objetivo. Inercia Rotacional Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos. Introducción. La inercia rotacional (o de rotación) de

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*)

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*) FÍSICA I CON LAB. Datos de identificación 6885 Unidad Didáctica: Teoría, Taller y Laboratorio Horas clase: Tres, dos y dos, horas, semana, mes Tipo de materia: Obligatoria Eje de formación: Básica Materia

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS GRAFICAS LINEALES OBJETIVOS 1. Realizar linealización de gráficos por el método de cambios de variables. 2. Obtener experimentalmente la relación matemática, más adecuada, entre dos cantidades o magnitudes

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Tema 5. Análisis dinámico con dos grados de libertad.

Tema 5. Análisis dinámico con dos grados de libertad. Tema 5. Análisis dinámico con dos grados de libertad. Objetivo Obtener las dos componentes de la posición, velocidad y aceleración de un punto. Representar gráficamente esas magnitudes de diferentes maneras.

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

Carril de aire. Colisiones

Carril de aire. Colisiones Laboratori de Física I Carril de aire. Colisiones Objetivo Analizar la conservación de la cantidad de movimiento y estudiar las colisiones entre dos cuerpos. Material Carril de aire, soplador, dos puertas

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Introducción al cálculo numérico. Método de Euler

Introducción al cálculo numérico. Método de Euler Capíítullo T1 Introducción al cálculo numérico. Método de Euler En la figura 1.1 se muestra una masa sometida a la aceleración de la gravedad soportada por un muelle un amortiguador viscoso colocados en

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

CINETICA QUIMICA. ó M s s

CINETICA QUIMICA. ó M s s CINETICA QUIMICA La Cinética Química se encarga de estudiar las características de una reacción química, con respecto a su velocidad y a sus posibles mecanismos de explicación. La velocidad de una reacción

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN

MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN TALLER DE EXCEL E INTRODUCCIÓN AL MANEJO DEL PAQUETE PHYSICSSENSOR Realizado por: Tatiana Cristina

Más detalles

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes.

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes. Fricción. Cuando dos superficies se tocan se ejercen fuerzas entre ellas. La fuente primordial de estas fuerzas superficiales o de contacto es la atracción o repulsión eléctrica entre las partículas cargadas

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA I (688) HERMOSILLO, SONORA, SEPTIEMBRE DEL 2004 Clave de la Materia: 688 Carácter: Obligatoria, Eje de formación

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN ESCUELA DE FÍSICA UNIERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN RÁCTICA N 3 LABORATORIO DE FÍSICA MECÁNICA TEMA : COLISIONES EN DOS DIMENSIONES OBJETIO GENERAL Entender de manera experimental la enomenología

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

PRÁCTICA 9: VELOCIDAD ANGULAR DE UN SÓLIDO RÍGIDO.

PRÁCTICA 9: VELOCIDAD ANGULAR DE UN SÓLIDO RÍGIDO. Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior ng. Agrónomos PRÁCTCA 9: VELOCDAD ANGULAR DE UN SÓLDO RÍGDO. MATERAL * Panel de montaje * Varilla delgada * Puerta

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

Validar la relación que existe entre la fuerza neta aplicada sobre un objeto, su masa y la aceleración producida por dicha fuerza.

Validar la relación que existe entre la fuerza neta aplicada sobre un objeto, su masa y la aceleración producida por dicha fuerza. PRÁCTICA DEMOSTRATIVA N 4 (LEYES DEL MOVIMIENTO) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M.

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Práctica 1: Fundamentos

Práctica 1: Fundamentos Práctica 1: Fundamentos En esta práctica se realiza un repaso de conceptos que los alumnos van a necesitar en las prácticas siguientes. Así, se les explica mediante el uso de ejemplos qué es una magnitud

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

LABORATORIO DE MECANICA INERCIA ROTACIONAL

LABORATORIO DE MECANICA INERCIA ROTACIONAL No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.

Más detalles

1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad.

1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad. Laboratorio 2 Péndulos Acoplados 2.1 Objetivos 1. Identificar y determinar las frecuencias propias de oscilación para un sistema de dos grados de libertad. 2. Determinar el valor de aceleración de la gravedad.

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Tema 2: Representación y modelado de sistemas dinámicos

Tema 2: Representación y modelado de sistemas dinámicos Fundamentos de Control Automático 2º G. Ing. Tecn. Industrial Tema 2: Representación y modelado de sistemas dinámicos Índice del tema Tema 2: Representación y modelado de sistemas dinámicos 2. Señales

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Movimiento rotacional Movimiento circular uniforme. Física 3er curso texto del estudiante.

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

27 de octubre de 2010

27 de octubre de 2010 Pontificia Universidad Católica de Chile Facultad de Física FIZ 11 Mecánica Clásica Profesor: Andrés Jordán Ayudantes: Eduardo Bañados T. eebanado@uc.cl Ariel Norambuena ainoramb@uc.cl Torque, Momento

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias Métodos Básicos basado en el libro Numerical Methods for Physics, de Alejandro L. García Ecuaciones Diferenciales Ordinarias p. 1 Derivada para Adelante La expansión

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Movimiento con aceleración constante. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Movimiento con aceleración constante. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Movimiento con aceleración constante Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Objetivos: Después de completar este capítulo, deberá : Reconocer situaciones

Más detalles

RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS

RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS CONTENIDOS: Introducción. 3.1 Interpretación y representación gráfica entre magnitudes físicas. 3.2 Proporcionalidad directa entre una variable y otra elevada

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I)

HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I) HOJA Nº 15. LEYES DE NEWTON Y CANTIDAD DE MOVIMIENTO (I) 1. Dos bueyes tiran de una roca de 1.000 kg, mediante dos cuerdas que forman un ángulo de 90º entre sí aplicando cada uno una fuerza de 2900 N.

Más detalles

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple

Más detalles

6.- Indica las fuerzas que actúan sobre un cuerpo situado en las proximidades de la superficie

6.- Indica las fuerzas que actúan sobre un cuerpo situado en las proximidades de la superficie Cuestiones de Mecánica Olimpiada de Física 2004 Universidad de Murcia 1 1.- De las siguientes frases relativas a un cuerpo en movimiento uniforme, cuál no puede ser cierta?: (a) su velocidad puede ser

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

9 MECANICA Y FLUIDOS: Colisiones

9 MECANICA Y FLUIDOS: Colisiones 9 MECANICA Y FLUIDOS: Colisiones CONTENIDOS Conservación de cantidad de movimiento y de la energía. Colisiones elásticas e inelásticas. Coeficiente de restitución. Trabajo de Fuerzas conservativas y no

Más detalles

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se simboliza con la letra delta. La derivada de la función con

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS CRONOGRAMA DEL CURSO DE FÍSICA MECÁNICA FMX04 SEMESTRE II-016 ORDEN DE PRESENTACIÓN DE LOS CONTENIDOS El curso de Física Mecánica

Más detalles

LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico

LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico LABORATORIO No. 5 Cinemática en dos dimensiones Movimiento Parabólico 5.1. Introducción Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Este movimiento

Más detalles

Importancia de la elasticidad del hilo en el péndulo simple

Importancia de la elasticidad del hilo en el péndulo simple Importancia de la elasticidad del hilo en el péndulo simple Experiencia de aboratorio, Física Experimental I, 8 Garcia, Daiana arregain, Pedro Machado, Alejandro dana_e7@hotmailcom pedrolarregain@yahoocom

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles