CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración"

Transcripción

1 CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones de Galileo Tema 1 1/24

2 BIBLIOGRAFÍA SUSAN M. LEA, J.R. BURKE. La nauraleza de las cosas Cap. 2 y (ecepo roación de un cuerpo rígido) SEARS, ZEMANSKY, YOUNG, FREEDMAN. FÍSICA UNIVERSITARIA Pearson-Addison Wesley, 1998 Cap. 2 y 3 TIPLER, PA. FÍSICA PARA LA CIENCIA Y LA TECNOLOGÍA Ed Reveré 25 Cap. 2 y 3 MARCELO ALONSO Y EDWARD J. FINN Física, Volumen I. 1ª edición Cap. 6. Movimieno relaivo: MARCELO ALONSO FÍSICA, 1ª Edición Cap. 3. Movimieno recilíneo: 3.9 Cap. 4. Movimieno curvilíneo: 4.6 Cap. 5. Movimieno circular: 5.5 y 5.6 DOUGLAS C. GIANCOLI, FÍSICA PARA UNIVERSITARIOS, Volumen I, 3ª edición. Cap. 3.Cinemáica en dos dimensiones; vecores: 3.1 Cap. 11.Roación general: 11.9 y 11.1 Tema 1 2/24

3 SISTEMA DE COORDENADAS Describir el movimieno de una parícula consise en indicar su posición en función del iempo. El primer paso es epresar la posición de una manera inequívoca uilizando un sisema de coordenadas concreo, y especificando la posición del origen de coordenadas. Un sisema de coordenadas es el conjuno de parámeros necesarios para epresar la posición de cualquier objeo en el espacio. SISTEMA DE COORDENADAS CARTESIANAS S z P(,y,z) SISTEMA DE COORDENADAS POLARES y R () P(R,) k i j y ( ) Rcos ( ) y( ) R sin ( ) z() z Tema 1 3/24

4 VECTOR DE POSICIÓN, TRAYECTORIA Lugar del espacio donde se encuenra un objeo. Se designa por describe a parir del valor de sus 3 coordenadas:, y, z r( ) ( ) i y( ) j z( ) k r y z ( ) ( ) ( ) ( ) S r. En coordenadas caresianas se j y i Trayecoria: lugar geomérico de los punos del espacio por donde pasa la parícula en movimieno. Se describe por medio de las ecuaciones paraméricas: (), y() y z(), o relacionando, y, z enre sí eliminando la variable k z r ( 1) Ejemplo: Una parícula se mueve al que su vecor de posición es: Su rayecoria se puede epresar como: () 2 y() 6 z() 2 o y 3 z () r ( 2) r ( 3) 2 r() 2 i 6 j k 2 4 r( ) r 1 1 r( ) r 2 2 Tema 1 4/24

5 VECTOR DESPLAZAMIENTO Indica la variación de la posición de una parícula cuando se desplaza de un puno a oro. S z P r12 r2 r1 r k r 1 r 2 r 12 P r 3 r 23 P 2 1 y y y 2 1 z z z 2 1 y En general es disino que la disancia recorrida S, que se mide sobre la rayecoria Tema 1 5/24

6 VECTOR VELOCIDAD MEDIA r 1 Si un puno se desplaza desde la posición inicial, en el iempo 1, a la posición final, en el iempo 2, el vecor velocidad media enre esos dos punos se define como: v M r2 r1 r m s 2 1 Cuando se habla de velocidad media (sin nombrar la palabra vecor), se refiere al cociene enre la disancia recorrida y el iempo ranscurrido r 2 La velocidad media enre dos punos (por ejemplo en el dibujo enre los punos A y C), es la pendiene de la reca que une esos dos punos Tema 1 6/24

7 VECTOR VELOCIDAD INSTANTÁNEA r( ) r( ) r ( ) dr ( ) v() Lim Lim d Corresponde al vecor velocidad media cuando el inervalo enre los punos es infiniésimo, e indica la velocidad en cada insane de iempo. Como: r( ) ( ) i y( ) j z( ) k dr ( ) d( ) dy( ) dz( ) v( ) i j k v( ) i vy( ) j vz( ) k d d d d Gráficamene, corresponde a la pendiene de la reca angene en cada puno de la curva Ejemplo de la componene Tema 1 7/24

8 VECTOR VELOCIDAD INSTANTÁNEA Generalizando a 3 dimensiones: S z P v v v v v ( ) ( ) y ( ) z ( ) r 1 r 2 v P P v r 3 y El vecor velocidad insanánea iene SIEMPRE la dirección angene a la rayecoria y senido el del movimieno Tema 1 8/24

9 VECTOR ACELERACIÓN Magniud que da información del cambio del VECTOR VELOCIDAD. Nos informa ano del cambio del módulo del vecor velocidad, como del cambio de dirección del vecor velocidad VECTOR ACELERACIÓN MEDIA a M v2 v1 v m 2 s 2 1 VECTOR ACELERACIÓN INSTANTÁNEA v( ) v( ) v( ) dv( ) a() Lim Lim d dv() dv () () dvy dvz () a( ) i j k a( ) i ay( ) j az ( ) k d d d d a a a a ( ) ( ) y ( ) z ( ) Tema 1 9/24

10 VECTOR ACELERACIÓN a M (enre P y Q) vq vp v m 2 s Q P Q P R La dirección de a () es angene en cada puno a la curva que represena frene a v P Q Esa dirección es, en general, disina de la angene a la rayecoria. Solo es igual cuando el movimieno es recilíneo. Tema 1 1/24

11 COMPONENTES INTRÍNSECAS DE LA ACELERACIÓN Si ahora calculamos a eniendo en cuena que v() v u an dv a g () u d dv() d dv duan a( ) v uan uan v a g( ) an( ) d d d d an duan an( ) v ; a d a g (aceleración angencial) mide el cambio en el módulo de v. Tiene dirección angene a la rayecoria y senido el de la variación de v z N v 2 donde = radio de curvaura insanáneo a N (aceleración normal) mide el cambio en la dirección de v. Tiene dirección perpendicular a la angene a la rayecoria, y senido hacia el inerior de la curva a a a 2 2 ( ) g ( ) N ( ) Componenes inrínsecas de la aceleración r () Tema 1 11/24 O a () an () at y ()

12 TRANSFORMACIONES INVERSAS Deerminación de la velocidad y la posición de una parícula a parir de su aceleración. Sea: Si recordamos: df ( ) d g( ) f ( ) g( ) d a( ) a ( ) i a ( ) j a ( ) k y z v( ) v( ) a( ) d a ( ) d i a ( ) d j a ( ) d k y z v( ) v( ) a ( ) d g r( ) r( ) v( ) d v ( ) d i v ( ) d j v ( ) d k y z Disancia recorrida S( ) S( ) v( ) d Tema 1 12/24

13 TIPOS DE MOVIMIENTO Se clasifican en diversos ipos dependiendo de los módulos de las aceleraciones angenciales y normales. 2 v a( ) an ( ) ag ( ) a n indica cambio de dirección de la velocidad d v a( ) an( ) ag ( ) a g indica cambio de módulo de la velocidad d Si a, v( ) v( ) g Movimieno recilíneo uniforme a n MOVIMIENTO RECTILÍNEO Si a g Si ag ( ) a v( ) v( ) ad v( ) a ( ) Movimieno recilíneo uniformemene acelerado Si ag ( ) f ( ) v( ) v( ) f ( ) d Movimieno recilíneo variado Tema 1 13/24

14 TIPOS DE MOVIMIENTO Si a, v( ) v( ) g Mov. Circular uniforme a n MOVIMIENTO CURVILÍNEO Si ce Movimieno circular Si ce () Movimieno curvilíneo Si ag ( ) a v( ) v( ) ad v( ) a ( ) Si a g Movimieno circular uniformemene acelerado Si ag ( ) f ( ) v( ) v( ) Movimieno circular variado f ( ) d Si a, v( ) v( ) Mov. Curvilíneo uniforme g Si a g Si ag ( ) a v( ) v( ) ad v( ) a ( ) Movimieno curvilíneo uniformemene acelerado Si ag ( ) f ( ) v( ) v( ) f ( ) d Movimieno curvilíneo variado Tema 1 14/24

15 MOVIMIENTO CIRCULAR La rayecoria de la parícula es una circunferencia y r a a N v a Se describe fácilmene por medio de las coordenadas polares: y a R a N v a () Como: r( ) Rcos ( ) i Rsin ( ) j z k Podemos caracerizar el movimieno esudiando como cambia con el iempo. Tema 1 15/24

16 MOVIMIENTO CIRCULAR Si llamamos: VELOCIDAD ANGULAR () d () u d rad s v Siendo un vecor perpendicular al plano del movimieno y senido dado por la regla de la mano derecha y d() d rad ACELERACIÓN ANGULAR () 2 s De dirección la misma que ( ) ( ) ( ) d ( ) ( ) ( ) d Tema 1 16/24

17 MOVIMIENTO CIRCULAR RELACIÓN ENTRE MAGNITUDES LINEALES Y ANGULARES S( ) R ( ) ds d v ( R) R d d dv a R d Siendo la relación enre vecores: v( ) ( ) r( ) dr d a( ) v v r ( r ) r d d a N a Tema 1 17/24

18 SISTEMA DE REFERENCIA Consise en definir el lugar (origen de coordenadas) desde el que se oman las medidas, y la dirección y senido de los ejes de coordenadas. El valor de una medida depende del sisema de referencia uilizado, y por ano es necesario deallar siempre qué sisema de referencia esamos uilizando. S r( según el sisema de referencia S) 2i 3 j 2k S z() r P r ' z () k () i () j () r '( según el sisema de referencia S') 3i ' 3 j ' k ' y () k() r () i() j() y() () Tema 1 18/24

19 SISTEMA DE REFERENCIA Los vecores de velocidad y de aceleración de un objeo ambién dependen del sisema de referencia escogido. ES IMPRESCINDIBLE APRENDER A CALCULAR Y A RELACIONAR ESTAS MAGNITUDES EN DIFERENTES SISTEMAS DE REFERENCIA Tema 1 19/24

20 Ejemplo María, Juan y Carlos miden la velocidad de Pablo. Los valores de los vecores velocidad de color verde esán medidos por María (es decir medidos en el sisema de referencia cenrado en María). Nos pregunamos: Se puede decir que hay un único valor de la velocidad del corredor? La respuesa es que no, que la velocidad de Pablo depende del sisema de referencia del observador que la mide. Así: Según el sisema de referencia cenrado en María: v Pablo = 5 m/s Según el sisema de referencia cenrado en Juan: v Pablo = m/s Según el sisema de referencia cenrado Carlos: v Pablo = -1 m/s Medirá cada uno de ellos la misma aceleración del avión? Tema 1 2/24

21 SISTEMA DE REFERENCIA Podemos clasificarlos como: TIPOS DE SISTEMAS DE REFERENCIA SISTEMAS INERCIALES: Aquellos sisemas que o bien esán fijos o se mueven respeco a oro fijo con vecor velocidad consane. Ejemplo: un ren que se mueve a velocidad consane. SISTEMAS NO INERCIALES: Los que se mueven con aceleración respeco a un sisema fijo. Ejemplo: un iovivo Esudiaremos como se ransforman los valores de los vecores posición, velocidad y aceleración enre un sisema de referencia fijo, que designaremos como S, y un sisema de referencia general, que denoaremos como S. Tema 1 21/24

22 SISTEMA DE REFERENCIA. SISTEMAS INERCIALES SISTEMAS INERCIALES S se mueve respeco a S en línea reca y con módulo de velocidad consane, con velocidad Los vecores uniarios i, j y k no cambian en el iempo. Si una parícula P se mueve, la relación enre las magniudes medidas por ambos observadores se calcula por medio de: S r( ) r'( ) r ( ) v z P S r z k r ' r k i j y r () r'( ) r () lo mide el sisema de referencia S lo mide el sisema de referencia S lo mide el sisema de referencia S ( ) i '( ) i ' ( ) i i j y y( ) j y'( ) j ' y ( ) j z( ) k z'( ) k ' z ( ) k Tema 1 22/24

23 SIST. INERCIALES: TRANSFORMACIONES DE GALILEO Si además los ejes de ambos sisemas son paralelos, las relaciones aneriores se simplifican mucho. Se las conoce por las ransformaciones de Galileo. i' i j' j k' k ( ) i '( ) ( ) i y( ) j y'( ) y ( ) j z( ) k z'( ) z ( ) k r () v Si además, para = =, los sisemas coinciden. Enonces: r ( ) r '( ) v o r '( ) r ( ) v Tema 1 23/24

24 SIST. INERCIALES: TRANSFORMACIONES DE GALILEO La relación enre las velocidades que miden ambos observadores se obiene: dr( ) dr '( ) dr () d d d v( ) v '( ) v Y la relación enre las aceleraciones: a dv( ) dv '( ) dv () d d d ( ) a'( ) IMPORTANTE: dos observadores moviéndose enre sí con movimieno uniforme, ven moverse a una parícula con la misma aceleración Tema 1 24/24

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

o Describir la relación entre el centro de masa y el centro de gravedad o Aplicar las condiciones para el equilibrio mecánico

o Describir la relación entre el centro de masa y el centro de gravedad o Aplicar las condiciones para el equilibrio mecánico UNVERSDAD NACONAL AUTO\OMA DE HONDURAS CE{TRO UNVERSTARO DE ESTUDOS GENERALES DEPARTAMENTO DE F'SCA LABORATOROS REALES - FSCA MEDCA NOMBRE: CENTRO DE MASA Y EQULBRO ROTACONAL OBJETVOS: Definir Cenro de

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

CAPÍTULO 9: POTENCIA E INVERSIÓN (II)

CAPÍTULO 9: POTENCIA E INVERSIÓN (II) CAÍTULO 9: OTENCIA E INVERSIÓN (II) Dane Guerrero-Chanduví iura, 015 FACULTAD DE INGENIERÍA Área Deparamenal de Ingeniería Indusrial y de Sisemas CAÍTULO 9: OTENCIA E INVERSIÓN (II) Esa obra esá bajo una

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO EL MOVIMIENTO 1. MOVIMIENTO Y REPOSO. NECESIDAD DE UN SISTEMA DE REFERENCIA: El movimiento es un fenómeno físico que se define como todo cambio de lugar o posición en el espacio que experimentan los cuerpos

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

0,05 (0,02 0,16 5) 0,129 v

0,05 (0,02 0,16 5) 0,129 v L Campo Magnéico III 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. El campo magnéico aría con el iempo de acuerdo con la expresión:

Más detalles

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos. Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento circular Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA INTRODUCCIÓN DERIVADAS La observación de un fenóeno, un cabio, conduce a una función. Observaos, por ejeplo, la inflación a lo largo del iepo en una econoía paricular. Observaos en un ebalse coo el nivel

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular. Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton CONTENIDO Conceptos fundamentales: masa y fuerza Leyes de Newton Ejemplos de fuerzas: peso, fuerza elástica, rozamiento, etc. Diagrama de cuerpo libre Momento lineal y conservación del momento lineal Momento

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria:

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria: Cinemáica 1 Cinemáica 1. SISTEMA DE REFERENCIA. La posición es el lugar que ocupa un cuerpo en el espacio con respeco a un puno que consideramos fijo. Sisema de referencia es el marco con respeco al cual

Más detalles

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando.

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando. 1 3.2.1.1. Fórmula racional Méodo desarrollado en el año de 1889, pero por su sencillez odavía se sigue uilizando. Hipóesis fundamenal: una lluvia consane y uniforme que cae sobre la cuenca de esudio,

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

prepara TU SElECTIVIDAD

prepara TU SElECTIVIDAD prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por

Más detalles

Práctica 2 sobre mediciones de velocidad promedio y aceleración.

Práctica 2 sobre mediciones de velocidad promedio y aceleración. Práctica 2 sobre mediciones de velocidad promedio y aceleración. Daniela Isabel Aranda Cabrera, Hector Jesus Carrillo Reveles, Jose Maria Barbosa Alvarado, Marco Antonio Carmona Torres 1 Universidad de

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo: GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES Prof: F. Lópe- D. Legal: M-0006/009 0. SEGMENTARIA Esa forma se obiene a parir de la forma general. 0 B C Y A C C B C A C B A C B A Ejemplo: 0 Los denominadores

Más detalles

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN

Más detalles

Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Ejercicios de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. Cinemática Movimiento rectilíneo 1. Un ciclista marcha por una región donde hay muchas subidas y bajadas. En las cuestas arriba lleva una

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

Cinemática I. Vector de posición y vector de desplazamiento.

Cinemática I. Vector de posición y vector de desplazamiento. COLEG IO H ISPA N O IN G L ÉS +34 922 276 056 - Fax: +34 922 278 477 La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos

Más detalles

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico CUACION D MAW as leyes experimenales de la elecricidad y del magneismo se resumen en una serie de expresiones conocidas como ecuaciones de Maxwell. sas ecuaciones relacionan los vecores inensidad de campo

Más detalles

Introducción al análisis de estructuras con no linealidad geométrica

Introducción al análisis de estructuras con no linealidad geométrica Inroducción al análisis de esrucuras con no linealidad geomérica Juan omás Celigüea Deparameno de Ingeniería Mecánica Donosia - San Sebasian, Marzo de 8 Conenido INRODUCCIÓN. Planeamienos maerial y espacial

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 EREHOS ÁSIOS E PRENIZJE Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7+ 7 7 7 7 7 0 Realiza conversiones de unidades de una magniud

Más detalles

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco.

En la Sección III Usted debe justificar todas sus respuestas con claridad en el espacio en blanco. Diciembre 9, 2011 nsrucciones Nombre Ese examen iene 3 secciones: La Sección consa de 10 pregunas en el formao de Falso-Verdadero y con un valor de 20 punos. La Sección es de selección múliple y consa

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Contenido Programático Detallado

Contenido Programático Detallado Contenido Programático Detallado ASIGNATURA: FÍSICA MECÁNICA Y DE FLUIDOS Dirección de Ciencias Naturales Área de: FÍSICA CÓDIGO: Mnemónico: FIMF Numérico: 1. OBJETIVOS GENERALES Contribuir a la formación

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inroducción a las Ondas. Ondas en cuerdas 3. Ondas sonoras acúsica Modulo II: Ondas. Ejemplos deinición de onda. Función de onda iajera.3 Ondas armónicas.4 Ecuación de ondas elocidad de propagación Bibliograía:

Más detalles

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 4 : Cinemática. 1. Elementos para la descripción del movimiento

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 4 : Cinemática. 1. Elementos para la descripción del movimiento Tema 4 : Cinemática Esquema de trabajo: 1. Elementos para la descripción del movimiento Movimiento Trayectoria Espacio 2. Velocidad 3. Aceleración 4. Tipos de movimientos Movimiento rectilíneo uniforme

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO

TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO NIVEL SEPTIMO Fuerza y movimiento Fuerzas que actúan simultáneamente sobre un objeto en movimiento o en reposo Condición de equilibrio de un cuerpo Fuerza peso, normal, roce, fuerza aplicada Diferencia

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE FÍSICA APLICADA

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE FÍSICA APLICADA PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

5. MODELOS DE FLUJO EN REACTORES REALES

5. MODELOS DE FLUJO EN REACTORES REALES 5. MODLOS D FLUJO N RACTORS RALS 5.1 INTRODUCCIÓN n el caso de los reacores homogéneos isoérmicos, para predecir el comporamieno de los mismos deben enerse en cuena dos aspecos: - La velocidad a la cual

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magniudes mecánicas Inroducción Sensores poencioméricos Galgas exensioméricas Sensores piezoelécricos Sensores capaciivos Sensores inducivos Sensores basados en efeco Hall Sensores opoelecrónicos

Más detalles

Movimiento en 1 dimensión. Ejercicios prácticos. Autor:

Movimiento en 1 dimensión. Ejercicios prácticos. Autor: Movimiento en 1 dimensión Ejercicios prácticos Autor: Yudy Lizeth Valbuena Ejercicios Prácticos 1. Un corredor avanza 3 km en un tiempo de 10 minutos. Calcula su rapidez, es decir, el valor de su velocidad,

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO

Más detalles

CUARTO EXAMEN PARCIAL: CINEMÁTICA

CUARTO EXAMEN PARCIAL: CINEMÁTICA Prof. Edgar Lopategui Corsino M.A., Fisiología del Ejercicio UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO METROPOLITANO PROGRAMA DE EDUCACIÓN FÍSICA Anatomía y Cinesiología del Movimiento SEFR - 3270

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos.

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos. Programas de Actividades Curriculares Plan 94A Carrera: Ingeniería Mecánica FISICA I Área: Bloque: Nivel: 1º. Ciencias Básicas Formación Básica Homogénea Tipo: Obligatoria. Modalidad: Anual Carga Horaria

Más detalles

m K = 0,04π seg 300 b) Cuando el bloque está en la posición x=0,1m, su energía potencial será: 1 Kx

m K = 0,04π seg 300 b) Cuando el bloque está en la posición x=0,1m, su energía potencial será: 1 Kx MOVIMIENTO ARMÓNICO SIMPLE E4A.S00 Un bloque de 0, kg, siuado sobre una superficie horizonal lisa y unido al exremo de un resore, oscila con una ampliud de 0,0 m. a) Si la energía mecánica del bloque es

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

Curvas de descarga de un condensador

Curvas de descarga de un condensador Curvas de descarga de un condensador Fundameno Cuando un condensador esá cargado y se desea descargarlo muy rápidamene basa hacer un corocircuio enre sus bornes. Esa operación consise en poner enre los

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

M.R.U.: MOVIMIENTO RECTILINEO UNIFORME

M.R.U.: MOVIMIENTO RECTILINEO UNIFORME MOVIMIENTO: Decimos que un cuerpo está en movimiento con respecto a un sistema de referencia elegido como fijo, cuando sus coordenadas varían al transcurrir el tiempo. Y podemos decir que el movimiento

Más detalles

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2).

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2). Álgebra Geomería Analíica Prof. Gisela Saslas Vecores en R en R. Recas planos en el espacio Verifique los resulados analíicos mediane la resolución gráfica usando un sofware de Maemáica. ) Sabiendo que

Más detalles