Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario"

Transcripción

1 Volúmenes El volumen es un concepto que expres l medid del espcio que ocup un cuerpo. Es un vrible tridimensionl. En l División El Teniente se utiliz este concepto pr mrcr grndes bloques rectngulres de piedr dentro de l min subterráne, con el fin socvrlos medinte explosivos y sí explotr el minerl de cobre y extrerlo de l min medinte el método denomindo Hundimiento por bloques. se miden con Volúmenes son resumido en CONTENIDOS Uniddes de volumen Cuerpos geométricos Formulrio del se clsificn en Sistem métrico Otrs uniddes deciml de volumen Cuerpos poliedros Cuerpos redondos regulres rectos como Cubo Prism recto regulr como Cilindro Cono Esfer Uniddes de volumen Ls uniddes de volumen permiten expresr el espcio que un cuerpo ocup. Ls uniddes de volumen son tridimensionles. Sistem métrico deciml Pr medir el volumen de los cuerpos se utiliz el sistem métrico deciml (SMD), y su unidd ptrón es el metro cúbico (m 3 ). Existen equivlencis entre ls uniddes del SMD, ls que se estblecen de cuerdo l siguiente esquem: Cómo estblecer equivlencis? multiplicdo por mm 3 cm 3 m 3 km 3 m 3 Dm 3 dividido por kilómetro cúbico ectómetro cúbico decámetro cúbico metro cúbico decímetro cúbico centímetro cúbico milímetro cúbico

2 Instrucciones de uso ) Pr estblecer equivlencis entre uniddes l scender en l escl, cd esclón se divide por Así: cm 3 = dm 3 = 4 m 3 Operción: : = b) Pr estblecer equivlencis entre uniddes l descender en l escl, cd esclón se multiplic por Por ejemplo: 5 km 3 = 5000 m 3 = Dm 3 = m 3 CONTENIDOS Operción: = Otrs uniddes de volumen Otrs uniddes de volumen que se utilizn en lgunos píses corresponden l sistem inglés. A continución encontrrás sus uniddes de volumen y su equivlenci con SMD. Unidd de volumen Sistem Inglés Equivlenci Sistem Métrico Deciml 1 pulgd cúbic 0,0164 dm 3 1 pie cúbico 28,32 dm 3 1 yrd cúbic 764,6 dm 3 Cuerpos geométricos regulres Son porciones del espcio limitds por superficies plns y/o curvs. 1) Cuerpos poliedros Son cuerpos que tienen tods sus crs plns, entre ells podemos nombrr: ) Cubo: tiene 6 crs que son cudrds y congruentes. 8 vértices 12 rists vértice rist b) Prism recto rectngulr: tods sus crs lterles son rectánguls, sus crs bsles son rectángulos congruentes y están ubicds en plnos prlelos. vértice Tiene 6 crs rist 8 vértices 12 rists cr cr

3 2) Cuerpos redondos rectos: Son sólidos limitdos por lgun superficie curv. Se genern l cer girr figurs plns en torno un eje. ) Cilindro: Es un figur sólid que tiene 2 crs bsles circulres congruentes ubicds en plnos prlelos. Un form de originrlo es cer girr un rectángulo en torno uno de sus ldos. b) Cono: Es un sólido con bse circulr y con un vértice que se gener l cer girr un triángulo rectángulo en torno uno de sus ctetos. c) Esfer: Es un superficie completmente curv generd por l revolución de un semicírculo en torno uno de sus diámetros. CONTENIDOS vértice mnto mnto bse bse Formulrio En este formulrio encontrrás ls fórmuls pr clculr el volumen de diferentes cuerpos geométricos. Cubo Prism recto Cilindro Cono Esfer rectngulr V = 3 V = b c V = p r 2 V = 1 p r 2 V = 4 p r b c r r r

4 Un repis gurd CD Te proponemos confeccionr un estnte de mder pr gurdr 10 cjs de CD. Ls dimensiones de un cj de CD de udio norml son: 14 cm x 12 cm x 1 cm. L plnc de mder tiene un grosor de 3 mm. 1) Cuáles deben ser ls dimensiones mínims del estnte? fondo: nco: lto: 2) Qué volumen tendrá el estnte en cm 3? APLICACIÓN PRÁCTICA 3) Cuál es el volumen de un cj de CD? 4) Cuánts plncs de mder y de qué dimensiones deberán cortrse pr cer el mueble? 5) Andre tiene mucos CD y decide cer su estnte con otrs dimensiones: el doble del lto y el triple de nco. Sbiendo ests crcterístics clcul ls dimensiones del mueble de Andre y nótls en los espcios correspondientes: El lto será de El nco será de El fondo tendrá l medid de El volumen de este mueble será Qué dimensiones deberí tener el mueble pr que fuer cúbico? Cuál será entonces su volumen? Cuántos CD cbrán or?

5 Sector: Mtemátics. Subsector: Educción Mtemátic. Nivel: 8º Año Básico (NB6) Descripción generl En el texto El volumen de cuerpos geométricos se detll informción cerc del cálculo de volúmenes de cuerpos geométricos y ls trnsformciones de sus uniddes de medición respectivs. Se relcion el volumen con el proceso de explotción utilizdo en El Teniente, en que se socvn grndes bloques rectngulres de piedr por medio de explosivos sistem de Hundimiento por bloques. Se ofrece un ctividd práctic pr el estudinte, de cálculo de volúmenes de prisms rectngulres rectos y l plicción de estos conceptos en l construcción de un mueble. Objetivos fundmentles Objetivos trnsversles Contenidos Conceptos clves PARA EL DOCENTE Conocer y utilizr conceptos mtemáticos socidos l estudio de volúmenes. Aplicr el proceso de formulción de modelos mtemáticos l nálisis de situciones y l resolución de problems. Perseverr en l búsqued de soluciones fctibles problems. Desrrollr el pensmiento reflexivo y metódico y el sentido de crític y utocrític. Vlorr positivmente el esfuerzo personl. Definición de volumen. Estimción y cálculo del volumen de cuerpos geométricos regulres, expresdo en ls uniddes pertinentes. Relciones de equivlencis entre uniddes de volumen de uso frecuente. Volumen Uniddes de medición de volúmenes. Conversión de uniddes. Aprendizjes posibles Conversión de uniddes de medición de volumen entre uniddes del sistem métrico deciml. Conocer otrs uniddes de medición de volumen distints del SMD. Reconocer ls uniddes propids según se el cso. Reconocer cuerpos geométricos regulres. Reconocer cuerpos redondos. Aplicr el concepto de cálculo de volumen objetos reles. Otrs oportuniddes de prendizje Plnificr l elborción de un objeto práctico plicndo geometrí. Aplicr modelos mtemáticos (fórmuls) l solución de problems prácticos pr trnsferir prendizjes. Sugerencis pr el docente Amplir l ctividd cmbindo el objeto (CD) por cssettes, usndo ls siguientes medids decimles: 7 cm x 10,5 cm x 1,5 cm. Tmbién se pueden dr ls medids en milímetros. Tmbién se puede relizr l ctividd con reemplzndo CDs por videos, los que miden 12 cm x 20 cm x 2,5 cm. Dr diferentes uniddes de medid de un mismo objeto, con el fin de que primero relicen trnsformciones y después clculen volúmenes.

6 Recolectr envses que sen cjs, cilindros y conos con el fin de recortrlos, y pedirle los lumnos y lumns que formen ls redes de los objetos. Criterios de evlución Reconoce ls uniddes de medición que se usn pr medir volúmenes. Reconoce cuerpos geométricos. Elbor un pln pr resolver el desfío plntedo. Hce un dibujo explortorio de nálisis de l situción. Aplic l fórmul que corresponde l cálculo pedido. D un respuest clr l problem plntedo. PARA EL DOCENTE

7 Evlución Formtiv Nombre: Curso: Fec: Observ tentmente ls cjs que se n entregdo y con ells frente ti reliz lo que se pide. 1. Clsific cd cuerpo (cj de crtón) según el tipo de superficie de sus crs. Cuerpo 1: Cuerpo 2: PARA EL DOCENTE 2. Escribe l fórmul que permite clculr el volumen de cd cuerpo. Fórmul del cuerpo 1: Fórmul del cuerpo 2: 3. Clcul en los espcios indicdos el volumen de cd uno de los cuerpos. Cálculo del volumen del cuerpo 1 Cálculo del volumen del cuerpo 2 4. Intercmbi tu ejercicio con tu compñero o compñer y corrígelo si es necesrio. 5. Discute con tu compñero o compñer ls respuests en que tengn diferencis.

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

SÍLABO DEL CURSO DE TRADEMARKETING Y RETAIL

SÍLABO DEL CURSO DE TRADEMARKETING Y RETAIL SÍLABO DEL CURSO DE TRADEMARKETING Y RETAIL I. INFORMACIÓN GENERAL: 1.1 Fcultd: Negocios 1.2 Crrer Profesionl: Administrción y Mrketing 1.3 Deprtmento: ------------ 1.4 Requisito: Cnles Distribución y

Más detalles

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

8 Vectores y rectas. Vector: AB = (b 1 a 1, b 2 a 2 ) Módulo: AB = Paramétricas: Continua: = OBJETIVOS CONTENIDOS PROCEDIMIENTOS

8 Vectores y rectas. Vector: AB = (b 1 a 1, b 2 a 2 ) Módulo: AB = Paramétricas: Continua: = OBJETIVOS CONTENIDOS PROCEDIMIENTOS 9566 _ 009-06.qxd 7/6/0 :55 Página 9 Vectores y rectas INTRODUCCIÓN Los vectores son utilizados en distintas ramas de la Física que usan magnitudes vectoriales, por lo que es importante que los alumnos

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos 829485 _ 0369-0418.qxd /9/07 15:06 Págin 381 Volumen de cuerpos geométricos INTRODUCCIÓN RESUMEN DE LA UNIDAD Como complemento l estudio del Sistem Métrico Deciml, inicimos est unidd con el concepto de

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

PLAN DE APOYO (Art. 8 RES. 110 DEL 28 DE ABRIL DE 2014)

PLAN DE APOYO (Art. 8 RES. 110 DEL 28 DE ABRIL DE 2014) FECHA DE ENTREGA DEL PLAN DE APOYO POR PARTE DE LA INSTITUCIÓN A ESTUDIANTES Y PADRES DE FAMILIA JUEVES 12 DE JUNIO NOMBRE COMPLETO DEL ESTUDIANTE GRADO AÑO CUARTO 2014 NOMBRE COMPLETO DEL DOCENTE ANGELA

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

SÍLABO DEL CURSO DE CONTABILIDAD AVANZADA

SÍLABO DEL CURSO DE CONTABILIDAD AVANZADA SÍLABO DEL CURSO DE CONTABILIDAD AVANZADA I. INFORMACIÓN GENERAL: 1.1 Fcultd: Fcultd Negocios 1.2 Crrer Profesionl: Contbilidd y Finnzs 1.3 Deprtmento: -------------- 1.4 Requisito: Contbilidd Intermedi/III

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

TEMA 9 - INMOVILIZADO

TEMA 9 - INMOVILIZADO TEMA 9 - INMOVILIZADO 1. Considerciones generles. 1.1. Descripción. 1.2. Clsificción. 1.3. Registro y reconocimiento. 1.4. Forms de dquisición. 1.5. Vlorción. 1.6. Bjs de inmovilizdo 2. Inmovilizdo mteril.

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Unidad IV. Volumen y capacidad

Unidad IV. Volumen y capacidad Volumen y capacidad Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un

Más detalles

LA MEDIDA DE LA LONGITUD

LA MEDIDA DE LA LONGITUD LA MEDIDA DE LA LONGITUD Introducción Si quieres conocer la anchura de una mesa, la altura de un compañero o la distancia que separa tu casa de tu instituto necesitas medirlas, es decir, compararlas con

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

aprende matemáticas!

aprende matemáticas! aprende matemáticas! Competencia clave: matemáticas nivel Cuaderno de Trabajo Las Medidas Manual de autoaprendizaje Cuaderno Las Medidas . Las medidas Índice 1. Qué vas a aprender?. Evalúa tus conocimientos

Más detalles

GUÍA UNIDADES DE LONGITUD Y SUPERFICIE 5º BÁSICO NOMBRE ALUMNO/A CURSO

GUÍA UNIDADES DE LONGITUD Y SUPERFICIE 5º BÁSICO NOMBRE ALUMNO/A CURSO GUÍA UNIDADES DE LONGITUD Y SUPERFICIE 5º BÁSICO NOMBRE ALUMNO/A CURSO NOMBRE PROFESORA : Ruth Contreras (colaboración Nataly Herrera) Objetivo de aprendizaje: Medir longitudes con unidades estandarizadas

Más detalles

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso:

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso: GEOMETRIA 8 AÑO 2011 1 GUÍA DE APOYO AL TEMA : GEOMETRÍA Prof. Juan Schuchhardt E. Nombre:.Curso: UNIDAD #4 GEOMETRIA Tema # 2: Cuerpos geométricos En esta unidad aprenderás a: Identificar cuerpos poliédricos,

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN Grdo 11 Tller # 5 Nivel I M. C. ESCHER Un de ls obrs más conocids del rtist gráfico holndés M. Escher es l litogrfí

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

MAGNITUDES FÍSICAS Y CONVERSIÓN DE UNIDADES DE MEDIDA

MAGNITUDES FÍSICAS Y CONVERSIÓN DE UNIDADES DE MEDIDA TEXTO Nº MAGNITUDES FÍSICAS Y CONVERSIÓN DE UNIDADES DE MEDIDA Conceptos Básicos Ejercicios Resueltos Ejercicios Propuestos Edict Arrigd D. Victor Perlt A Diciembre 008 Sede Mipú, Sntigo de Chile Introducción

Más detalles

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización PROGRAMACIONES DE AULA 4º MATEMÁTICAS Unidad 0. Números y operaciones Números de hasta cinco cifras. Comparación de números. Tablas de multiplicar. Multiplicación y sus términos. División y sus términos.

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base =

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base = PÁGINA 09 Pá. 1 Prctic Desrrollos y áres 1 Dibuj el desrrollo plno y clcul el áre totl de los siuientes cuerpos eométricos: ) b) 1 cm 1 4 cm ) 19 6 6 6 10 6 Hllmos l ltur de l bse: 6 = + 5 8 36 = + 5 8

Más detalles

Unidad II. Perímetro, área y volumen

Unidad II. Perímetro, área y volumen Perímetro, área y volumen Unidad II Al estudiar esta unidad usted podrá: Conocer las unidades de medición más comunes en el campo. Medir con distintos instrumentos y en diferentes unidades de distancias

Más detalles

Cuerpos geométricos: poliedros

Cuerpos geométricos: poliedros Cuerpos geométricos: poliedros Viajar desde la geometría en el plano hacia un espacio tridimensional, donde se insertan los cuerpos geométricos, nos acerca al mundo real. En el proceso de fabricación de

Más detalles

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014 GUÍA DOCENTE DE DERECHO MERCANTIL Curso 2013-2014 1 TITULACIÓN: GRADO ADE GUÍA DE DOCENTE DE LA ASIGNATURA: DERECHO MERCANTIL Coordindor: Césr Tpis. I.- Identificción de l signtur: Tipo Mteri Periodo de

Más detalles

Nuestro sistema de numeración... 244. La numeración romana... 246. La jerarquía en las operaciones combinadas... 248. Las potencias...

Nuestro sistema de numeración... 244. La numeración romana... 246. La jerarquía en las operaciones combinadas... 248. Las potencias... Preparo 6.º Índice Nuestro sistema de numeración... 244 La numeración romana... 246 La jerarquía en las operaciones combinadas... 248 Las potencias... 250 Cuadrados y cubos... 252 Los múltiplos de un

Más detalles

Sistema Métrico Decimal

Sistema Métrico Decimal 826464 _ 0315-0328.qxd 12/2/0 09:56 Página 315 Sistema Métrico Decimal INTRODUCCIÓN El conocimiento del sistema de numeración decimal, la potenciación y las operaciones de multiplicación y división por

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF?

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF? 1 Bloque 1 Problem 1. Un niño es conectdo, después de un espirción norml, un bols conteniendo 2 litros de 8% He, 92% O 2. Respir de l bols hst que l mezcl es complet, y en ese momento l concentrción de

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos.

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos. Protección de forjdos de hormigón con Igniplster. Resistenci l fuego 60, 90, 0 y 80 minutos. Ensyo: LICOF - 56/0 0.06 Dtos técnicos: Forjdo de hormigón. Armdur de cero. Igniplster plicdo por proyección

Más detalles

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL SISTEMA MÉTRICO DECIMAL Unidades de longitud. Unidades de capacidad. Unidades de masa. Unidades de superficie. Unidades de volumen. Relación entre las distintas unidades. 1.- Unidades de Longitud (1) La

Más detalles

Unidad III. Perímetro, diámetro y área

Unidad III. Perímetro, diámetro y área Perímetro, diámetro y área Unidad III En esta unidad usted aprenderá a: Calcular la longitud del contorno de una figura, lo que se llama perímetro. Medir terrenos y planos. Calcular la cantidad de material

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

2º ESO BLOQUE: TÉCNICAS DE EXPRESIÓN Y COMUNICACIÓN HERRAMIENTAS DE DIBUJO

2º ESO BLOQUE: TÉCNICAS DE EXPRESIÓN Y COMUNICACIÓN HERRAMIENTAS DE DIBUJO 2º ESO BLOQUE: TÉCNICAS DE EXPRESIÓN Y COMUNICACIÓN HERRAMIENTAS DE DIBUJO I. INTRODUCCIÓN El DIBUJO es una forma de comunicación, es decir, una forma de expresar tus ideas para que otras personas puedan

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS 14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 14.1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. a) b) 6 6 6 5 1 a) El cuerpo es un cubo: A 6a 6 6 6

Más detalles

Volumen de los cuerpos geométricos.

Volumen de los cuerpos geométricos. 10 Volumen de los cuerpos geométricos. Objetivos En esta quincena aprenderás a: Comprender el concepto de medida del volumen y conocer y manejar las unidades de medida del S.M.D. Obtener y aplicar expresiones

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

FRACCIONES Y PORCENTAJES

FRACCIONES Y PORCENTAJES DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 0 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de FRACCIONES Y PORCENTAJES Responsable de su elaboración:

Más detalles

Dibuja figuras tridimensionales (páginas 514 517)

Dibuja figuras tridimensionales (páginas 514 517) A NOMRE FECHA PERÍODO Dibuja figuras tridimensionales (páginas 514 517) Las figuras tridimensionales se llaman sólidos. Puedes usar un dibujo en perspectiva para mostrar las tres dimensiones de un sólido

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

3 Sistemas de cálculo, unidades y operaciones

3 Sistemas de cálculo, unidades y operaciones 3 Sistemas de cálculo, unidades y operaciones El fontanero debe poder calcular la cantidad de tubos, de diferentes diámetors, que necesitará para hacer una instalación. Tubería de PVC Tubería de cobre

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

TEMA 9: LAS MEDIDAS. TEOREMA DE PITÁGORAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 9: LAS MEDIDAS. TEOREMA DE PITÁGORAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 9: LAS MEDIDAS. TEOREMA DE PITÁGORAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. Curso 2011-2012 Consejería de Educación Tema 11: LA MEDIDA.

Más detalles

Guía de Matemáticas Segundo Grado

Guía de Matemáticas Segundo Grado Guía de Matemáticas Segundo Grado 1 A cuántos gramos equivale una libra? a) 0022 b) 022 c) 2020 d) 22 2 A cuántos centímetros equivale una pulgada? a) 2.54 cm b) 2.5 cm c) 2 cm d) 1 cm 3 A cuántos kilómetros

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

SÍLABO DEL CURSO DE RECEPCIÓN Y RESERVA HOTELERA

SÍLABO DEL CURSO DE RECEPCIÓN Y RESERVA HOTELERA SÍLABO DEL CURSO DE RECEPCIÓN Y RESERVA HOTELERA I. INFORMACIÓN GENERAL: 1.1 Fcultd: Negocios 1. Crrer Profesionl: Administrción y Servicios Turísticos 1.3 Deprtmento: ------------------ 1.4 Requisito:

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA Vicerrectordo de Ordención Acdémic GUÍA DOCENTE DE LA ASIGNATURA G409 - Fundmentos de Computción Grdo en Ingenierí Eléctric Básic. Curso 1 Curso Acdémico 2015-2016 Págin 1 Vicerrectordo de Ordención Acdémic

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

INTEGRADORA I. El profesor solicita a Federico que realice las siguientes actividades:

INTEGRADORA I. El profesor solicita a Federico que realice las siguientes actividades: Olimpid Ncionl de Construcciones 2014 Instnci escolr Fech: 18 de setiembre de 2014 INTEGRADORA I Estimdos prticipntes Como futuros Mestros Myores de Obrs están conformndo un equipo de trbjo. Entre todos

Más detalles

Las unidades de medida de longitud

Las unidades de medida de longitud Las unidades de medida de longitud Para comunicar a otros las características del entorno, el ser humano inventó primero símbolos y códigos. Luego necesitó unidades de medidas para comunicarse sin errores.

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

Unidad 8. Primaria Matemáticas 5 Programación

Unidad 8. Primaria Matemáticas 5 Programación Primaria Matemáticas 5 Programación Unidad 8 1. Presentación de la unidad 2. Objetivos didácticos 3. Contenidos de la unidad/criterios de evaluación/estándares de aprendizaje evaluables 4. Selección de

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

GUÍA DOCENTE DE MARKETING TURISTICO. Curso 2013-2014

GUÍA DOCENTE DE MARKETING TURISTICO. Curso 2013-2014 GUÍA DOCENTE DE MARKETING TURISTICO Curso 2013-2014 1 TITULACIÓN: GRADO TURISMO GUÍA DE DOCENTE DE LA ASIGNATURA: MARKETING TURISTICO Coordindor: Césr Tpis. I.- Identificción de l signtur: Tipo Mteri Periodo

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

Depósito Legal: M -19598-2007 Imprime Din Impresores. Información sobre los trabajos y actividades con riesgo de exposición al amianto

Depósito Legal: M -19598-2007 Imprime Din Impresores. Información sobre los trabajos y actividades con riesgo de exposición al amianto Depósito Legl: M -19598-2007 Imprime Din Impresores Informción sobre los trbjos y ctividdes con riesgo de exposición l minto Est versión digitl de l obr impres form prte de l Bibliotec Virtul de l Comunidd

Más detalles

Menú degustación: Miscelánea de ejercicios resueltos

Menú degustación: Miscelánea de ejercicios resueltos Menú degustación: Miscelánea de ejercicios resueltos 1. APERITIVO: Proporcionalidad Si el 01/02/2011 anotáis por la mañana la lectura de 01,0 m de consumo de agua y el 15/02/2011 por la mañana anotáis

Más detalles

Transformaciones lineales en 3D

Transformaciones lineales en 3D Tem II Trnsformciones lineles en 3D Ricrdo Rmos Colbordores: Luis Jiméne de l Fuente, Alberto Góme Vicente, Jesús Moisés Peláe Nvrro, Emilio Gonále Gonále, Igncio Colom Gonále Antes de comenr estudir el

Más detalles

SÍLABO DEL CURSO DE VISIÓN DE INGENIERÍA INDUSTRIAL

SÍLABO DEL CURSO DE VISIÓN DE INGENIERÍA INDUSTRIAL SÍLABO DEL CURSO DE VISIÓN DE INGENIERÍA INDUSTRIAL I. INFORMACIÓN GENERAL 1.1 Fcultd Ingenierí. 1.2 Crrer Profesionl Ingenierí Industril 1.3 Deprtmento ---- 1.4 Requisito --- 1.5 Periodo Lectivo 2014-1

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

-X para su consideración

-X para su consideración DECANATO DE ESTUDIANTES Oficin de l Decm c.j Universidd de Puerto Rico Decnto de Estudintes HOJA DE TRÁMITE 6 de junio de 2005 Prof. Crmen Rffucci Secretri Sendo Acdémico WR-Recinto de Rio Piedrs /LL.&&dd

Más detalles