LA BIOGÉNESIS DEL QUISTE DE GIARDIA DUODENALIS COMO MODELO DE DIFERENCIACIÓN UNICELULAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA BIOGÉNESIS DEL QUISTE DE GIARDIA DUODENALIS COMO MODELO DE DIFERENCIACIÓN UNICELULAR"

Transcripción

1 Bustos Jaimes I, Castañeda Patlán C, Oria Hernández J, Rendón Huerta E, Reyes Vivas H, Romero Álvarez I, (eds). Mensaje Bioquímico, Vol XXXII. Depto de Bioquímica, Fac de Medicina, Universidad Nacional Autónoma de México. Cd Universitaria, México, DF, MÉXICO (2008). (http://bq.unam.mx/mensajebioquimico) (ISSN X) LA BIOGÉNESIS DEL QUISTE DE GIARDIA DUODENALIS COMO MODELO DE DIFERENCIACIÓN UNICELULAR María Luisa Bazán-Tejeda, Raúl Argüello-García y Guadalupe Ortega-Pierres Departamento de Genética y Biología Molecular. Centro de Investigación y de Estudios Avanzados del IPN, México, D.F. Resumen Giardia duodenalis es un parásito de divergencia evolutiva temprana y uno de los principales agentes etiológicos causantes de infecciones entéricas en humanos y en otros vertebrados. Este protozoario sufre cambios complejos durante el enquistamiento, considerado como el proceso de diferenciación de trofozoíto a quiste que le permite sobrevivir fuera del intestino de su huésped. En el caso de Giardia, el enquistamiento ha sido crucial para sobrevivir exitosamente como parásito ya que el estadio de quiste es una entidad debidamente adaptada para su transmisión a un nuevo huésped y probablemente represente una forma de adaptación ancestral a ambientes adversos. El estudio del proceso de diferenciación a quiste resulta muy importante no solo por el impacto de este parásito en la salud humana sino también por su relevancia para entender la evolución de los mecanismos de diferenciación eucariótica. Así, el enquistamiento ha sido considerado como un modelo de estudio útil a nivel básico. A pesar de que se han reportado varios estudios sobre el enquistamiento en este parásito, aún no se conocen por completo los procesos moleculares por lo cuales el trofozoíto se enquista. En esta revisión, se discuten las evidencias moleculares y celulares conocidas hasta ahora respecto a la biogénesis del quiste de Giardia, incluyendo un análisis de su impacto potencial en epidemiología, profilaxis y diseño de fármacos para el control de la giardiasis. Palabras clave: Giardia duodenalis, enquistamiento, mecanismos moleculares, diferenciación en eucariontes. 25

2 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) Abstract The early divergent parasite Giardia duodenalis is a major cause of enteric disease that infects humans and other vertebrates. This protist undergoes a series of complex changes to survive outside the intestine of its host by differentiating into infective cyst. The process of encystment in Giardia is crucial for successfully live as parasite since the cyst is highly adapted to very hostile environments and it can easily be transmitted to a new host. This may represent an ancestral response for adaptation to non-favorable environments. The study of Giardia encystment is important due to the impact of the infection caused by this parasite on human health and also this may help to understand evolutionary mechanisms occurring in eukaryote differentiation. In spite of extensive studies on Giardia encystment, the molecular events involved in the encystment of trophozoites have not yet been fully defined. In this review we discuss cellular and molecular events concerning biogenesis of Giardia cysts, including a global overview of its impact on other studies. Keywords: Giardia duodenalis, encystment, molecular mechanisms, eukaryote differentiation. Introducción Giardia duodenalis (sinónimos: Giardia lamblia, Giardia intestinalis) es el agente etiológico causante de la Giardiosis. Esta infección es una enteropatía mundialmente endémica y ocasionalmente epidémica que afecta particularmente a la población pediátrica de países en vías de desarrollo [1]. La infección por Giardia puede ser asintomática o presentar diversos síntomas como la pérdida del apetito, diarreas agudas o crónicas y síndrome de malabsorción lo cual se ha asociado al retardo en el crecimiento y en consecuencia con cuadros de desnutrición [2]. El estudio de este parásito es importante tanto por su impacto sobre la salud humana como por su relevancia en el conocimiento de la evolución de los eucariontes, debido a que se ha considerado que Giardia tuvo una divergencia temprana en la escala evolutiva considerando estudios filogenéticos del RNA ribosomal, ATPasa vacuolar y del factor de elongación 2 [3]. Sin embargo su posición evolutiva aún es controversial debido a que recientemente se identificaron en Giardia diversas proteínas mitocondriales y también se detectaron estructuras similares a las mitocondrias a las que se les dió el nombre de mitosomas [4,5]. De acuerdo con estas evidencias se ha sugerido que Giardia surgió de un ancestro más evolucionado de lo que se había considerado, o que al menos Giardia presenta tanto características ancestrales como altamente evolucionadas que van de acuerdo con su actual condición de parásito. Ciclo de vida Este parásito tiene un ciclo de vida directo simple con dos estadios que permiten su sobrevivencia en dos tipos de ambiente desfavorables. La entidad patogénica o vegetativa conocida como trofozoíto se adhiere a las células del intestino ocasionando los síntomas de la giardiosis, en tanto que el quiste constituye la entidad infectiva. Así, este parásito presenta dos procesos de diferenciación que se llevan a cabo en el hospedero: el desenquistamiento y el enquistamiento. La infección se inicia mediante transmisión fecal-oral directa por la ingestión del 26

3 Bazán-Tejeda y cols. quiste que se encuentran en agua o alimentos contaminados. Una vez que el quiste se localiza en el estómago del hospedero se inicia el desenquistamiento desencadenado por la actividad de las enzimas hidrolíticas pancreáticas así como por el medio ácido de este órgano. Este proceso culmina en el duodeno y finaliza cuando se rompe la pared quística y emerge del quiste una masa tetranucleada de protoplasma denominada excizoíto [6]. A partir de un quiste se generan cuatro trofozoítos que se adhieren a las microvellosidades intestinales del duodeno y se dividen por fisión binaria, colonizando profusamente la mucosa intestinal. El enquistamiento se realiza principalmente en el yeyuno, probablemente por la acción de la bilis y productos de lipólisis [7]. Los quistes son expulsados por el huésped y permanecen en estado de latencia en el medio ambiente, teniendo una baja actividad fisiológica [8]. Debido a las características, particularmente de la pared del quiste, puede sobrevivir en el medio externo aún y cuando se presentan variaciones drásticas de ph y de tipo osmótico [9]. Asimismo, la eficiencia de la transmisión de Giardia depende en forma decisiva de la formación adecuada de esta estructura. En el proceso de enquistamiento de Giardia se distinguen cuatro fases: (a) Inducción y transducción del estímulo de enquistamiento, (b) Expresión diferencial de genes estadioespecíficos, (c) Síntesis y transporte de los componentes de la pared del quiste, y (d) Ensamblaje de la pared celular. Inducción y transducción de estímulos en el enquistamiento Aún no se han determinado en su totalidad cuáles son los estímulos inductores del enquistamiento in vivo, sin embargo existen evidencias de cuál sería la naturaleza de éstos debido a que este proceso de diferenciación ha sido reproducido in vitro siguiendo diversas estrategias que incluyen: (a) empleo de una atmósfera de de N 2 /CO 2 en una proporción de 90:10, (b) uso de altas concentraciones de sales biliares en el medio de cultivo y (c) empleo de medios deficientes en colesterol [10,11,12]. El segundo método ha sido el más reproducible y eficiente, por lo que ha sido empleado en la mayor parte de los estudios reportados en relación con el enquistamiento de este parásito. Así, se han logrado rendimientos de hasta 4 X 10 5 quistes/ml [13]. Aún cuando el enquistamiento de Giardia se puede reproducir in vitro, no se han dilucidado por completo las bases moleculares que activan la expresión diferencial de genes en este proceso. En otros eucariontes, la regulación de las interacciones tan complejas que ocurren tanto en la diferenciación como en la proliferación, está mediada en parte por redes de fosforilación de proteínas, las cuales son moduladas por cinasas y fosfatasas. En Giardia no se tiene información detallada sobre las bases moleculares de la fase inductiva del enquistamiento, aunque se han identificado algunos elementos de señalización que posiblemente participen en la inducción del enquistamiento. En cuanto a la asociación de la inducción del enquistamiento por ausencia de colesterol, recientemente se identificó en G. duodenalis el receptor denominado C k y la proteína de unión a elementos reguladores de esteroles (SREBP) los cuales participan en el control de la homeostasis celular del colesterol. En trofozoítos, se ha sugerido que el receptor C k funciona como un sensor de colesterol. La inactivación de este receptor trae como consecuencia el incremento de proteínas de la pared del quiste (CWP, específicamente la CWP1), sugiriendo que este receptor regula de manera negativa el enquistamiento. Así, la presencia del colesterol podría estar inhibiendo el proceso de diferenciación [14]. Al respecto, aun es necesario caracterizar la ruta de señalización que activa directamente el enquistamiento. Las cinasas reguladas por señales extracelulares 1 y 2 (conocidas como ERK1 y ERK2) también han sido identificadas en Giardia. De estas cinasas, se ha reportado que principalmente ERK1 presenta cambios de expresión y actividad durante el enquistamiento, por lo que se ha 27

4 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) sugerido que participa directamente en este proceso. Así mismo, se ha sugerido la participación de la proteína cinasa B o Akt (PKB), identificada recientemente empleando un anticuerpo que reconoce a un homólogo de mamífero [15]. La cinasa PKB presenta un aumento en su expresión durante el enquistamiento, por lo que se ha asociado a la inducción de este proceso [15,16]. Otra proteína implicada en el enquistamiento, que pertenece al grupo de las AGC cinasas en el cual también se incluye PKB es la proteína cinasas C (PKC). En Giardia duodenalis se han identificado las isoformas de PKC beta, delta, epsilon, theta y zeta. De manera interesante, estas proteínas mostraron diferentes patrones de expresión durante el enquistamiento y el inhibidor general de PKC, bisindolilmaleimida I, redujo significativamente este proceso sugiriendo su participación durante el enquistamiento. En este contexto, la única isoforma dependiente de Calcio, la PKC beta, presentó actividad de cinasa dependiente de los cofactores de PKC y de manera notable se redistribuyó hacia la membrana plasmática a los 10 min post-inducción de enquistamiento, indicando la posible activación de esta enzima durante la fase temprana del enquistamiento [17]. En este contexto, es importante señalar que homólogos de ERK y de PKC beta están involucradas en la vía de señalización que activa el proceso de formación de la pared celular en levaduras [18], lo cual sugiere que esta vía de señalización podría estar conservada en eucariontes con una función similar. En relación con PKB, en G. duodenalis se han identificado homólogos de varios elementos de señalización vinculados con PKB como la fosfatidil-inositol-3-cinasa ó PI3K (PI3K1 y PI3K2), el blanco de rapamicina (gtor), el factor de iniciación de la elongación 4E (eif4e) y la cinasa dependiente de fosfoinosítidos ó PDK1 [19,20]. Sin embargo, se requiere definir si la vía en la que participan estas moléculas activa la proliferación o la diferenciación. De hecho esta vía podría regular negativamente el enquistamiento mediante la actividad de TOR, ya que se ha reportado que en levaduras al inhibirse la actividad de TOR se induce la activación de la vía de señalización asociada con PKC1 que participa en el mantenimiento de la pared celular en estos organismos [21,22] (Figura 1). Por otra parte, recientemente se reportó que la subunidad regulatoria de la PKA de Giardia disminuye su expresión durante el enquistamiento [23], mientras que la subunidad catalítica se sobre expresa [24], lo cual pone de manifiesto su papel en los procesos de diferenciación de este parásito. En un estudio reciente se reportó que la proteína adaptadora , implicada en el reclutamiento de elementos de señalización, migra al núcleo durante el enquistamiento de G. duodenalis, indicando que probablemente se encuentra activada durante esta fase de diferenciación [25]. Finalmente, se ha caracterizado una serina/treonina fosfatasa 2 A (PP2A) que puede participar en la modulación de las vías de transducción durante la diferenciación, debido a que se sobre-expresa durante el enquistamiento tardío y al inicio del desenquistamiento; mostrando una distribución peculiar en la célula, ya que se ha detectado asociada al citoesqueleto de este parásito [26]. 28

5 Bazán-Tejeda y cols. Sensor de nutrientes o RTK? Receptor ó Sensor de nutrientes (Ck?) GiPI3K1 P K B PDK-1 PLC DAG? gpkc activa IP3 gpkc inactiva? gtor? ERK1 Proliferación? Síntesis de Proteínas? (Activación de eie4e ) [Ca +2 ] i PI(3,4,5)P 3 ó PI(4,5)P 2 ENQUISTAMIENTO Sales Biliares DAG Figura 1. Modelo hipotético de las vías de señalización asociadas al enquistamiento de G. duodenalis. En este esquema se muestran las vías de señalización propuestas que integran los elementos de transducción que a la fecha han sido caracterizados en G. duodenalis. El signo? indica que no se tienen evidencias bioinformáticas ni experimentales sobre las interacciones y efectos indicados en su caso. Expresión diferencial de genes estadio-específicos Durante la fase temprana de enquistamiento en este parásito, se induce la expresión de genes involucrados en la síntesis y transporte de los componentes de la pared del quiste. Algunos de los productos codificados por estos genes corresponden a las CWPs. Hasta el momento se han identificado CWP1, 2, 3 y la proteína del quiste no variante rica en cisteína ó HCNCp como las proteínas que forman parte de la pared del quiste. Las CWPs presentan dominios similares a un péptido señal amino terminal de secreción y repetidos en tandem que son ricos en leucina (LRRs) [27-30]. Por otro lado, la HCNCp tiene similitud con las proteínas variables de superficie (VSPs), las cuales pueden participar en mecanismos de evasión de la respuesta inmune conocidos como variación antigénica que presentan los trofozoítos [31]. Las CWPs se diferencian entre sí debido a que CWP2 tiene un dominio carboxilo terminal básico de 121 aminoácidos y CWP3 presenta solamente 4 repetidos ricos en leucina, mientras que CWP1 y CWP2 tienen 5 LRRs [28]. Estas proteínas se unen entre sí mediante sus LRRs formando 29

6 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) complejos estables de heterodímeros y mediante estudios de microscopía electrónica se ha observado que estas proteínas se localizan en la pared quística formando parte de los filamentos [9,32]. Las CWPs incrementan su expresión inmediatamente después de la inducción del enquistamiento al igual que otras proteínas como la glucosamina-6-fosfato isomerasa (GLN6PIb), la proteína BiP, Myb2, GLP1 y ENC6. Esta última fue identificada mediante una búsqueda en el transcriptoma de Giardia como una proteína que se sobre-expresa a partir de las 5 h postinducción del enquistamiento, y aún cuando no presentó homología con alguna proteína reportada, su identificación ha sido útil para estudiar las características estructurales del material genético de este parásito así como en la identificación de la región consenso de poliadenilación [33]. La proteína GLN6PI-b es la primera enzima involucrada en la síntesis de la N-acetil galactosamina [34]. BiP actúa como chaperona y se encontró unida a CWP1 en las vesículas específicas de enquistamiento (ESVs), por lo que se sugiere que impide las uniones prematuras de estas proteínas dentro de estas estructuras [35]. Myb2, GLP1, GARP y garid son factores de transcripción que han sido clonados y caracterizados en G. duodenalis, que se unen a las regiones promotoras de genes que se sobre-expresan durante el enquistamiento tales como CWP1, 2, 3 y gln6pi-b e incluso se ha reportado que Myb2 regula su propia expresión [36,37]. Además, se ha determinado que estos factores de transcripción incrementan su expresión durante la fase inductiva del enquistamiento [36-39]. A pesar de que se han reportado esta serie de evidencias aún no se conoce con detalle el orden secuencial de activación de genes y la forma exacta en la que operan estos factores de transcripción in vivo. Síntesis y transporte de los componentes de la pared del quiste Con respecto a los mecanismos implicados en el transporte de proteínas durante el enquistamiento, se ha observado que durante este proceso las células pierden su capacidad de adhesión, se redondean y comienza una vacuolización profusa. Estas vesículas son en parte las vesículas específicas de enquistamiento (ESV). Las ESVs transportan a las CWPs y otros elementos implicados en formación de la pared del quiste a la periferia de trofozoítos inducidos a enquistamiento [40,41]. En la Figura 2 se observan a las ESVs identificando a CWP1 a través de inmunofluorescencia indirecta empleando anticuerpos que reconocen a esta proteína [42]. En esta figura se observa que las ESVs son específicas del enquistamiento, ya que en trofozoitos bajo crecimiento vegetativo no fue posible identificar a estas vesículas (Figura 2A) mientras que en los trofozoítos inducidos a enquistamiento se detectó inmunorreactividad que corresponde a las estructuras conocidas como ESVs (Figura 2B). Por otra parte, también se ha reportado que existe una relación estrecha entre las ESVs y las CWPs, debido que se determinó que la expresión y agregación de CWP1 recombinante induce la formación de las ESVs [43] sugiriendo que la formación y maduración de estas estructuras está condicionada al incremento y oligomerización de las CWPs durante el enquistamiento. Esta observación fue sustentada al determinar que las ESVs se desensamblan cuando son tratadas con el reductor DTT, lo cual podría ser consecuencia de la monomerización de las CWPs [44]. 30

7 Bazán-Tejeda y cols. Figura 2. Identificación de los las proteínas de la pared del quiste mediante inmunofluorescencia indirecta empleando anticuerpos policlonales dirigidos contra las proteínas que forman esta estructura. (A) Trofozoítos en proliferación, (B) Detección de ESVs transportando los elementos de la pared del quiste en trofozoítos inducidos a enquistamiento durante 18 h. (C) Inducción de enquistamiento durante 90h. En la parte inferior se observa un trofozoíto enquistante con parches de material de la pared del quiste en la superficie, y en la parte superior se observan dos quistes morfológicamente distinguibles con tinción uniforme en la superficie. En los paneles del lado izquierdo se muestran fotomicrografías en campo claro y en los paneles del lado derecho los campos correspondientes con la técnica de inmunofluorescencia indirecta. Tomado de Castillo- Figueroa (1997) (ref. 43). Mediante estudios de microscopía electrónica se observó la aparición de las ESVs desde las 6 h post-inducción de enquistamiento con una apariencia electrón-densa y se determinó que estas vesículas surgen del retículo endoplásmico [45]. Diversas evidencias experimentales sugieren que las ESVs representan un organelo similar al Aparato de Golgi, a pesar de que estas vesículas no poseen la forma aplanada o de cisterna típica del organelo de eucariontes 31

8 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) superiores. Estas estructuras presentan marcadores clásicos del Aparato de Golgi tales como coatómeros (Gi COP), BiP1, YIP1 (GiYip1) y ARF que es una proteína de unión a GTP [46,47]. Las ESVs también presentan propiedades funcionales de Aparato de Golgi, ya que el transporte de CWP1 es inhibido en presencia de Brefeldina A, el cual es un metabolito fúngico que actúa como bloqueador del intercambio de nucleótidos de guanina de ARF, lo que ocasiona el desensamble del Aparato de Golgi en eucariontes al prevenir la unión de ARF y coatómeros [46]. Las estructuras que corresponden al Aparato de Golgi se han observado conspicuas durante el enquistamiento de G. duodenalis, aunque también se han detectado estructuras con características de Aparato de Golgi en los trofozoítos que no han sido inducidos a enquistamiento [40]. El Aparato de Golgi se ha observado mediante el marcaje con NBDceramida tanto en las membranas de las ESVs como en la periferia nuclear de los trofozoítos que no son inducidos a enquistamiento (46,48). Esta evidencia sugiere que probablemente el Aparato de Golgi en este parásito es críptico, incipiente o en ocasiones ausente en los trofozoítos que no enquistan [40,46,48]. En cambio, durante el enquistamiento esta estructura se hace más evidente por los requerimientos propios del estadio como son: un transporte exhaustivo de los elementos necesarios para la formación de la pared del quiste, la maduración o modificaciones post-traduccionales de estos elementos y el ensamblaje de la pared quística. Por otra parte, también se ha determinado que en G. duodenalis ciertas funciones del retículo endoplásmico y Golgi co-localizan o se yuxtaponen espacialmente y temporalmente en una novedosa vía de secreción que está regulada [45]. En su conjunto, estos datos enfatizan que este parásito posee características muy particulares, las cuales probablemente derivan de su divergencia evolutiva temprana o tal vez sean una consecuencia de la co-evolución que experimentaron como consecuencia de la relación huésped-parásito. Ensamblaje de la pared quística En relación con la composición de la pared quística, se ha determinado que está integrada por una porción interna membranosa y una externa filamentosa de μm [49]. La pared filamentosa externa esta compuesta de proteínas (37%) y de filamentos del carbohidratos (63%), principalmente de un homopolímero de N-acetil galactosamina [50-52]. El precursor de este homopolímero es la UDP-N-acetilgalactosamina (UDP GlcNAc), la cual se sintetiza a partir de glucosa por una vía de enzimas que se sobre-expresan durante el enquistamiento [53]. Estas enzimas son: glucosamina-6-fosfato isomerasa, glucosamina-6-fosfato N-acetilasa, fosfoacetilglucosamina mutasa, UDP-GlcNAc pirofosforilasa y UDP-GlcNAc 4 epimerasa [54]. El UDP-GalNAc se convierte posteriormente en un homopolímero de (1-3)-D-GalNAc por la actividad la enzimática tentativamente llamada sintasa de la pared del quiste [55,56]. En cuanto al depósito de los elementos que forman la pared del quiste aparentemente éstos son liberados en la periferia de los trofozoítos por las ESVs mediante exocitosis; al respecto se ha observado que las membranas de las ESVs presentan continuidad con la membrana plasmática [40, 13]. La secreción de los elementos de la pared de quiste, de las ESVs hacia la periferia celular, se observó al utilizar el trazador catiónico Rojo de Rutenio (RR) que presenta 6 cargas positivas que le permiten unirse a los extremos de las proyecciones fibrilares en proceso de polimerización (Figura 3A) [9]. 32

9 Bazán-Tejeda y cols. A ESV 0.1 μm B C 0.1 μm D 0.1 μm E F 1 μm 1 μm 1 μm Figura 3. Identificación del ensamble extracelular de la pared del quiste de Giardia mediante la tinción con Rojo de Rutenio (RR). (A) Estructuras fibrilares en formación detectadas en la superficie dorsal de los trofozoítos mediante el marcaje con RR (cabezas de flechas). (B) Depósito de la malla fibrilar sobre la región dorsal del trofozoíto positiva a RR mostrando pliegues en la superficie celular (flechas). (C) Pared del quiste completamente ensamblada, mostrando las capas fibrilar (OCW) y membranosa (ICW) la cual es refractaria a la tinción con RR, indicando un posible cambio en los sitios de unión o en la carga neta del heteropolímero. (D) Detección de ESVs (flechas) en trofozoítos inducidos a enquistamiento durante 18 h. (E) Identificación de vesículas periféricas en un quiste en el cual se está efectuando la formación del espacio peritrópico (cabezas de flecha). (F) Quiste maduro de Giardia que presenta 4 núcleos, pared quística y espacio peritrópico (cabezas de flecha) completamente conformados. N, Núcleo; Ad, disco adherente; OCW, porción externa de la pared del quiste; ICW, porción interna de la pared del quiste; ESVs, vesículas específicas de enquistamiento. Tomado de Argüello-García (2003) (ref. 13). 33

10 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) Así, se ha sugerido que durante la formación de la pared, los polipéptidos como las CWPs son transportados por las ESVs a la periferia celular (Figura 3A y 3D) y se depositan inicialmente en la superficie del trofozoíto, mientras que los precursores de N- acetilgalactosamina se integran posteriormente a la pared del quiste para finalmente copolimerizarse y formar la malla fibrilar. Al respecto, la CWP1 se ha identificado en las ESVs desde las 5.5 h post-inducción de enquistamiento; en cambio, la identificación de N- acetilgalactosamina mediante la tinción con RR sobre la superficie de trofozoítos enquistantes se observó hasta las 9-10 h post-inducción [9]. La formación de la pared del quiste se realiza por regiones, debido a que se encuentran parches de malla fibrilar dispersos en la superficie de los trofozoítos inducidos a enquistamiento (Figura 2C), los cuales son más evidentes a las h post-inducción. Estos parches aparecen al azar y al multiplicarse se unen entre sí y en ocasiones se sobrelapan engrosando la malla fibrilar. Esta condición le proporciona a la membrana del trofozoíto una apariencia rugosa durante esta fase extracelular del enquistamiento. Al terminar el ensamblaje de la pared del quiste, esta estructura se torna lisa y homogénea (Figura 2C y 3C). En estas circunstancias, la pared del quiste presenta tinción negativa a RR porque probablemente ya no expone los sitios de unión a este compuesto o porque la carga neta del polímero ha cambiado [9]. En cuanto a la estructura membranal interna de la pared del quiste, se ha sugerido que se forma por la fusión de las vesículas periféricas (PV). Estas últimas presentan características de endosomas tempranos y tardíos que van a formar los lisosomas en Giardia [57]. La unión de las membranas de las vesículas periféricas y la formación del espacio peritrópico se observó mediante el análisis de las células en proceso de enquistamiento empleando microscopía electrónica, lo que sugiere que mediante este proceso se forma la bicapa lipídica de la porción interna membranosa de la pared del quiste y el espacio peritrópico, que es el espacio que encuentra entre ambas membranas [58]. Impacto y relevancia del estudio del enquistamiento El conocimiento de los mecanismos del enquistamiento ha sido muy relevante en el diseño de vacunas [59] ya que se propone emplear en el diseño de fármacos con el propósito de interrumpir la transmisión de G. duodenalis [60]. En este contexto, recientemente se produjo una vacuna de DNA que contiene la secuencia de CWP2 expresada en Salmonella thypimurium. Mediante el empleo de este vector en la inmunización de modelos experimentales previo a la infección con G. duodenalis se observó una reducción del 60% en la liberación de quistes en los modelos experimentales empleados debido a la estimulación de la respuesta inmune mucosal [59]. Esta respuesta se caracterizó por un incremento de células T CD4 + tanto a nivel mucosal como sistémico así como por un incremento de IL4 e IFN en células de bazo y de nódulos linfáticos mesentéricos en los modelos experimentales inmunizados, siendo estas condiciones del sistema inmune análogas a las que se presentan durante la eliminación de Giardia [61,62]. En cuanto al diseño de fármacos se pretende llevar a cabo inserciones de secuencias de nucleótidos que presentan los diversos genes que codifican a las proteínas involucradas en el enquistamiento ya que estas secuencias diferenciales se pueden utilizar para el diseño racional de fármacos. Entre estos elementos se encuentran algunas proteínas de señalización como la PKC y GiPI3K [17,19]. Asimismo, algunos inhibidores de PKC se están estudiando para fines terapéuticos, 34

11 Bazán-Tejeda y cols. entre éstos se encuentran las bisindolilmaleimidas Enzastaurina (LY HCl) y Ruboxistaurina (LY333531) para el tratamiento de neoplasias o diabetes, respectivamente [63,64]. Por otro lado, se tienen evidencias sobre el efecto de fármacos dirigidos contra PKCs de otros eucariontes patógenos, a este respecto se ha determinado que la Cercosporamida, un fármaco que se emplea exitosamente en el tratamiento de la infección por Candida albicans, es un inhibidor especifico de la CaPKC1p. De manera interesante, este compuesto no se une a las PKCs de mamífero [65] lo cual hace posible su empleo efectivo en el control de la infección por este organismo. Asimismo, la síntesis de la N-acetilgalactosamina también puede ser interrumpida al inhibir la actividad de alguna de las enzimas implicadas en la vía de síntesis lo cual ya se esta llevando a cabo en levaduras patógenas. En este contexto, en levaduras se ha puesto especial atención en el desarrollo de inhibidores de la sintasa de glucano (1-3) debido a que esos compuestos pueden interrumpir la formación de la pared celular [66]. Finalmente el estudio del enquistamiento de G. duodenalis presenta ventajas adicionales debido a la posición filogenética muy particular de este parásito. Así, el conocimiento de los mecanismos implicados en el enquistamiento de Giardia permitirá emplear a este parásito como un modelo para establecer similitudes y diferencias del enquistamiento en otros parásitos protozoarios e incluso en la diferenciación de eucariontes. Agradecimiento Este trabajo fue financiado en parte por CONACyT proyecto No M. Referencias 1. Lane, S., y Lloyd, D. (2002) Crit. Rev. Microbiol. 28, Huang, D. B., y White, A. C. (2006) Gastroenterol. Clin. North Am. 35, Lloyd, D., y Harris, J. C. (2002) Trends Microbiol. 10, Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A., y Peattie, D.A. (1989) Science 243, Tovar, J., León-Avila, G., Sánchez, L. B., Sutak, R., Tachezy, J., van der Giezen, M., Hernández, M., Muller, M., y Lucocq, J. M. (2003) Nature 426, Bernander, R., Palm, J. E., y Svärd, S.G. (2001) Cell Microbiol. 3, Gillin, F. D., Reiner, D. S., y Boucher, S. E. (1988) Infect. Immun. 56, Jarroll, E. L., Macechko, P. T., Steimle, P. A., Bulik, D., Karr, C. D., van Keulen, H., Paget, T. A., Gerwig, G., Kamerling, J., Vliegenthart, J., y Erlandsen, S. (2001) J. Eukaryot. Microbiol. 48, Argüello-García, R., Argüello-López, C., González-Robles, A., Figueroa, A. M., y Ortega-Pierres, M. G. (2002) Parasitology 125, Sterling, C. R., Kutob, R. M., Gizinski, M. J., Verastegui, M., y Stetzenbach, L. (1988) En Advances in Giardia Research (ed. Wallis, P. M. y Hammond, B. R.), University of Calgary Press, Calgary 11. Gillin, F. D., Reiner, D. S., Gault, M. J., Douglas, H., Das, S., Wunderlich, A., y Sauch, J. F. (1987) Science 235, Luján, H. D., Mowatt, M. R., y Nash, T. E. (1997) Microbiol. Mol. Biol. Rev. 61, Argüello-García R. (2003) Tesis de Doctorado. CINVESTAV-IPN. México 14. Kaul, D., Rani, R., y Sehgal, R. (2001) Mol. Cell Biochem. 225, Ellis, J. G., M, y Chakrabarti, R. (2003) J. Biol. Chem. 278, Kim, K. T., Mok, M. T., y Edwards, M. R. (2005) Biochem. Biophys. Res. Commun. 334, Bazán-Tejeda, M. L., Argüello-García, R., Bermúdez-Cruz, R. M., Robles-Flores, M., y Ortega-Pierres, G. (2007) Arch. Microbiol. 187, Levin, D. E. (2005) Microbiol. Mol. Biol. Rev. 69, Cox, S. S., van der Giezen, M., Tarr, S. J., Crompton, M. R., y Tovar, J. (2006) BMC Microbiol. 6, 45 35

12 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) 20. Morrison, H. G., Zamora, G., Campbell, R. K., y Sogin, M. L. (2002) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133, Krause, S. A., y Gray, J. V. (2002) Curr. Biol. 12, Torres, J., DiComo, C. J., Herrero, E., y De La Torre-Ruiz, M. A. (2002) J. Biol. Chem. 277, Gibson, C., Schanen, B., Chakrabarti, D., y Chakrabarti, R. (2006) Int. J. Parasitol. 36, Abel, E. S., Davids, B. J., Robles, L. D., Loflin, C. E., Gillin, F. D., y Chakrabarti, R. (2001) J. Biol. Chem. 276, Lalle, M., Salzano, A. M., Crescenzi, M., y Pozio, E. (2006) J. Biol. Chem. 281, Lauwaet, T., Davids, B. J., Torres-Escobar, A., Birkeland, S. R., Cipriano, M. J., Preheim, S. P., Palm, D., Svärd, S. G., McArthur, A. G., y Gillin, F. D. (2007) Mol. Biochem. Parasitol. 152, Mowatt, M. R., Luján, H. D., Cotten, D. B., Bowers, B., Yee, J., Nash, T. E., y Stibbs, H. H. (1995) Mol. Microbiol. 15, Luján, H. D., Mowat, M. R., Conrad, J. T., Bowers, B., y Nash, T. E. (1995) J. Biol. Chem. 270, Davids, B. J., Reiner, D. S., Birkeland, S. R., Preheim, S. P., Cipriano, M. J., McArthur, A. G., y Gillin, F. D. (2006) PLoS ONE. 1, e Sun, C. H., McCaffery, J. M., Reiner, D. S., y Gillin, F.D. (2003) J. Biol. Chem. 278, Nash, T. E. (2002) Mol. Microbiol. 45, Erlandsen, S. E., Macechko, P. T., Van Keulen, H., y Jarrol, E. L. (1996) J. Eukaryot. Microbiol. 43, Que, X., Svärd, S. G., Meng, T. C., Hetsko, M. L., Aley, S. B., y Gillin, F. D. (1996) Mol. Biochem. Parasitol. 81, Knodler, L. A., Svärd, S. G., Silberman, J. D., Davids, B. J., y Gillin, F. D. (1999) Mol. Microbiol. 34, Luján, H. D., Mowatt, M. R., Byrd, L. G., y Nash, T. E. (1996) Proc. Natl. Acad. Sci. USA 93, Sun, C. H., Palm, D., McArthur, A. G., Svärd, S. G., y Gillin, F. D. (2002) Mol. Microbiol. 46, Yang, H., Chung, H. J., Yong, T., Lee, B. H., y Park, S. (2003) Mol. Biochem. Parasitol. 128, Sun, C. H., Su, L. H, y Gillin, F. D. (2006) Mol. Biochem. Parasitol. 146, Wang, C. H., Su, L. H., y Sun, C. H. (2007) J. Biol. Chem. 282, Reiner, D. S., McCaffery, M., y Gillin, F.D. (1990) Eur. J. Cell Biol. 53, Faubert, G., Reiner, D. S., y Gillin F. D. (1991) Exp. Parasitol. 72, Castillo-Figueroa, A. M. (1997) Tesis de licenciatura. CINVESTAV-IPN. Morelia, Mich. 43. Gottig, N., Elías, E. V., Quiroga, R., Nores, M. J., Solari, A. J., Touz, M. C., y Luján, H. D. (2006) J. Biol. Chem. 281, Reiner, D. S., McCaffery, J. M., y Gillin, F. D. (2001) Cell Microbiol. 3, Lanfredi-Rangel, A., Attias, M., Reiner, D. S., Gillin, F. D., y De Souza, W. (2003) J. Struct. Biol. 143, Luján, H. D., Marotta, A., Mowatt, M. R., Sciaky, N., Lippincott-Schwartz, J., y Nash, T. E. (1995) J. Biol. Chem. 270, Marti, M., Li, Y., Schraner, E. M., Wild, P., Köhler, P., y Hehl, A. B. (2003) Mol. Biol. Cell 14, Lanfredi-Rangel, A., Kattenbach, W. M., Diniz, J. A. Jr, y De Souza, W. (1999) FEMS. Microbiol. Lett. 181, Erlandsen, S. L., Bemrick, W. J., y Pawley, J. (1989) J. Parasitol. 75, Jarroll, E. L., Manning, P., Lindmark, D. G., Coggins, J. R., y Erlandsen, S. L. (1989) Mol. Biochem. Parasitol. 32, Manning, P., Erlandsen, S. L., y Jarroll, E. L. (1992) J. Protozool. 39, Gerwig, G. J., van Kuik, J. A., Leeflang, B. R., Kamerling, J. P., Vliegenthart, J. F., Karr, C. D., y Jarroll, E. L. (2002) Glycobiology 12, López, A. B., Sener, K., Trosien, J., Jarroll, E. L., y van Keulen, H. (2007) J. Eukaryot. Microbiol. 54, Macechko, P. T., Steimle, P. A., Lindmark, D. G., Erlandsen, S. L., y Jarrol, E. L. (1992) Mol. Biochem. Parasitol. 56, Jarrol, E. L, y Paget, T. A. (1995) Folia Parasitol. (Prague) 42, Karr, C. D., y Jarroll, E. L. (2004) Microbiology 150, Lanfredi-Rangel, A., Attias, M., de Carvalho, T. M., Kattenbach, W. M., y De Souza, W. (1998) J. Struct. Biol. 123, Chávez-Munguía, B., Cedillo-Rivera, R., y Martínez-Palomo, A. (2004) J. Eukaryot. Microbiol. 51, Abdul-Wahid, A., y Faubert, G. (2007) Vaccine 25, Jarroll, E. L., y Sener, K. (2003) Drug Resist Updat. 6,

13 Bazán-Tejeda y cols. 61. Venkatesan, P., Finch, R. G., y Wakelin, D. (1996) Infect. Immun. 64, Singer, S. M., y Nash, T. E. (2000) Infect. Immun. 68, Graff, J. R., McNulty, A. M., Konicek, B. W., Lynch, R. B., Bailey, S. N., Banks, C., Capen, A., Goode, R., Lewis, J. E., Sams, L., Huss, K. L., Campbell, R. M., Iversen, P. W., Neubauer, B. L., Brown, T. J., Musib, L., Geeganage, S., y Donald, T. D. (2005) Cancer Research 65, Joy, S. V., Scates, A. C., Bearelly, S., Dar, M., Taulien, C. A., Goebel, J. A. y Cooney, M. J. (2005) Annals of Pharmacotherapy 39, Sussman, K., Fiscl, A., Shih, S., y Ye, X. E. (2004) Eukaryotic Cell 3, Georgopapadakou, N. H. (2001) Expert. Opin. Investig. Drugs 10, Semblanza de la Dra. Guadalupe Ortega Pierres La La Dra. Guadalupe Ortega-Pierres es Bióloga por la UNAM y obtuvo el grado de Ph. D. en Inmunología en la Universidad de Bristol, Inglaterra. Tiene una amplia experiencia profesional en el área de Microbiología y Parasitología. A nivel Internacional realizó una estancia post-doctoral en el Instituto Nacional de Investigación Médica, Mill Hill, Londres, Inglaterra y posteriormente estuvo por varios periodos en esa Institución como Profesor visitante. Otras estancias académicas que realizó la Dra. Ortega-Pierres fue en la Escuela de Salud Pública de la Escuela de Medicina de Harvard en Boston MA, USA., en la Unidad de Parasitología CNEVA y en el Laboratorio Central de Investigación en Veterinaria ambos en Maison-Alfort, Francia. A nivel Nacional la Dra. Ortega-Pierres ha trabajado en la Facultad de Medicina, UNAM, en la UAM-Xochimilco y desde 1983 es Profesor Investigador del Departamento de Genética y Biología Molecular del CINVESTAV-IPN, en el que ha tenido diversos cargos como Coordinador Académico y Jefe de Departamento. Debido a su amplio reconocimiento en el área, la Dra. Ortega-Pierres ha recibido varios premios y distinciones en la que destacan: Premio Miguel Otero otorgado por el Consejo de Salubridad General, México; Premios Lola and Igo Flisser/PUIS por la UNAM; Premio Dr. Everardo Landa y von Behring- Kitasato por la Academia Nacional de Medicina, México; Premio Canifarma por la Cámara Nacional de la Industria Farmacéutica y Jorge Rosenkranz por Roche, México. Actualmente pertenece al Sistema Nacional de Investigadores nivel II. La Dra. Ortega-Pierres ha publicado más de 50 trabajos de investigación original en revistas internacionales de impacto especialmente en el área de Bioquímica y Biología Molecular de parásitos y tiene otras 49 publicaciones más en esta última área. Ha participado en varios comités editoriales de revistas científicas y actualmente es miembro de estos en las revistas Research and Reviews in Parasitology, España, Archives in Medical Research, IMSS, México y the Journal of Infection in Developing Countries. Ha sido miembro del Comité Ejecutivo de la Comisión Internacional sobre Trichinellosis, presidente del Comité Organizador de la IX International Conference on Trichinellosis,.del XV Congreso Nacional de Parasitología, de la II International Giardia and Cryptosporidium Conference y miembro del Comité Científico del From Alaska to Chiapas, The First North American Parasitology Congress, entre otros. Actualmente es miembro de numerosas sociedades científicas Internacionales (Sociedad Americana de Medicina Tropical e Higiene, International Commission for Trichinellosis) y Nacionales (Academia Mexicana de Ciencias, Academia Mexicana de Medicina y la Sociedad Mexicana de Parasitología). Las líneas de investigación de la Dra. Ortega-Pierres se relacionan con el estudio de mecanismos que participan en el enquistamiento de G. duodenalis, en la resistencia a drogas en este parásito y 37

14 MENSAJE BIOQUÍMICO, Vol. XXXII (2008) en la patogenia de la giardiosis. Así mismo, estudia los mecanismos que participan en la activación de respuestas inmunes protectoras a nivel intestinal en infecciones experimentales con Trichinella spiralis con la finalidad de identificar antígenos que puedan ser empleados en la prevención de la triquinelosis y lleva a cabo la identificación de moléculas de importancia biológica durante el desarrollo del parásito adulto. 38

Estructura celular. Teoría Celular. Cap. 4. Los organismos se componen de una o más células. La célula es la unidad más pequeña de la vida.

Estructura celular. Teoría Celular. Cap. 4. Los organismos se componen de una o más células. La célula es la unidad más pequeña de la vida. Estructura celular Cap. 4 Teoría Celular Los organismos se componen de una o más células. Procesos metabólicos y de la herencia ocurren dentro de la célula. La célula es la unidad más pequeña de la vida.

Más detalles

Universidad Autónoma de Baja California Facultad de Ciencias Marinas

Universidad Autónoma de Baja California Facultad de Ciencias Marinas Universidad Autónoma de Baja California Facultad de Ciencias Marinas CURSO: BIOQUÍMICA UNIDAD 1 1.4. ESTRUCTURA Y ORGANIZACIÓN CELULAR Profesor: Dr. Eduardo Durazo Beltrán Todos los seres vivos están formados

Más detalles

Generalidades de Protozoos

Generalidades de Protozoos Generalidades de Protozoos Protozoos: Organismos unicelulares (microscópicos, formados por una sola célula) eucariontes (material genético protegido por una membrana nuclear). Estructura y Metabolismo

Más detalles

PREGUNTAS DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD

PREGUNTAS DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CÉLULA III CITOESQUELETO Y ORGÁNULOS NO MEMBRANOSOS 1. Indique qué es el citoesqueleto [0,4]. Describa los elementos del mismo [0,6] y las funciones que desempeñan relacionándolas con el elemento correspondiente

Más detalles

- Microtúbulos - Microfilamentos - Filamentos intermedios

- Microtúbulos - Microfilamentos - Filamentos intermedios Citoesqueleto Cómo se mantiene la forma de una célula? Cómo se transportan proteínas y otras sustancias a través del citoplasma? Cómo se ubican las distintas organelas? La respuesta a estas y otras preguntas

Más detalles

Selectividad: ANATOMÍA CELULAR

Selectividad: ANATOMÍA CELULAR Selectividad: ANATOMÍA CELULAR Jun09.3.- La figura siguiente muestra un orgánulo celular importante. a.- Cómo se llama este orgánulo? b.- En qué tipo de células se encuentra? c.- Indica qué estructura

Más detalles

Ácidos Nucleicos. Compuestos orgánicos formados por: Su estructura básica (monómero) es el nucleotido Existen principalmente 2 tipos DNA y RNA

Ácidos Nucleicos. Compuestos orgánicos formados por: Su estructura básica (monómero) es el nucleotido Existen principalmente 2 tipos DNA y RNA Ácidos Nucleicos Características genérales Ácidos Nucleicos Compuestos orgánicos formados por: Su estructura básica (monómero) es el nucleotido Existen principalmente 2 tipos DNA y RNA C, H, O, N, P Nucleotidos:

Más detalles

Procesamiento de proteínas y modificaciones post-traduccionales

Procesamiento de proteínas y modificaciones post-traduccionales Procesamiento de proteínas y modificaciones post-traduccionales Las proteínas después de sintetizadas en los ribosomas, deben ser procesadas para que logren tener su conformación nativa y ser activas Eventos

Más detalles

COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO GUÍA REFORZAMIENTO 1 MEDIO

COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO GUÍA REFORZAMIENTO 1 MEDIO COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO GUÍA REFORZAMIENTO 1 MEDIO NOMBRE: PJE. TOTAL: FECHA: CURSO: 1 MEDIO PJE. OBTENIDO: CALIFICACION: ASIGNATURA: BIOLOGIA UNIDAD: I - II OBJETIVO (S): CONTENIDO

Más detalles

GUIA DE APOYO. 1.- Complete el siguiente diagrama anotando los organelos y estructuras celulares correspondientes a cada tipo de célula.

GUIA DE APOYO. 1.- Complete el siguiente diagrama anotando los organelos y estructuras celulares correspondientes a cada tipo de célula. Royal American School Asignatura: Biología Profesor Mario Navarrete GUIA DE APOYO NOMBRE. CURSO 1º Medio. 1.- Complete el siguiente diagrama anotando los organelos y estructuras celulares correspondientes

Más detalles

Unidad 6: Sistema de Endomembranas

Unidad 6: Sistema de Endomembranas Utilizando microscopio óptico y técnicas de tinción, se observó, a fines del siglo XIX, la presencia de una red extensa de membranas en el citoplasma. A mediados del siglo XX, con el uso del microscopio

Más detalles

Capítulo 12 REGULACIÓN DE LA EXPRESIÓN GÉNICA. Factores de Transcripción. Metilación. Procesamiento del ARN. Post-traduccional

Capítulo 12 REGULACIÓN DE LA EXPRESIÓN GÉNICA. Factores de Transcripción. Metilación. Procesamiento del ARN. Post-traduccional REGULACIÓN DE LA EXPRESIÓN GÉNICA - Mecanismos de Regulación Regulación Procariontes Eucariontes Operón Lactosa Operón Triptofano Transcripcional Procesamiento del ARN Traduccional Post-traduccional Factores

Más detalles

Universidad Nacional Autónoma de México

Universidad Nacional Autónoma de México Universidad Nacional Autónoma de México Facultad de Química Curso Genética y Biología Molecular (1630) Licenciatura Químico Farmacéutico Biológico Dra. Herminia Loza Tavera Profesora Titular de Carrera

Más detalles

Repaso: Química celular (biomoléculas)

Repaso: Química celular (biomoléculas) Repaso: Química celular (biomoléculas) Hay 4 tipos principales de biomoléculas: 1) glúcidos o hidratos de carbono, 2) lípidos o grasas, 3) proteínas y 4) ácidos nucleicos. Las biomoléculas más grandes,

Más detalles

Biologia Celular CBI 111 Instituto de Ciencias Naturales. Estructura y función de la Membrana Citoplasmática. Clase 6

Biologia Celular CBI 111 Instituto de Ciencias Naturales. Estructura y función de la Membrana Citoplasmática. Clase 6 Biologia Celular CBI 111 Instituto de Ciencias Naturales Estructura y función de la Membrana Citoplasmática. Clase 6 MATERIAL PROPIEDAD DE UDLA. AUTORIZADA SU UTILIZACIÓN SÓLO PARA FINES ACADÉMICOS. Objetivos

Más detalles

La célula y sus estructuras. Profesor Mauricio Hernández F Biología 1 Medio

La célula y sus estructuras. Profesor Mauricio Hernández F Biología 1 Medio La célula y sus estructuras INTRODUCCIÓN Toda célula posee Membrana plasmática: límite Matriz coloidal: contiene las estructuras intracelulares Material genético (ADN): dirige el funcionamiento celular;

Más detalles

UNIDAD II ANATOMÍA Y FISIOLOGÍA DE LA CÉLULA. Prof. Glamil Acevedo Anatomía y Fisiología

UNIDAD II ANATOMÍA Y FISIOLOGÍA DE LA CÉLULA. Prof. Glamil Acevedo Anatomía y Fisiología UNIDAD II ANATOMÍA Y FISIOLOGÍA DE LA CÉLULA Prof. Glamil Acevedo Anatomía y Fisiología La Célula Es la unidad funcional y estructural más pequeña de los organismos vivos. Se compone de partes características,

Más detalles

TEMARIO PARA EL EXAMEN DE CONOCIMIENTOS MAESTRÍA EN BIOLOGÍA DE LA REPRODUCCIÓN ANIMAL

TEMARIO PARA EL EXAMEN DE CONOCIMIENTOS MAESTRÍA EN BIOLOGÍA DE LA REPRODUCCIÓN ANIMAL TEMARIO PARA EL EXAMEN DE CONOCIMIENTOS MAESTRÍA EN BIOLOGÍA DE LA REPRODUCCIÓN ANIMAL I- BIOQUÍMICA 1.- AMINOÁCIDOS Y PÉPTIDOS. Estructura y clasificación de los aminoácidos. Enlace peptídico. Aminoácidos

Más detalles

PREGUNTAS DE SELECTIVIDAD POR TEMAS

PREGUNTAS DE SELECTIVIDAD POR TEMAS BIOMOLÉCULAS PREGUNTAS DE SELECTIVIDAD POR TEMAS A. Defina los siguientes términos: a. Polisacáridos. (1 punto) b. Lípidos saponificables. (1 punto) B. Dada la siguiente secuencia de ADN: 3' TACCTACACAGATCTTGC

Más detalles

Nombres alternativos de la Respuesta Inmune Adaptativa

Nombres alternativos de la Respuesta Inmune Adaptativa Nombres alternativos de la Respuesta Inmune Adaptativa Inmunidad Adaptativa: Porque se produce como respuesta a la infección y se adapta a esta Inmunidad Específica: Porque es capaz de distinguir entre

Más detalles

UD 2. CÉLULAS Y ESTRUCTURAS SUBCELULARES

UD 2. CÉLULAS Y ESTRUCTURAS SUBCELULARES PRUEBAS DE ACCESO A LA UNIVERSIDAD. BACHILLERATO LOGSE. CANTABRIA. BIOLOGÍA (2001-2011). UD 2. CÉLULAS Y ESTRUCTURAS SUBCELULARES Introducción. Clasificación 1. Dibuja una célula eucariótica y una procariótica,

Más detalles

Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba. Biología Celular. Práctico N 3 Sistema de endomembranas

Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba. Biología Celular. Práctico N 3 Sistema de endomembranas Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba Biología Celular Práctico N 3 OBJETIVOS Identificar los distintos componentes del sistema de endomembranas en la célula. Comprender la

Más detalles

Introducción. Expresión génica. Regulación de la expresión génica en procariotas

Introducción. Expresión génica. Regulación de la expresión génica en procariotas Introducción La secuencia genética siempre es la misma en todas las células y siempre está presente en organismos unicelulares, pero no se expresa igual en cada célula y en cada momento. Expresión génica

Más detalles

1. TEORÍA CELULAR 2. ORGANIZACIÓN CELULAR PROCARIOTA 3. ORGANIZACIÓN CELULAR EUCARIOTA: ANIMAL Y VEGETAL

1. TEORÍA CELULAR 2. ORGANIZACIÓN CELULAR PROCARIOTA 3. ORGANIZACIÓN CELULAR EUCARIOTA: ANIMAL Y VEGETAL LAS CÉLULAS INDICE: 1. TEORÍA CELULAR 2. ORGANIZACIÓN CELULAR PROCARIOTA 3. ORGANIZACIÓN CELULAR EUCARIOTA: ANIMAL Y VEGETAL 1º.- TEORÍA CELULAR Los principios básicos de la teoría celular son: La célula

Más detalles

Línea de Investigación

Línea de Investigación Centro de y de Estudios Avanzados del Instituto Politécnico Nacional Bulmaro Cisneros Vega Desarrollo de modelos celulares para el estudio de las distrofias musculares. Función nuclear de la distrofina

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL BIOLOGIA (2005) I TERMINO PRIMERA EVALUACION

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL BIOLOGIA (2005) I TERMINO PRIMERA EVALUACION ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL BIOLOGIA (2005) I TERMINO PRIMERA EVALUACION Nombre:... Paralelo:. Firma:. # Matrícula: No utilizar corrector ni hacer tachones, automáticamente queda anulada la

Más detalles

Celulas eucariotas. Cáncer de pulmon

Celulas eucariotas. Cáncer de pulmon QUE ES CELULA? Unidad fundamental de todo ser vivo. Fue descubierta por ROBERT HOOKE observando un corte de corcho en un microscopio de la época. Dio el nombre de CELULA a las estructuras regulares en

Más detalles

Resultado de aprendizaje:

Resultado de aprendizaje: Objetivo: Describir composición y arquitectura de las membranas biológicas Resultado de aprendizaje: Explicar la dinámica de las membranas biologicas y su implicación funcional. INTRODUCCION La mayoría

Más detalles

UNIVERSIDAD SANTO TOMÁS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental

UNIVERSIDAD SANTO TOMÁS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental UNIVERSIDAD SANTO TOMÁS SECCIONAL BUCARAMANGA División de Ingeniería Facultad de Química Ambiental Nombre de Asignatura: BIOLOGÍA Àrea: Ciencias Exactas y Naturales- Biología Créditos: 3 Código de Asignatura:

Más detalles

Universidad Autónoma de Chiapas Ext. Ocozocoautla Facultad de Ciencias Químicas

Universidad Autónoma de Chiapas Ext. Ocozocoautla Facultad de Ciencias Químicas Universidad Autónoma de Chiapas Ext. Ocozocoautla Facultad de Ciencias Químicas Nombre del Catedrático: Dra. Ana Olivia Cañas Urbina Integrantes del Equipo: Ariana Archila Jimenez Emmanuel López Ochoa

Más detalles

LA CÉLULA. Hecho por: Alba García Murillo 1º B

LA CÉLULA. Hecho por: Alba García Murillo 1º B LA CÉLULA Hecho por: Alba García Murillo 1º B dhñ Xf R La célula es la unidad más pequeña dotada de vida. Todos los seres vivos están formados por células: -Una célula : unicelulares Ejem: La salmonella

Más detalles

CELULA. Es la unidad estructural y funcional de los organismos vivientes.

CELULA. Es la unidad estructural y funcional de los organismos vivientes. CELULA Es la unidad estructural y funcional de los organismos vivientes. Puede existir sola o en grupos. Organismos unicelulares : algas. Organismos multicelulares. Tejidos que forman un órgano y posteriormente

Más detalles

BLOQUE II. ORGANIZACIÓN Y FISIOLOGÍA CELULAR

BLOQUE II. ORGANIZACIÓN Y FISIOLOGÍA CELULAR I.E.S. Flavio Irnitano El Saucejo (Sevilla) Curso 2.015 2.016 Departamento de Biología y Geología NIVEL: 2º Bachillerato MATERIA: BIOLOGÍA BLOQUE II. ORGANIZACIÓN Y FISIOLOGÍA CELULAR 3. CÉLULA EUCARIÓTICA.

Más detalles

Teoría celular (1) Idea: la célula es la unidad básica de la vida

Teoría celular (1) Idea: la célula es la unidad básica de la vida LA CÉLULA Tema 2 Teoría celular (1) Idea: la célula es la unidad básica de la vida Primeras células observadas. Celdillas de corcho (R. Hooke, 1665) Animales microscópicos (A. Van Leeuwenhoek,1675) todos

Más detalles

IDENTIFICACION DE ORGANELOS CELULARES

IDENTIFICACION DE ORGANELOS CELULARES IDENTIFICACION DE ORGANELOS CELULARES Practica de laboratorio de biología celular Dra. Ana Olivia cañas Urbina Integrantes Andrea Pérez Ochoa Diana Laura Vázquez Vázquez Blanca Guadalupe Penagos Gómez

Más detalles

La célula. Unidad Los seres vivos están formados por células

La célula. Unidad Los seres vivos están formados por células La célula Unidad Los seres vivos están formados por células Definición de célula. Es la unidad anatómico y funcional de todo ser vivo. Tiene función de autoconservación y autorreproducción. Es por esto,

Más detalles

Biología TEMA 2 1. Las células son el fundamento básico de la vida (vió en las plantas) Acuñó el termino célula Observó celulas de corcho

Biología TEMA 2 1. Las células son el fundamento básico de la vida (vió en las plantas) Acuñó el termino célula Observó celulas de corcho PROFESOR CRISTIAN MARRERO SOLANO TEMA 2 Estructura y función celular Microscopio TEMA 2 2 Dibujo del corcho hecho por Hooke Primeros microscopios ópticos Microscopio electrónico (ESCANER) TEMA 2 3 Historia

Más detalles

Taller de recuperación de Ciencias Naturales Sexto grado

Taller de recuperación de Ciencias Naturales Sexto grado Taller de recuperación de Ciencias Naturales Sexto grado Para nivelar el área de Ciencias Naturales el estudiante debe realizar las siguientes Actividades : 1. Realizar una exposición sobre las Teorías

Más detalles

Estructuras u organelos destacados Poseen solo una célula, carente de núcleo. Organismos Protozoarios. Organismos multicelulares heterótrofos

Estructuras u organelos destacados Poseen solo una célula, carente de núcleo. Organismos Protozoarios. Organismos multicelulares heterótrofos Recorte de célula Tipo celular Reino al que pertenece Procarionte Reino Monera Estructuras u organelos destacados Poseen solo una célula, carente de núcleo Habitat y función Aguas, tierras y otros organismos.

Más detalles

1. ASIGNATURA / COURSE

1. ASIGNATURA / COURSE 1. ASIGNATURA / COURSE 1.1. Nombre / Course Title BIOLOGÍA CELULAR / CELL BIOLOGY 1.2. Código / Course Code 13783 1.3. Tipo / Type of course Optativa / Optional 1.4. Nivel / Level of course Licenciatura,

Más detalles

Unidad I. Organización, estructura y actividad celular. Organización citoplasmática.

Unidad I. Organización, estructura y actividad celular. Organización citoplasmática. Curso: Biología Mención Material Nº 07 Unidad I. Organización, estructura y actividad celular. Organización citoplasmática. INTRODUCCIÓN. En los eucariotas, las membranas dividen al citoplasma en compartimentos,

Más detalles

Control de Expresión Génica Procariota. Profesor: Javier Cabello Schomburg, MS

Control de Expresión Génica Procariota. Profesor: Javier Cabello Schomburg, MS Control de Expresión Génica Procariota Profesor: Javier Cabello Schomburg, MS Qué es un gen? Es una secuencia de nucleótidos en la molécula de ADN, equivalente a una unidad de transcripción. Contiene la

Más detalles

INTRODUCCIÓN. Otras investigaciones mostraron que el incremento de la glicemia basal en ayunas en hipertiroideos fue más alta que en normales (4,5,6).

INTRODUCCIÓN. Otras investigaciones mostraron que el incremento de la glicemia basal en ayunas en hipertiroideos fue más alta que en normales (4,5,6). INTRODUCCIÓN La alteración en el metabolismo de la glucosa ha sido descrita en pacientes con hipertiroidismo; muchas investigaciones se han realizado al respecto, siendo sus resultados controversiales.

Más detalles

GUÍA DE ESTUDIO N 6 TEMA: CÉLULA PROCARIOTA Y EUCARIOTA

GUÍA DE ESTUDIO N 6 TEMA: CÉLULA PROCARIOTA Y EUCARIOTA OBJETIVO GUÍA DE ESTUDIO N 6 TEMA: CÉLULA PROCARIOTA Y EUCARIOTA Alumno:..... - Reconocer las características principales de las células procariotas y eucariotas. - Comprender el funcionamiento de las

Más detalles

Célula EUCARIOTA vegetal

Célula EUCARIOTA vegetal Célula EUCARIOTA vegetal 3.- Sistema de Membranas El sistema de membranas delimita compartimentos y organelas, y garantiza que las condiciones internas de cada uno pueda ser diferente del citoplasma.

Más detalles

La célula. En que se diferencia una célula animal de una vegetal? Dónde se localiza el material hereditario?

La célula. En que se diferencia una célula animal de una vegetal? Dónde se localiza el material hereditario? La célula En que se diferencia una célula animal de una vegetal? Dónde se localiza el material hereditario? Definición de célula. Es la unidad anatómico y funcional de todo ser vivo. Tiene función de autoconservación

Más detalles

Celulas eucariotas. Cáncer de pulmon

Celulas eucariotas. Cáncer de pulmon QUE ES CELULA? Unidad fundamental de todo ser vivo. Fue descubierta por ROBERT HOOKE observando un corte de corcho en un microscopio de la época. Dio el nombre de CELULA a las estructuras regulares en

Más detalles

dentro y hacia afuera de la célula (secreción) Metabolismo de lípidos.

dentro y hacia afuera de la célula (secreción) Metabolismo de lípidos. BIOLOGÍA GUÍA DE EJERCITACIÓN 1 RESPUESTAS PREGUNTA 1 Nombre Función 1 Nucléolo Síntesis de ribosomas 2 Núcleo Almacena la información genética (ADN en la forma de cromosomas). Lugar donde ocurre la síntesis

Más detalles

COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO PRUEBA DE REFORZAMIENTO 1 MEDIO EXAMENES LIBRES

COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO PRUEBA DE REFORZAMIENTO 1 MEDIO EXAMENES LIBRES COMPLEJO EDUCACIONAL JOAQUIN EDWARDS BELLO PRUEBA DE REFORZAMIENTO 1 MEDIO EXAMENES LIBRES ASIGNATURA: UNIDAD: OBJETIVO (S): CONTENIDO (S): BIOLOGIA I - II Reconocer los elementos principales de la célula

Más detalles

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge SEÑALES QUÍMICAS En los organismos pluricelulares, la coordinación entre las células se realiza a través de mediadores o mensajeros de la comunicación intercelular de los que hay descritos varios centenares.

Más detalles

Unidad básica estructural y funcional de todos los seres vivos.

Unidad básica estructural y funcional de todos los seres vivos. Unidad básica estructural y funcional de todos los seres vivos. Robert Hooke Siglo XVII Observó que el corcho y otras materias vegetales aparecían constituidas por celdillas. De allí viene el nombre de

Más detalles

LA CÉLULA Y SUS ORGANELOS. Colegio Internacional Montessori Ciencias Naturales-1ro Básico Walter Moscoso Zschech

LA CÉLULA Y SUS ORGANELOS. Colegio Internacional Montessori Ciencias Naturales-1ro Básico Walter Moscoso Zschech LA CÉLULA Y SUS ORGANELOS Colegio Internacional Montessori Ciencias Naturales-1ro Básico Walter Moscoso Zschech LA CÉLULA Es la unidad básica de la vida. Según la teoría celular todos los organismos vivos:

Más detalles

Clave Genética y Síntesis de Proteínas

Clave Genética y Síntesis de Proteínas UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS FASE I, Unidad Didáctica: BIOQUÍMICA MÉDICA 2º AÑO CICLO ACADÉMICO 2,011 Clave Genética y Síntesis de Proteínas Dr. Mynor A. Leiva Enríquez

Más detalles

Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA

Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA División de Ciencias Biológicas y de la Salud Departamento de Biotecnología Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA Dr. Sergio Huerta

Más detalles

EL CLOROPLASTO. Introducción Tipos de plastidios Diferenciación División El genoma cloroplastídico. Estructura genes

EL CLOROPLASTO. Introducción Tipos de plastidios Diferenciación División El genoma cloroplastídico. Estructura genes EL CLOROPLASTO Introducción Tipos de plastidios Diferenciación División El genoma cloroplastídico Estructura genes LA CÉLULA VEGETAL EL CLOROPLASTO Introducción Tipos de plastidios Diferenciación División

Más detalles

Diferenciaciones de la membrana plasmática. Microvellosidades

Diferenciaciones de la membrana plasmática. Microvellosidades Diferenciaciones de la membrana plasmática Son regiones de la membrana plasmática que presentan modificaciones estructurales especializadas para cumplir diferentes funciones. Un típico ejemplo lo ofrecen

Más detalles

FOSFOLIPASAS. Las fosfolipasas son moléculas capaces de romper los fosfolípidos

FOSFOLIPASAS. Las fosfolipasas son moléculas capaces de romper los fosfolípidos FOSFOLIPASAS Las fosfolipasas son moléculas capaces de romper los fosfolípidos de membrana. Se nombran dependiendo del punto en que cortan a ese fosfolípido. Las fosfolipasas de tipo C serán capaces de

Más detalles

Cómo se estudian las células?

Cómo se estudian las células? Unidad Cómo se estudian las células? La célula es la unidad funcional y estructural de los seres vivos. Son tan pequeñas que no se pueden observar a simple vista. Para poder observarlas se tuvo que desarrollar

Más detalles

Células pequeñas 1 10 µm Células de mayor tamaño; µm

Células pequeñas 1 10 µm Células de mayor tamaño; µm La Célula REPASO La Célula - Repaso Diferencias entre célula procariota y eucariota Diferencias entre célula animal y vegetal Membrana celular Estructura Funciones Citoplasma Hialoplasma (composición)

Más detalles

MICROBIOLOGIA GENERAL

MICROBIOLOGIA GENERAL MICROBIOLOGIA GENERAL TRABAJO PRACTICO Nº 2 CRECIMIENTO MICROBIANO CURVA DE CRECIMIENTO Capítulos 5 y 6 Bibliografía Objetivos Analizar el crecimiento bacteriano en distintas condiciones de cultivo y utilizando

Más detalles

Bioquímica inmunológica. 4. Selección clonal.. Cambio de clase

Bioquímica inmunológica. 4. Selección clonal.. Cambio de clase Bioquímica inmunológica 4. Selección clonal.. Cambio de clase Por qué la respuesta inmunitaria va dirigida solo contra el antígeno con el que hemos entrado en contacto? Conocido el mecanismo de generación

Más detalles

Apoptosis. Término que hace referencia a los procesos morfológicos que llevan a la autodestrucción celular controlada

Apoptosis. Término que hace referencia a los procesos morfológicos que llevan a la autodestrucción celular controlada APOPTOSIS Apoptosis Término que hace referencia a los procesos morfológicos que llevan a la autodestrucción celular controlada Esta muerte es necesaria y parte integral del ciclo de vida de los organismos

Más detalles

Metabolismo glucídico y control de la Glicemia Bioquímica Facultad de Enfermería Universidad de la República

Metabolismo glucídico y control de la Glicemia Bioquímica Facultad de Enfermería Universidad de la República Metabolismo glucídico y control de la Glicemia Bioquímica Facultad de Enfermería Universidad de la República ESFUNO 2014 Amalia Ávila Propiedades diferenciales y regulación de las distintas isoformas de

Más detalles

BLOQUE 1: TEST En un cromosoma la zona de unión entre dos cromátidas se llama:

BLOQUE 1: TEST En un cromosoma la zona de unión entre dos cromátidas se llama: BLOQUE 1: TEST En un cromosoma la zona de unión entre dos cromátidas se llama: a) Centrómero b) Citocentro c) Centrosoma d)centriolo La imagen representa orgánulos de tres células adyacentes: ( (se ven

Más detalles

Unidad 7: Respiración Celular

Unidad 7: Respiración Celular 1 La energía lumínica es capturada por las plantas verdes y otros organismos fotosintéticos, que la transforman en energía química fijada en moléculas como la glucosa. Estas moléculas son luego degradadas

Más detalles

INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE ÁREA

INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE ÁREA INSTITUCIÓN EDUCATIVA CASD ARMENIA Q GESTIÓN ACADÉMICA DISEÑO PEDAGÓGICO- PLAN DE ÁREA GA-DP-R20 ÁREA: CIENCIAS NATURALES ASIGNATURA: BIOLOGÍA GRADO: 11 CICLO: FECHA: ENERO 21 A MAYO 17 DE DOCENTES RESPONSABLES:

Más detalles

Célula Membrana plasmatica

Célula Membrana plasmatica Célula Membrana plasmatica Professor: Kinesiologia Verónica Pantoja. Lic. MSP. -Reconocer la importancia de la membrana plasmática, e identificar sus componentes organización y función. -Identificar los

Más detalles

CURSO CONVOCATORIA: JUNIO BIOLOGIA

CURSO CONVOCATORIA: JUNIO BIOLOGIA PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E. CURSO 00 005 CONVOCATORIA: JUNIO MATERIA: BIOLOGIA ACLARACIONES PREVIAS El alumno debe elegir una de las dos opciones, A o B, de que consta la prueba,

Más detalles

Clase I Generalidades de las Micosis

Clase I Generalidades de las Micosis Clase I Generalidades de las Micosis Estamos inmersos en un mundo micológico PARTE 1 Diapositivas: de 1 a 26 HONGOS DEFINICIÓN: : Son organismos eucariotas, aclorófilos filos,, cuya pared celular contiene

Más detalles

GUIA DE ESTUDIO BIOLOGIA I. La vida en la Tierra I BLOQUE I NÚCLEO TEMÁTICO: ORIGEN, QUÍMICA Y CARACTERÍSTICAS DE LOS SERES VIVOS

GUIA DE ESTUDIO BIOLOGIA I. La vida en la Tierra I BLOQUE I NÚCLEO TEMÁTICO: ORIGEN, QUÍMICA Y CARACTERÍSTICAS DE LOS SERES VIVOS GUIA DE ESTUDIO BIOLOGIA I La vida en la Tierra I BLOQUE I NÚCLEO TEMÁTICO: ORIGEN, QUÍMICA Y CARACTERÍSTICAS DE LOS SERES VIVOS 1. Introducción a la Biología a) La biología como ciencia o Definición de

Más detalles

6. Integración n de la respuesta inmune

6. Integración n de la respuesta inmune Bioquímica inmunológica 6. Integración n de la respuesta inmune El timo, timo,lugar de formación n de los linfocitos T El timo se localiza entre el corazón y el esternón. Es el lugar de maduración de los

Más detalles

LA CELULA Y SU FUNCION BIOLOGIA

LA CELULA Y SU FUNCION BIOLOGIA LA CELULA Y SU FUNCION BIOLOGIA LA CELULA Organización de la célula n Citoplasma y Núcleo n Protoplasma La célula Evolución de la célula La célula Organización de la célula n Protoplasma: n Agua n Electrolitos

Más detalles

ESTRUCTURA Y FUNCION CELULAR

ESTRUCTURA Y FUNCION CELULAR ESTRUCTURA Y FUNCION CELULAR Sumario Historia de la teoría celular Estructura y función celular 1. El núcleo 2. Los organelos citoplásmicos 3. Los organelos de células vegetales Transporte celular Métodos

Más detalles

Orgánulos membranosos sin función energética

Orgánulos membranosos sin función energética Orgánulos membranosos sin función energética Lisosomas Peroxisomas Vacuolas Presentación organizada por José Antonio Pascual Trillo LISOSOMAS Estructura muy sencilla, semejantes a vacuolas, rodeados por

Más detalles

PATÓGENA: Entamoeba histolytica COMENSALES: diferenciar, índice de fecalismo.

PATÓGENA: Entamoeba histolytica COMENSALES: diferenciar, índice de fecalismo. AMEBIASIS PATÓGENA: Entamoeba histolytica COMENSALES: diferenciar, índice de fecalismo. Citoplasma Dos zonas: Endoplasma: granuloso Ectoplasma: hialino Se movilizan por pseudópodos. Pseudópodos: extensiones

Más detalles

3.4. Orgánulos celulares. Mitocondrias, peroxisomas, cloroplastos, retículo endoplasmático, Complejo de Golgi, lisosomas y vacuolas.

3.4. Orgánulos celulares. Mitocondrias, peroxisomas, cloroplastos, retículo endoplasmático, Complejo de Golgi, lisosomas y vacuolas. I.E.S. Flavio Irnitano El Saucejo (Sevilla) Curso 2.015 2.016 Departamento de Biología y Geología NIVEL: 2º Bachillerato ASIGNATURA: BIOLOGÍA BLOQUE II. Organización y fisiología celular 3. Célula eucariótica.

Más detalles

ANDALUCIA / JUNIO 00. LOGSE / BIOLOGIA / OPCION A / EXAMEN COMPLETO

ANDALUCIA / JUNIO 00. LOGSE / BIOLOGIA / OPCION A / EXAMEN COMPLETO OPCION A 1. Lípidos (3 puntos) a) Defina qué es un fosfolípido e indique cuáles son sus componentes moleculares. Qué propiedades respecto al agua se derivan de la estructura de los fosfolípidos y cuáles

Más detalles

LA CÉLULA: UNIDAD DE ESTRUCTURA Y FUNCIÓN

LA CÉLULA: UNIDAD DE ESTRUCTURA Y FUNCIÓN Genética Fisiológica Morfológica Procariota Animal LA CÉLULA: UNIDAD DE ESTRUCTURA Y FUNCIÓN Teoría es la unidad distingue dos tipos de organización Eucariota puede ser Vegetal presente en según la Pared

Más detalles

INTRODUCCIÓN AL ESTUDIO DE HONGOS

INTRODUCCIÓN AL ESTUDIO DE HONGOS UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS INTRODUCCIÓN AL ESTUDIO DE HONGOS M.C. Francisco Javier Gómez Vega Mayo del 2005 H O N G O S No existe un acuerdo general sobre los límites

Más detalles

DOCENCIA DEL MÓDULO DE BACTERIOLOGÍA LA FACULTAD DE CS. BIOQUÍMICAS Y SAN SIMÓN EN COCHABAMBA, BOLIVIA.

DOCENCIA DEL MÓDULO DE BACTERIOLOGÍA LA FACULTAD DE CS. BIOQUÍMICAS Y SAN SIMÓN EN COCHABAMBA, BOLIVIA. DOCENCIA DEL MÓDULO DE BACTERIOLOGÍA EN LA MAESTRÍA DE MICROBIOLOGÍA CLÍNICA EN LA FACULTAD DE CS. BIOQUÍMICAS Y FARMACÉUTICAS DE LA UNIVERSIDAD MAYOR DE SAN SIMÓN EN COCHABAMBA, BOLIVIA. Profa. Dra. Lucía

Más detalles

Revisión- Opción Múltiple Procesamiento de energía

Revisión- Opción Múltiple Procesamiento de energía Revisión- Opción Múltiple Procesamiento de energía 1. El mmetabolismo es considerado como las "reacciones químicas totales que ocurren dentro de un organismo". Estas reacciones químicas pueden estar vinculados

Más detalles

El descubrimiento de la célula

El descubrimiento de la célula República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Santo Tomás de Villanueva Departamento de Ciencias Cátedra: Ciencias Biológicas 3 Año Tema III: La Célula

Más detalles

Biología Celular y Molecular 6º

Biología Celular y Molecular 6º Biología Celular y Molecular 6º CICLO LECTIVO 2010 Hilo conductor: Comprender la complejidad de los sistemas biológicos y la manera en que fluye la información genética en los seres vivos Unidades Temáticas

Más detalles

Profesor(a): C.D. María Isabel Pérez Aguilar

Profesor(a): C.D. María Isabel Pérez Aguilar Área Académica: Biología Básica Tema: Bioelementos Profesor(a): C.D. María Isabel Pérez Aguilar Periodo: Enero- Julio 2012 Abstract Bioelements Bioelements are the essential components of life. This topic

Más detalles

GIARDIA Y GIARDIASIS

GIARDIA Y GIARDIASIS 70 MEDICINA - Volumen ISSN 66 - Nº 0025-7680 1, 2006 ARTICULO ESPECIAL MEDICINA (Buenos Aires) 2006; 66: 70-74 GIARDIA Y GIARDIASIS HUGO D. LUJAN Instituto de Investigaciones Médicas Mercedes y Martín

Más detalles

Comunicación y Mecanismos de Señalización Celular

Comunicación y Mecanismos de Señalización Celular Comunicación y Mecanismos de Señalización Celular Qué le dijo una célula a otra célula? Figure 15-8 Molecular Biology of the Cell ( Garland Science 2008) Qué le dijo una célula a otra célula? Figure 15-8

Más detalles

Modificación de proteínas

Modificación de proteínas Modificación de proteínas Compilación y armado: Prof. Sergio Pellizza Dto. Apoyatura Académica I.S.E.S Universidad Complutense de Madrid Facultad de Ciencias Biológicas Profesor: Iñigo Azcoitia La estructura

Más detalles

AGRADECIMIENTOS... VII RESUMEN... XIII RESUM... XV SUMMARY... XVII ABREVIATURAS... XIX ÍNDICE DE CONTENIDO... XXIII ÍNDICE DE FIGURAS...

AGRADECIMIENTOS... VII RESUMEN... XIII RESUM... XV SUMMARY... XVII ABREVIATURAS... XIX ÍNDICE DE CONTENIDO... XXIII ÍNDICE DE FIGURAS... ÍNDICE AGRADECIMIENTOS... VII RESUMEN... XIII RESUM... XV SUMMARY... XVII ABREVIATURAS... XIX ÍNDICE DE CONTENIDO... XXIII ÍNDICE DE FIGURAS... XXXI ÍNDICE DE TABLAS... XXXVII INTRODUCCIÓN... 1 1. La mitocondria...

Más detalles

INTRODUCCION A LA BIOLOGIA CELULAR Y MOLECULAR

INTRODUCCION A LA BIOLOGIA CELULAR Y MOLECULAR INTRODUCCION A LA BIOLOGIA CELULAR Y MOLECULAR - Componentes químicos de la célula - Un poco de química 1 Un poco de química El 99% del peso de una célula corresponde a C, H, N y O. La sustancia más abundante

Más detalles

El sistema inmune y las vacunas

El sistema inmune y las vacunas SESIÓN DE INFORMACIÓN SOBRE VACUNAS, Santiago, Chile 7 de mayo 9 mayo, 2014 El sistema inmune y las vacunas Dra. Juanita Zamorano R Pediatra- Infectóloga jzamorano@uandes.cl 1 Jenner: En 1796 inicia la

Más detalles

La síntesis de proteínas

La síntesis de proteínas La síntesis de proteínas La Transcripción La información para fabricar todas las proteínas está almacenada en las moléculas de ADN de los cromosomas. La sucesión de bases en las moléculas de ADN es un

Más detalles

Organización del genoma eucariotico. 1. Complejidad del genoma eucariota

Organización del genoma eucariotico. 1. Complejidad del genoma eucariota Organización del genoma eucariotico Procariotas: Prácticamente todo el ADN existe en forma de copia única y codifica productos génicos (proteínas y ARNs) Eucariotas: La mayor parte del ADN es NO codificante.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DEPARTAMENTO DE INGENIERÍA AGROINDUSTRIAL FICHA CURRICULAR

UNIVERSIDAD AUTÓNOMA CHAPINGO DEPARTAMENTO DE INGENIERÍA AGROINDUSTRIAL FICHA CURRICULAR UNIVERSIDAD AUTÓNOMA CHAPINGO DEPARTAMENTO DE INGENIERÍA AGROINDUSTRIAL FICHA CURRICULAR 1. Datos Generales: Departamento Nombre del Programa Licenciatura Línea curricular Tecnológica Asignatura Biología

Más detalles

Selectinas e Inflamación. Dr. Iván Martínez Duncker R.

Selectinas e Inflamación. Dr. Iván Martínez Duncker R. Selectinas e Inflamación Dr. Iván Martínez Duncker R. Qué es la inflamación? Estimulos nocivos causan una reacción vascular protectora llamada inflamación que puede ser aguda o crónica Diluir Destruir

Más detalles

PROGRAMA DE ESTUDIO. 2. CICLO O AREA: División de Ciencias e Ingeniería/Ingeniería Ambiental.

PROGRAMA DE ESTUDIO. 2. CICLO O AREA: División de Ciencias e Ingeniería/Ingeniería Ambiental. PROGRAMA DE ESTUDIO 1. NOMBRE DE LA ASIGNATURA: BIOQUÍMICA. 2. CICLO O AREA: División de Ciencias e Ingeniería/Ingeniería Ambiental. 3. CLAVE: 4. SERIACION: Química Orgánica. 5. H.T.S. H.P.S. T.H.S. C.

Más detalles

Colegio Marista San José - Ampliación de Biología y Geología Tema 5: Del átomo a la célula.

Colegio Marista San José - Ampliación de Biología y Geología Tema 5: Del átomo a la célula. La teoría celular. La idea de que los seres vivos están constituidos por células y que cada una de ellas proviene de otra, que ya existía con anterioridad, es relativamente reciente. Es en la segunda mitad

Más detalles

Centro de Microscopía Electrónica LISOSOMAS - PEROXISOMAS

Centro de Microscopía Electrónica LISOSOMAS - PEROXISOMAS LISOSOMAS - PEROXISOMAS SÍNTESIS PROTEICA En células hepáticas de rata, los peroxisomas son reconocidos por la presencia de un depósito cristalino central de urato oxidasa. En humanos este depósito cristalino

Más detalles

CÓMO SE PUEDE DETERMINAR LA SECUENCIA DEL DNA A PARTIR DE UNA PROTEÍNA? DR. MANUEL E. AQUINO

CÓMO SE PUEDE DETERMINAR LA SECUENCIA DEL DNA A PARTIR DE UNA PROTEÍNA? DR. MANUEL E. AQUINO Alianza para el Aprendizaje de Ciencias y Matemáticas CÓMO SE PUEDE DETERMINAR LA SECUENCIA DEL DNA A PARTIR DE UNA PROTEÍNA? DR. MANUEL E. AQUINO GUÍA DEL MAESTRO ESTÁNDARES ATENDIDOS: 1. LA NATURALEZA

Más detalles

Tema 6. Organización celular

Tema 6. Organización celular Tema 6 Organización celular Hay dos grandes modelos de organización celular en los que se basa la vida, el procariota y el eucariota. Existen además estructuras acelulares, los virus. ORGANIZACIÓN ACELULAR

Más detalles

CELULAR. En organismos multicelulares, las células intercambian información:

CELULAR. En organismos multicelulares, las células intercambian información: MECANISMOS DE COMUNICACIÓN -acerca de su posición -sobre sus actividades metabólicas interdependientes CELULAR En organismos multicelulares, las células intercambian información: -sobre la concentración

Más detalles