γ * = D para mostrar el comportamiento de cada

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "γ * = D para mostrar el comportamiento de cada"

Transcripción

1 "FÓRMULAS PARA CUANTIFICAR EL ARRASTRE EN LA CAPA DE FONDO" JOSÉ ANTONIO MAZA ÁLVAREZ Prf., Diviión de Etudi de Pgrad de la Fa. De Ing., UNAM Gerente de Etudi de Ingeniería Civil, CFE Méxi, D. F. RAFAEL VAL SEGURA Té Aadémi, Intitut de Ingeniería, UNAM Méxi, D. F. TEMA: HIDRÁULICA FUNDAMENTAL RESUMEN En ete trabaj e muetran la prinipale fórmula que han id prpueta para predeir el arratre en la apa de fnd. Tda ella e preentan prurand repetar la expreión riginal del autr, n bjet de que ete erit irva también m un prntuari de ete tip de fórmula. Ademá e explia el ignifiad y valr de ada variable; para que la euaine puedan er apliada. Pr tra parte, e han eleinad d parámetr g g adimeninale G = U y RS τ γ = D para mtrar el mprtamient de ada expreión y la diferenia má imprtante entre l reultad de la fórmula preentada.. INTRODUCCIÓN En l rí y anale e tranprta agua y ediment. Et e enuentran en el fnd y rilla pueden prvenir del lavad de la partíula má fina de la uena. Al tener en mente úniamente al material del fnd, e puede hablar de d frma de tranprte: el que urre en la eranía del fnd, denminad arratre en la apa de fnd, y el que e tranprtad en upenión, entre la frntera uperir de ea apa y la uperfiie del agua. Para uantifiar el tranprte del material del fnd, l métd que e han prpuet e pueden agrupar de tre frma ditinta: en el primer etán l que ól permiten btener el tranprte en la apa de fnd, denminad g ; en el egund l que irven para valuar el tranprte ttal del fnd, denminad g T, eparand g del que e tranprtad en upenión y que e deigna m g S ; n l que e umple que g T = g + g S ; y pr últim, en el terer grup etán l que valuan g T en njunt, in eparar u mpnente. Se ha meninad que exiten vari métd para alular l diferente tip de tranprte, uand n una la euaión, para ada tip, ería ufiiente. Ell e debe al aráter eminentemente empíri de la hidráulia fluvial, y a la falta de preiión de l dat, bre td g ; ea falta de preiión urre tant en el labratri m en la mediine de amp. En 90, Eintein etableió que la apa de fnd tiene un eper igual a d vee el diámetr de la partíula. Pterirmente tr autre han prpuet epere diferente. De ualquier manera, al tratar n el arratre dentr de ea apa, e hae referenia a tda la partíula que ruedan e arratran, aún n pequeñ alt, era del fnd.

2 En ete trabaj e preentan la euaine de l prinipale métd que e han prpuet para uantifiar uniamente el arratre en la apa de fnd g. El ner g e neeari para etimar el tiemp de llenad de prea derivadra, etudiar la etabilidad de aue, para analizar ndiine de erión y edimentaión en tram de rí, uand en ell la velidad de la rriente e baja el material del fnd e grue. A ntinuaión e muetran la prinipale fórmula de arratre en la apa de fnd que e meninan en la bibligrafía epeializada, repetand la frma en que ella fuern preentada pr u autre. Cn bjet de que puedan er utilizada, e india el ignifiad de l parámetr que en ella intervienen y u expreión para alularl.. FÓRMULAS PARA OTENER EL ARRASTRE UNITARIO EN LA CAPA DE FONDO En tda ella g e exprea en kgf/ m a. DUOYS Y STRAU (879, 9). ( γ γ) τ ( τ τ ) g = D Se utiliza D = D 0, y e aplia i τ.0 b. SHOCKLITSCH (9, 90) ( ) g = 00 S qs. x 0 D / 7/ / 7/8 Utiliza D = D 0, y e aplia para ualquier τ. SHIELDS (9) ( τ τ ) g = 0UdS /D Utiliza D = D 0, y e aplia i τ 0. para C a = 9 y τ 0.7 para C a = 8. d. MEYER-PETER Y MÜLLER (98) ( ) ( ) [ τ ] g = 8 g D n'/n 0.07 γ 0.. Utiliza n D = D m, y e aplia para ualquier τ e. KALINSKE (97) τ τ g = γ U D[ f ( τ / τ ) ] Utiliza D = D 0. La funión f ( τ / τ ) vale / f( τ τ ) τ τ / / f( τ τ ) / τ τ f( τ τ ) / / f. LEVI (98). 0. ( ) [ ( ) ] g = 0.00γ U U U / g d D Utiliza D = D m. U e la velidad rítia de la partíula y vale.

3 /7 ( ) ( L d/7d) U =. gd D /D + Sbreetima g uand n 0.0 aprximadamente. g. EINSTEIN 9, EINSTEIN Y ROWN (90) g) EINSTEIN 9 máx ( ) [ τ ] g =.Fγ g D exp 0.9/ n 0. Utiliza D = D 0, y e válida uand 0.0 τ 0.9 g) EINTEIN-ROWN ( g D ) g = 0Fγ τ 0. Utiliza D = D 0, y e válida uand 0.9 τ.0 h. SATO, KIKKAWA Y ASHIDA (98) ( τ τ ) g = U Utiliza D = D m, y e válida uand n 0.0 ( τ τ )( ) g U /0n = E válida uand 0.0 n 0.00 i. ROTTNER (99) ( ) ( ). [ ] [ ] ( ) ( ) g = γ g d 0.7D/d U/ g d.7d/d 0. / 0. / Utiliza D = D m. E la únia fórmula en que g n depende de τ, baj ninguna ndiión rítia de arratre. j. GARDE Y ALERTSON (9) N e muetra pr requerir de una familia de urva para u apliaión. E válida uand 0.08 τ 0. y 8 U U. k. FRIJLINK (9) 0. ( ) [ ] g = γ D µ gds exp0.7/ µτ Utiliza D = D 0, y e válida para ualquier τ. YALIN (9) [ ] ( γ γ ) /a S Ln( a S ) g = 0.S D U + y y y y y Utiliza D = D m, y e válida para ualquier τ ( ) ay =. τ γ / γ ; Sy = τ m. PERNECKER y VOLLMER (9) 0.. ( ) τ ( τ ) g = g g D Utiliza D = D m, y e válida para τ.0 n. INGLIS Y LACEY (98) ( ) g = 0.γ U ν / ω dg / / Utiliza D = D m, y e aplia para τ 0. para C a = 9 y τ 7.0 para C a = 8.. OGARDI (979) ( ) g = 99γ U g D τ Utiliza D = D m, y e aplia uand τ.0. SIGNIFICADO DE LAS VARIALES 0..

4 γ, pe epeífi del agua, en kgf/m ; γ, pe epeífi de la partíula, en kgf/m ;, denidad relativa de la partíula umergida (e btiene de la relaión = (γ - γ)/γ); ν, viidad inemátia del agua, en m /; S, pendiente de la pérdida de arga; d, tirante prfundidad del fluj, en m; U, velidad media de la rriente, en m/; q, gat unitari líquid, en m /.m (e btiene de la relaión q = Ud); g, aeleraión debida a la gravedad, en m/ ; D, diámetr de la partíula, en m; D m, diámetr medi del njunt de partíula, en m( e btiene de la relaión D m = 0.0 (D i p i ); D i, diámetr de la partíula tal que el i% de la muetra e menr que ee tamañ, en m; p i fraión, n repet al ttal de la muetra de partíula, n diámetr D i, e exprea en frma deimal; D máx, diámetr máxim en el material del fnd, en m; ω, velidad de aída de la partíula, en m/ (e btiene de la reaión ω = F (g D) 0. ); F, efiiente de Rubey que e utiliza en u fórmula de la v v velidad de aída (e btiene de la relaión F = + ; τ, g D g D efuerz rtante riti que el fluj ejere en el fnd, en kgf/m (e btiene de la relaión ( ) τ = γ ds ; τ, númer adimeninal de Shield aiad a τ (e btiene de la relaión τ = ds/ D); τ, númer adimeninal de Shield para la ndiión rítia (e btiene de la relaión τ = exp ; uand. D. Para D, D D τ = 0.0; D, númer adimeninal de la partíula (e btiene de la relaión D = D [ ] g /v / ) ; τ efuerz rtante ríti en el fnd para iniiar el mvimient de la partíula (e btiene de la relaión τ = (γ - γ)d τ )n, efiiente de rugidad egún Manning (e btiene de la relaión n = d / S / /U); n', efiiente de rugidad egún Manning aiad a la partíula (e btiene de la relaión n' = D 90 /); µ, efiiente que relaina efiiente de rugidad (e btiene de la relaión µ = C'/C); C, efiiente de rugidad egún Chezy, en m / /, (e btiene de la relaión C = ds/u);c' efiiente de rugidad egún Chezy aiad a la partíula, en m / /, (e btiene de la relaión C = 8 lg (d/d 90 ); C a, efiiente adimeninal de Chezy (e btiene de la relaión C a = C g). En tda la fórmula g e el arratre unitari en la apa de fnd, en kgf/ m.. ANÁLISIS DE LOS MÉTODOS Para viualizar la tendenia de l diferente métd derit y mtrar la direpania que hay entre ell, tda la fórmula preentada e nvirtiern a una relaión, uand men, entre l iguiente númer adimeninale. G = gg / γ U y τ = ds/ D Al efetuar dih ambi de variable, algun de l métd requiriern de tr númer adimeninal adiinal m: n'/n, C a S. Para tmar en uenta ee terer parámetr adimeninal e eleinarn d efiiente de rugidad de Manning n = 0.08 y n 0 = En la fig a e muetran la /

5 urva btenida para τ - G y n = 0.08 y en la fig b, τ ntra G para n = 0.0. En diha figura ól e enuentran algun de l métd. Del análii efetuad y en la figura eñala e berva que l diferente métd e pueden agrupar de la iguiente manera: a) Métd en que G, y pr tant g, ól e funión de τ. Cumplen eta ndiión l de Duby y Straub, Kalinke, Eintein (9), Eintein y rwn (90), Sat et al (uand n > 0.0), Yalin, Perneker y Vllmer, y gardi. Dada la gemetría de la eión, pendiente y la prpiedade del agua y de l ediment del fnd, el arratre en la apa de fnd e independiente de la rugidad ttal del aue y pr ende de la velidad. Eta limitaión hae que l métd e apliquen n reerva. b) Métd en que G e funión de τ y C a. Dentr de ete grup etán l de Shield, Meyer-Peter y Müller (en funión de Cá/Ca), Sat et al (uand n > 0.0), y Frijlink (en funión de Cá/Ca). ) Métd en que G e funión de τ, C a y d/d. Caen dentr de ete grup l de Levi e Ingli Laey. d) Métd en l que G e funión de τ, C a y S. Cumple n eta ndiión úniamente el métd de Shklith. e) Pr últim, métd en que G n e funión de τ. Dentr de ete grup l etá el métd de Rttner; en él, G e l funión de C a. Puet que ademá ubvalua a g e un métd que n e remienda utilizar. Pr tra parte, uand τ > 0.8. e preenta régimen uperir y l métd e pueden agrupar de uatr frma ditinta. ) Aquell en que G Aτ U (A y n ntante para el material y el agua). Et métd dan el tranprte ttal del fnd y n el arratre en la apa del fnd, y pr tant, n e pueden uar para ete prpóit. Dentr de ete grup e enuentran l de: Duy, Shield (para τ > 0.), Perneker y Vllmer, Ingli y Laey, y gardi. ) Aquell en que G ya n depende de τ ; e deir G A U. Sn válid para btener el arratre en la apa de fnd. Dentr de ete grup etán l de: Meyer-Peter y Müller, Sat et al, Kikkawa y Ahida, Rttner, y Yalin. ) Aquell en que G Aτ U. También n válid para btener g, aunque dan valre menre que l del egund grup. Ea diferenia e tant mayr uant mayr e τ, Caen dentr de ete grup l de: Kalinke y Frijlink. ) L que n iguen alguna de la ndiine eñalada; ell n: Shklith, Levi (brevalúa uand n e reduida, n < 0.), y Eintein y rwn (l aplia i τ <.0)

6 Pr últim e pueden meninar aquell métd en que n e limita el tranprte de ediment pr debaj de la ndiión rítia de arratre; e deir, que indian tranprte de ediment para ualquier velidad del fluj, pr reduida que ella ea. L métd que tienen eta limitaión n l de Rttner, Ingli y gardi. Al utilizar et métd primer e debe ner la ndiión rítia de arratre. Gx Gx gardi Ingli y Laey Shield Perneker y Vllmer Duy y Straub Yalin Sat, Kikkawa y Ahida Frijlink Rttner a) b) Fig Repreentaión gráfia de alguna euaine de arratre en la apa de fnd, en el plan G - τ, y d valre del efiiente de rugidad de Manning.

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC ANTECEDENTES PARA CÁLCULO DE IGAS EN PANEL COINTEC Anteedente de Cálulo para iga en Panele Covinte iga Geometría: Fig. 1 Nomenlatura: h: altura total de la viga h : altura del hormigón o mortero uperior

Más detalles

7. Amplificadores RF de potencia

7. Amplificadores RF de potencia 7. Amplificadre RF de ptencia 7. ntrducción El amplificadr de ptencia (PA e la última etapa del emir. Tiene la miión de amplificar la ptencia de la eñal (n neceariamente la tenión y tranmitirla a la antena

Más detalles

2006 Avances en la Investigación Científica en el CUCBA

2006 Avances en la Investigación Científica en el CUCBA 26 Avance en la Invetigación Científica en el CUCBA 16 ISBN 97-27-145-6 EVALUACIÓN DE COMBINACIÓN DE SUSTRATOS EN TRES CICLOS DE CULTIVO BAJO EL SISTEMA DE SIEMBRA EARTH BOXES DEL PROYECTO THE GROWING

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

CÁLCULO DEL SISTEMA DE PUESTA A TIERRA

CÁLCULO DEL SISTEMA DE PUESTA A TIERRA FPP / REV.3 PROYECTO: INGENIERÍA BÁSICA Y TALLE LOCALIZACIÓN Y VÍA ACCESO L POZO TALADRO ESCUELA PROYECTO NO. UNIDAD CÓDIGO L DOCUMENTO PROGRESIVO REVISIÓN HOJA Project No. Unit Document Code Serial No.

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

En muchas aplicaciones industriales, es necesario el convertir una fuente de

En muchas aplicaciones industriales, es necesario el convertir una fuente de 2 CONERTDORES CD-CD 2.1 NTRODUCCÓN En mucha aplicacine indutriale, e neceari el cnvertir una fuente de pder de crriente directa (CD) de vltaje fij a una fuente de CD de vltaje variable. Un cnvertidr de

Más detalles

Figura 6.1 Sistema de flujo con atraso por transporte

Figura 6.1 Sistema de flujo con atraso por transporte 6. TIEMPO MUERTO 6.1 INTRODUCCION Un fenómen que se presenta muy a menud en ls sistemas de fluj es el del atras pr transprte, que se cnce también cm tiemp muert. Para explicar dich fenómen, se cnsidera

Más detalles

Generación de residuos y fracciones

Generación de residuos y fracciones n l e r re l Qué n l rei? Generación de rei y fraccine Aí, Bizkaia, ademá de haber alcanzad el bjetiv de rección en la generación de rei marcad pr la UE para el añ 2016, igue cumpliend bradamente l bjetiv

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

Elementos de Hidráulica Fluvial

Elementos de Hidráulica Fluvial Elemento de Hidráulica Fluial 1. Introducción 2. Hidráulica de cauce naturale (generalidade) 3. Propiedade de lo edimento 4. Reitencia hidráulica en cauce aluiale 5. Arratre incipiente de edimento no coheio

Más detalles

OPCIÓN A. período orbital de Saturno alrededor del Sol. (1 punto)

OPCIÓN A. período orbital de Saturno alrededor del Sol. (1 punto) PUES DE CCESO L UNIVESIDD P EL LUNDO DE CHILLEO 149 FÍSIC. JUNIO 015 Esge un de ls ds exámenes prpuests (pión u pión ) y ntesta a tdas las preguntas planteadas (ds teórias, ds uestines y ds prblemas) OPCIÓN

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS

CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS Las operaiones de suma, resta, multipliaión y división son onoidas, por lo que no se inidirá en ellas. La prinipal diferenia entre

Más detalles

Infinity Sleep Solutions

Infinity Sleep Solutions Infinity Sleep Slutin CONSENTIMIENTO PARA REALIZAR POLISOMNOGRAFIA Y SERVICIOS RELACIONADOS El abaj firmante licita vluntariamente Rejuvenight LLC, dba, Infinity Sleep Slutin (ISS), u médic, aciad, aitente

Más detalles

Objeto del seguro de vida

Objeto del seguro de vida 1 llll^llll Cnsri Hspitalari Prvinial de Castellón PT 50/13 PLIEG DE CNDICINES TÉCNICAS PARA LA CNTRATACIÓN DEL SERVICI DE UN SEGUR DE VIDA PARA EL PERSNAL DEL CNSRCI HSPITALARI PRVINCIAL DE CASTELLÓN

Más detalles

Recogida Selectiva Depósito y recogida: Transporte: Tratamiento:

Recogida Selectiva Depósito y recogida: Transporte: Tratamiento: l e r re l Qué n l rei? La getión de l rei cmprende tda la peracine realizada dede u generación hata u detin final. Ete prce cnta de la iguiente fae: 1. Depóit y recga: l rei e depitan en la intalacine

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

J s. Solución: a) Para hallar la longitud de onda que tiene el fotón, aplicamos la Ecuación de Planck:

J s. Solución: a) Para hallar la longitud de onda que tiene el fotón, aplicamos la Ecuación de Planck: PROBLEMAS DE FÍSICA º BACHILLERATO Óptia /03/03. Calule la longitud de onda de una línea epetral orrepondiente a una traniión entre do nivele eletrónio uya diferenia de energía e de,00 ev. Dato: Contante

Más detalles

MODELO DE OPTIMIZACIÓN MULTIPERÍODO DISYUNTIVO PARA EL PLANEAMIENTO DE LA PRODUCCIÓN DE CAMPOS DE PETRÓLEO

MODELO DE OPTIMIZACIÓN MULTIPERÍODO DISYUNTIVO PARA EL PLANEAMIENTO DE LA PRODUCCIÓN DE CAMPOS DE PETRÓLEO MODELO DE OPTIMIZACIÓN MULTIPERÍODO DISYUNTIVO PARA EL PLANEAMIENTO DE LA PRODUCCIÓN DE CAMPOS DE PETRÓLEO A. C. Dukwen, M. S. Mren, D. Bri y A. Bandni Planta Pilt de Ingeniería Químia (Universidad Nainal

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

Universidad de Chile

Universidad de Chile Univeridad de Chile Facultad de Ciencia fíica y Matemática Departamento de Ingeniería Eléctrica SD-20A Seminario de Dieño Guía Teórica N o 2 Circuito Generador de forma de onda (ocilador) Profeore : Javier

Más detalles

A Contratiempo. de lo secreto en los rastros. Fernando Rincón Estrada. a Guillo y Ana Ma. uiachii. guitarra y electrónica

A Contratiempo. de lo secreto en los rastros. Fernando Rincón Estrada. a Guillo y Ana Ma. uiachii. guitarra y electrónica ernand Rincón Etrada de l ecret en l ratr a Guill y Ana Ma uiachii guitarra y electrónica Obra cmiinada pr el etival "en tiemp real nuev encuentr nr", undación Epaci Cer, 00 A Cntratiemp Nta de ejecución

Más detalles

Liceo Rodulfo Amando Philippi Departamento de Matemática Paillaco

Liceo Rodulfo Amando Philippi Departamento de Matemática Paillaco Lieo Rodulfo Amando Philippi Departamento de Matemátia Paillao / UNIDAD : NOCIONES DE PROBABILIDAD CURSO : SEGUNDO AÑO MEDIO PROFESOR : JOSÉ ENRIQUE MENESES ARAYA Preentaión Con la ayuda de eta guía, analizaremo

Más detalles

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala.

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala. G.1 Glosario Agregación ( up-scaling ): proceso de pasaje de descripciones de procesos (modelos) o variables de una escala menor a otra mayor (Blöshl et al., 1997). Agregación geométrica: modificación

Más detalles

Tema 2 La elección en condiciones de incertidumbre

Tema 2 La elección en condiciones de incertidumbre Ejeriios resueltos de Miroeonomía. Equilibrio general y eonomía de la informaión Fernando Perera Tallo Olga María Rodríguez Rodríguez Tema La eleión en ondiiones de inertidumbre http://bit.ly/8l8ddu Ejeriio

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

Práctica IV. La Fuente de Alimentación

Práctica IV. La Fuente de Alimentación Nmbre y Apellids: Grup: Puest: (6&8(/$7e&1,&$683(5,25'(,1*(1,(526'(7(/(&2081,&$&,Ð1 UNIERSIDAD DE LAS PALMAS DE GRAN CANARIA 1 er Curs - 1 er Cuatrimestre Curs académic 2000/2001 Tecnlgía y Cmpnentes Electrónics

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

OPTIMACIÓN DEL DISEÑO DE CONVERTIDORES DE POTENCIA CC-CC. Úrsula Ribes Mallada

OPTIMACIÓN DEL DISEÑO DE CONVERTIDORES DE POTENCIA CC-CC. Úrsula Ribes Mallada ADVERTIMENT. L'accé al cntingut d'aqueta tei dctral i la eva utilització ha de repectar el dret de la perna autra. Pt er utilitzada per a cnulta etudi pernal, així cm en activitat material d'invetigació

Más detalles

DESARROLLO DE UN SISTEMA DE DIÁLOGO ORAL EN DOMINIOS RESTRINGIDOS

DESARROLLO DE UN SISTEMA DE DIÁLOGO ORAL EN DOMINIOS RESTRINGIDOS DESARROLLO DE UN SISTEMA DE DIÁLOGO ORAL EN DOMINIOS RESTRINGIDOS Antonio Bonafonte 1, Pablo Aibar 2, Núria Catell 1, Eduardo Lleida 3, Joé B. Mariño 1, Emilio Sanhi 4 y M. Iné Torre 5 1 Centro de Invetigaión

Más detalles

ENCUENTRO 3: Cómo nos ven?

ENCUENTRO 3: Cómo nos ven? ENCUENTRO 3: Cóm n ven? Cncer cóm ven y qué pienan de l jóvene de nuetra cmunidad juvenil la rganizacine ciale y plítica inerta en nuetra cmunidad, l grup que trabajan en la parrquia, la familia. Revita,

Más detalles

SIMULACIÓN MODULAR INTRODUCCIÓN A CHEMCAD 6.1

SIMULACIÓN MODULAR INTRODUCCIÓN A CHEMCAD 6.1 INSIUO ECNOÓGICO DEPARAMENO DE INGENIERÍAS SEMESRE ENERO JUNIO 2009 SIMUACIÓN MODUAR INRODUCCIÓN A 6.1 (pronuniado /kemkad/) es un paquete de simulaión de proesos ampliamente usado. Dado el diseño oneptual

Más detalles

PROCESOS DE EROSIÓN POR LA CONSTRUCCIÓN DE PRESAS. Joselina Espinoza Ayala, José Alfredo González V.

PROCESOS DE EROSIÓN POR LA CONSTRUCCIÓN DE PRESAS. Joselina Espinoza Ayala, José Alfredo González V. PROCEO DE EROIÓN POR LA CONTRUCCIÓN DE PREA Fondo original del río Fondo erosionado Joselina Espinoza Ayala, José Alfredo González V. Los efectos de modificación del escurrimiento por una presa son varios:

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

MODELOS CONSTITUTIVOS ACOPLADOS APLICADOS A LIMOS NO SATURADOS

MODELOS CONSTITUTIVOS ACOPLADOS APLICADOS A LIMOS NO SATURADOS MODELOS CONSTITUTIVOS ACOPLADOS APLICADOS A LIMOS NO SATURADOS Marcel E. Zeball a, Gnzal M. Aiaa b y Rbert E. Terzaril a a Departament de Cntruccine Civile, Facultad de Ciencia Exacta Fíica y Naturale,

Más detalles

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2 El aluno elegirá una sola de las opiones de probleas, así oo uatro de las ino uestiones propuestas. No deben resolerse probleas de opiones diferentes, ni tapoo ás de uatro uestiones. Cada problea se alifiará

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

V d o. Electrónica Analógica II Parte 3 Slew Rate (razón o velocidad de cambio)

V d o. Electrónica Analógica II Parte 3 Slew Rate (razón o velocidad de cambio) Electróna nalóga Parte 3 Slew Rate (razón velcidad de cambi) Otr fenómen que puede causar la distrsión n-lineal cuand señales grandes de salida están presentes, es la limitación del slew rate. El slew

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN MADRID / SEPTIEMBRE 000. LOGSE / MATEMÁTICAS APLICADAS A LAS INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eamen presenta dos opiones A y B; el alumno deberá elegir una de ellas y ontestar razonadamente

Más detalles

TEMA 8: TRANSFORMACIONES EN EL PLANO

TEMA 8: TRANSFORMACIONES EN EL PLANO TEMA 8: TRANSFORMACIONES EN EL PLANO Matías Arce, Snsles Blázquez, Tmás Ortega, Cristina Pecharrmán 1. INTRODUCCIÓN...1 2. SIMETRÍA AXIAL...2 3. SIMETRÍA CENTRAL...3 4. TRASLACIONES...3 5. GIROS...4 6.

Más detalles

*Cap. 1/o Ing. Ind. Carlos Eduardo Palomo Juárez

*Cap. 1/o Ing. Ind. Carlos Eduardo Palomo Juárez UNA APORTACION A LA ECOLOGIA Y MEDIO AMBIENTE CON EL FUNCIONAMIENTO DE LA PLANTA TRATADORA DE AGUAS RESIDUALES DEL HOSPITAL MILITAR REGIONAL DE SAN LUIS POTOSI. S.L.P. INTRODUCCION *Cap. 1/o Ing. Ind.

Más detalles

CRISTALOFÍSICA TEMA 15 PROPIEDADES ÓPTICAS EL MICROSCOPIO DE POLARIZACIÓN

CRISTALOFÍSICA TEMA 15 PROPIEDADES ÓPTICAS EL MICROSCOPIO DE POLARIZACIÓN CRISTALOFÍSICA TEMA 15 PROPIEDADES ÓPTICAS EL MICROSCOPIO DE POLARIZACIÓN ÍNDICE 15.1Micrscpi plarizante de transmisión 15.2 Micrscpi plarizante de reflexión. 1 15.1 MICROSCOPIO PLARIZANTE DE TRANSMISIÓN

Más detalles

MINISTERIO DE EDUCACIÓN PÚBLICA IPEC Santa Bárbara de Heredia Software de Aplicación Accesorio Paint

MINISTERIO DE EDUCACIÓN PÚBLICA IPEC Santa Bárbara de Heredia Software de Aplicación Accesorio Paint MINISTERIO DE EDUCACIÓN PÚBLICA IPEC Santa Bárbara de Heredia Sftware de Aplicación Accesri Paint Accesri: Paint Paint es una característica de Windws, que se puede usar para crear dibujs en un área de

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

NOCIONES DE ELECTRÓNICA ANALÓGICA (Realimentación)

NOCIONES DE ELECTRÓNICA ANALÓGICA (Realimentación) Ncne de ealmentacón NOCIONES DE ELECTÓNIC NLÓGIC (ealmentacón Ecuela Pltécnca Superr Prfer: Darí García dríguez 1 Ncne de ealmentacón ELIMENTCION Cncept de ealmentacón.- Su gnfcad e ler a almentar, quere

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Modelización matemática y simulación numérica de una válvula reguladora de presión de gas natural - 1 -

Modelización matemática y simulación numérica de una válvula reguladora de presión de gas natural - 1 - Modelizaión matemátia y simulaión numéria de una válvula reguladora de presión de gas natural - 1 - RESUMEN El presente proyeto surge de la neesidad de expliar el funionamiento erróneo de una válvula reguladora

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

SISTEMAS ELECTRÓNICOS DE CONTROL

SISTEMAS ELECTRÓNICOS DE CONTROL SISTEMAS ELECTÓNICOS DE CONTOL TEOÍA DE FILTOS Introduión Diagrama de Bode Filtro Elétrio Filtro Paivo y Ativo Analógio Conideraione Generale Sobre lo Filtro Dieño de un Filtro Paa bajo Dieño de un Filtro

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

Método Lúmen. Procedimiento:

Método Lúmen. Procedimiento: Métd Lúmen La finalidad de este métd es calcular el valr medi en servici de la iluminancia en un lcal iluminad cn alumbrad general. Es muy práctic y fácil de usar, y pr ell se utiliza much en la iluminación

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

Materia: Matemática de Séptimo Tema: Propiedades de los Números Racionales vs Números irracionales

Materia: Matemática de Séptimo Tema: Propiedades de los Números Racionales vs Números irracionales Materia: Matemática de Séptim Tema: Prpiedades de ls Númers Racinales vs Númers irracinales Qué pasa si quieres identificar un númer cm? Es un númer racinal irracinal? Después de cmpletar este cncept,

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION Universidad Naional del Callao Esuela Profesional de Ingeniería Elétria Faultad de Ingeniería Elétria y Eletrónia Cilo 2008-B ÍNDICE GENERAL INTRODUCION... 2 1. OBJETIVOS...3 2. EXPERIMENTO...3 2.1 MODELO

Más detalles

LECTURA 02: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN.

LECTURA 02: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN. LECTURA 2: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN. TEMA 4: CALCULO INVERSO EN LA DISTRIBUCION NORMAL ESTANDAR En la sesión anterir llevams acab

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

ascenso (Relato: 10 minutos)

ascenso (Relato: 10 minutos) Lecció d alcaza l d a Alcaza campamet bae (Actividad iicial: 5 miut) Qué e eceita: Tarjeta de la etia (hipa.imb.rg/freda) Tijera Cita adheiva de dble faz Ctr de l ctiete (hipa.imb.rg/freda) Pegamet Cartulia

Más detalles

LABORATORIO DE ESTRUCTURAS FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES UNIVERSIDAD NACIONAL DE CORDOBA

LABORATORIO DE ESTRUCTURAS FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES UNIVERSIDAD NACIONAL DE CORDOBA MECÁNICA DE LAS ESTRUCTURAS TRABAJO PRÁCTICO N 1: ENSAYO DE TRACCION EN BARRAS DE ACERO OBJETO: El bjet de este ensay es determinar la carga de rtura y carga de fluencia de la prbeta ensayada para: Verificar

Más detalles

ELEMENTOS DE FÍSICA RELATIVISTA. Introducción a la teoría de la Relatividad

ELEMENTOS DE FÍSICA RELATIVISTA. Introducción a la teoría de la Relatividad Físia de º de Bahillerato. Introduión a la Físia Relatiista Franiso Martínez Naarro 1. INTRODUCCIÓN ELEMENTOS DE FÍSICA RELATIVISTA Introduión a la teoría de la Relatiidad La Relatiidad, es la teoría desarrollada

Más detalles

Equipos de respaldo de energía eléctrica UPS, SPS

Equipos de respaldo de energía eléctrica UPS, SPS Equips de respald de energía eléctrica UPS, SPS Intrducción Pág. 1 Sistema UPS Pág. 2 Funcinamient Pág. 2 Sistema SPS Pág. 2 Funcinamient Pág. 3 Diferencias Técnicas Principales Pág. 3 Cnclusión Pág. 4

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Las características y los requisitos que se deberán cumplir para obtenerlos se los resumimos continuación.

Las características y los requisitos que se deberán cumplir para obtenerlos se los resumimos continuación. LO QUE DEBE SABER DEL NUEVO CONTRATO DE TRABAJO POR TIEMPO INDEFINIDO DE APOYO A LOS EMPRENDEDORES Si su empresa tiene mens de 50 trabajadres, puede acgerse a ls nuevs incentivs fiscales y bnificacines

Más detalles

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD

CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD CAPÍTULO 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5 MODELOS PARA VALORAR EL DISEÑO Y LA CREATIVIDAD 5.1 Introduión La valoraión de la reatividad se puede enfoar bajo tres puntos de vista diferentes:

Más detalles

Guía buscador de licitaciones MercadoPublico.cl

Guía buscador de licitaciones MercadoPublico.cl Guía buscadr de licitacines MercadPublic.cl Octubre 2011 I. Intrducción El buscadr de licitacines de MercadPublic.cl tiene el bjetiv de encntrar las licitacines públicas (en estad publicadas, cerradas,

Más detalles

13 Mediciones en fibras ópticas.

13 Mediciones en fibras ópticas. 13 Mediiones en fibras óptias. 13.1 Introduión: 13.1.1 Historia El uso de señales visuales para las omuniaiones de larga distania ya se realizaba por el año 1794 uando se transmitían mensajes de alerta

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

CAPÍTULO 5 TEORÍAS SOBRE LA RESISTENCIA A ROTURA DE UNA LÁMINA

CAPÍTULO 5 TEORÍAS SOBRE LA RESISTENCIA A ROTURA DE UNA LÁMINA CAPÍTULO 5 TORÍA OBR LA RITNCIA A ROTURA D UNA LÁMINA 5.. INTRODUCCIÓN xisen diversos rierios de roura relaivos a una lámina oróropa. La bondad de ada uno de ellos sólo puede ser esableida omparando los

Más detalles

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 GASES Y VAPORES: los términos gas y vapor se utilizan muha vees indistintamente, pudiendo llegar a generar alguna onfusión.

Más detalles

Práctica 7. La transformada de Laplace

Práctica 7. La transformada de Laplace Práctica 7. La tranformada de Laplace En la primera parte de eta práctica e motrará cómo calcular la tranformada de Laplace y la tranformada invera de Laplace de ditinta funcione utilizando Mathematica.

Más detalles

La Satisfacción del Cliente

La Satisfacción del Cliente La Satisfacción del Cliente Cnzca cuáles sn ls beneficis de lgrar la satisfacción del cliente, cóm definirla, qué elements la cmpnen y cuál es la fórmula para determinar el nivel de satisfacción del cliente...

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

TUTORIAL DEFORMACIONES Y LÍMITE ELÁSTICO

TUTORIAL DEFORMACIONES Y LÍMITE ELÁSTICO TUTORIAL DEFORMACIONES Y LÍMITE ELÁSTICO En este tutrial explicarems un cncept clave en Resistencia de Materiales cm es el que marca el límite en el cmprtamient elástic de cualquier material smetid a un

Más detalles

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010. COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE

Más detalles

PROTOCOLO DE MANTENIMIENTO:

PROTOCOLO DE MANTENIMIENTO: PROTOCOLO DE MANTENIMIENTO: FLUIDOS ANTICONGELANTES - CALOPORTADORES EN INSTALACIONES SOLARES TÉRMICAS DESARROLLADO POR: Dept. Técnic FECHA CREACIÓN: Marz 2.008. FECHA ÚLTIMA REVISIÓN: Diciembre 2.012

Más detalles

1º CC.SS. Resumen tema 10. Distribuciones de probabilidad de variable discreta. La binomial.

1º CC.SS. Resumen tema 10. Distribuciones de probabilidad de variable discreta. La binomial. 1. CÁLCULO DE PROBABILIDADES. a. Suces aleatri. Aquél que depende del azar, es decir, que n se puede prever. Para estudiar ests sucess, es necesari hacerl a partir de la experiencia. nº de veces que curre

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las plataformas en la eduaión en línea Alberto Domingo Robles Peñaloza La Eduaión a Distania se ha visto en gran manera benefiiada del desarrollo de las Tenologías de Informaión

Más detalles