JOHN ERICSSON ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "JOHN ERICSSON ( )"

Transcripción

1 FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON ( ) Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera cuatro en dos horas y en el orden que usted desee. Se permite la consulta de cualquier documento propio. 1. Se tiene un tubo en forma de U. En un ramal hay solamente mercurio (δ = 13.6) y en el otro hay mercurio y agua. La diferencia de altura de los niveles de mercurio en los ramales es de 1 (cm). Cuál es la altura de aceite (δ = 0.9), en (cm), que debe agregarse por el ramal que sólo tiene mercurio para que el nivel de éste en los dos ramales sea el mismo? 2. En un recipiente adiabático hay 10 (kg) de hielo a 10 ( o C). Se inyectan al recinto 2.5 (kg) de vapor a 100 ( o C). Diga cuál es la cantidad de energía en (kcal) que podría obtenerse de este sistema, si después de alcanzar el equilibrio térmico se le enfriara a 0 (ºC). Tome para el agua: c hielo = 0.5 (cal / gδºc), c liq = 1(cal / gδºc), λ f = 80 (cal / g), λ v = 540 (cal / g). 3. La central hidroeléctrica Pangue, que se ubicará en el río Bío-Bío, cerca de la costa, tiene una caída bruta de 100 (m) y un caudal de diseño de 500 (m 3 / s). Si la potencia eléctrica generada será de 450 (MW), cuál será la eficiencia de la central? 4. Un arreglo cilindro-pistón comprime aire de (ºC) y (kpa) hasta (kpa). La compresión sigue un proceso reversible definido por la relación PV 1.3 = C. Obtenga el valor de la capacidad térmica específica politrópica promedio en (kj / kgδk). 5. En una turbina se expanden politrópicamente 4540 (kg / min) de aire, desde (kpa) y (ºC), hasta (kpa). Calcule la potencia en (MW). Tome el exponente politrópico como Para el aire: k = 1.4, R p = (kj / kgδk). 6. En una nevera, que funciona como una máquina de Carnot recorriendo el ciclo por vía reversible y en sentido contrario, se trata de fabricar 5 (kg) de hielo cada hora, partiendo de agua a 0 (ºC). El ambiente exterior está a 27 (ºC). Calcular la potencia real, en (W), si el rendimiento de la operación es el 75 (%). Para el hielo λ f = 80 (cal / g), 7. Una máquina de 48 (%) de eficiencia térmica trabaja con un ciclo de Otto estándar de aire. El aire está a 25 (ºC) y 1 (bar) al comienzo de la compresión isoentrópica. Obtenga la temperatura en (ºC) y la presión del aire, en bares, al final de dicha compresión. Para el aire: k = 1.4, R p = (kj / kgδk).

2 FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO JUEVES 3 DE DICIEMBRE DE 2009, OLIVER EVANS ( ) Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera cuatro en dos horas y en el orden que usted desee. Se permite la consulta de cualquier documento propio. 8. Se tiene un tubo en forma de U. En un ramal hay solamente mercurio (δ = 13.6) y en el otro hay mercurio y agua. La diferencia de altura de los niveles de mercurio en los ramales es de 0.01 (m). Cuál es la altura de aceite (δ = 0.9), en (cm), que debe agregarse por el ramal que sólo tiene mercurio para que el nivel de éste en los dos ramales sea el mismo? 9. En un recipiente adiabático hay (g) de hielo a 10 ( o C). Se inyectan al recinto (g) de vapor a 100 ( o C). Diga cuál es la cantidad de energía en (kcal) que podría obtenerse de este sistema, si después de alcanzar el equilibrio térmico se le enfriara a (K). Tome para el agua: c hielo = 0.5 (cal / gδºc), c liq = 1(cal / gδºc), λ f = 80 (cal / g), λ v = 540 (cal / g). 10. La central hidroeléctrica Pangue, que se ubicará en el río Bío-Bío, cerca de la costa, tiene una caída bruta de 100 (m) y un caudal de diseño de (m 3 / min). Si la potencia eléctrica generada será de 450 (MW), cuál será la eficiencia de la central? 11. Un arreglo cilindro-pistón comprime aire de (ºC) y (kpa) hasta (kpa). La compresión sigue un proceso reversible definido por la relación PV 1.3 = C. Obtenga el valor de la capacidad térmica específica politrópica promedio en (kj / kgδk). 12. En una turbina se expanden politrópicamente (kg / h) de aire, desde (kpa) y (ºC), hasta (kpa). Calcule la potencia en (MW). Tome el exponente politrópico como Para el aire: k = 1.4, R p = (kj / kgδk). 13. En una nevera, que funciona como una máquina de Carnot recorriendo el ciclo por vía reversible y en sentido contrario, se trata de fabricar 5 (kg) de hielo cada hora, partiendo de agua a 0 (ºC). El ambiente exterior está a 27 (ºC). Calcular la potencia real, en (W), si el rendimiento de la operación es el 75 (%). Para el hielo λ f = 80 (cal / g), 14. Una máquina de 48 (%) de eficiencia térmica trabaja con un ciclo de Otto estándar de aire. El aire está a 25 (ºC) y 1 (bar) al comienzo de la compresión isoentrópica. Obtenga la temperatura en (ºC) y la presión del aire, en bares, al final de dicha compresión. Para el aire: k = 1.4, R p = (kj / kgδk).

3 FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON ( ) OLIVER EVANS ( ) RESPUESTAS (1) y (8): Tubo en forma de U: Inicio: Δh Hg = 1 (cm), Final: Δh Hg = 0 (cm), δ Hg = 13.6, δ ac = 0.9, h ac =? (cm) Al inicio: P A = P B P atm + P Hg A = P atm + P Hg B + P agua P agua = P Hg A - P Hg B ρ agua gh agua = ρ Hg g (h Hg A - h Hg B ) ρ agua gh agua = ρ Hg g Δh Hg h agua = δ Hg Δh Hg h agua = (m) Al final: P C = P D P atm + P ac + P Hg C = P agua + P Hg D + P atm P ac + P Hg C = P agua + P Hg D P ac = P agua + P Hg D - P Hg C ρ ac gh ac = ρ agua gh agua + ρ Hg gδh Hg Como Δh Hg = 0 ρ ac h ac = ρ agua h agua h ac = (ρ agua / ρ ac ) / h agua h ac = h agua / δ ac h ac = (m) h ac = (cm)

4 (2) y (9): Recipiente adiabático: m h = 10 (kg), T i h = - 10 ( o C), m v = 2.5 (kg), T i v = 100 ( o C), T fin = 0 ( o C), Para el agua: c h = 0.5 (cal / gδºc), c liq = 1 (cal / gδºc), λ f = 80 (cal / g), λ v = 540 (cal / g). T eq =? ( o C), ΔE =? (kcal) Para la determinación de la situación de equilibrio (composición y temperatura): {Q 1 } = cantidad de calor necesario para calentar y fundir todo el hielo. {Q 1 } = m h c h ΔT h + m h λ f {Q 1 } = m h (c h ΔT h + λ f ) {Q 1 } = 850,000 (cal) {Q 2 } = Cantidad de calor que aporta el vapor de agua al condensarse completamente: {Q 2 } = m v λ v {Q 2 } = 1,350,000 (cal) Como {Q 2 } > {Q 1 } Al condensarse todo el vapor de agua, se funde todo el hielo y, además, sobra calor para calentar el agua líquida que proviene de la fusión del hielo. Se calcula {Q 3 } = cantidad de calor que necesita el hielo para pasar de 10 ( o C) a agua líquida a 100 ( o C). {Q 3 } = {Q 1 } + m h c liq ΔT ΔT = 100 ( o C) {Q 3 } = (cal) Como {Q 3 } > {Q 2 } La condensación completa del vapor es suficiente para fundir el hielo, pero no es suficiente para que en el equilibrio se tenga agua líquida a 100 ( o C). Entonces, en el equilibrio se tiene agua líquida a una temperatura entre 0 ( o C) y 100 ( o C). Para determinar la temperatura de equilibrio se lleva a cabo un balance de calor: {Q 1 } + m h c liq t eq = {Q 2 } + m v c liq [100 ( o C) - t eq ] t eq = [{Q 1 } - {Q 2 } - 100m v c liq ] / [- c liq (m h + m v )] t eq = 60 ( o C) En el equilibrio se tienen 12.5 (kg) de agua líquida a 60 ( o C). Así la cantidad de energía que podría obtenerse al llevar el sistema a 0 ( o C) es: ΔE = m liq c liq (t fin t eq ) ΔE = (kcal) (2) y (10): Central hidroeléctrica: h = 100 (m), G v = 500 (m 3 / s), {Ẇ} real = 450 (MW), ρ agua = 1000 (kg / m 3 ), g = 9.81 (m / s 2 ), η =? η = {Ẇ} real / {Ẇ} teórica Por conservación de energía: {Ẇ} teórica = ΔĖ p ΔĖ p = ṁgh ṁ = ρ agua G v ΔĖ p = ρ agua G v gh {Ẇ} teórica = (MW) η = 91.7 (%)

5 (3) y (11): Arreglo cilindro-pistón con aire: T 1 = (ºC), P 1 = (kpa), P 2 = (kpa). relación PV 1.3 = C, c n =? (kj / kgδk). De la primera ley de la Termodinámica para un sistema cerrado: {δq} + {δw} = du {δq} = du {δw} Además: {δw} = - PdV du = c v dt Por lo tanto: {δq} = c V dt + PdV De la relación: PV n = C = P 1 V 1 n = P 2 V 2 n P = CV -n {W} = P dv {W} = CV -n dv {W} = C [ (V -n+1 ) / (-n+1) ] {W} = (CV 2 CV 1 ) / () {W} = (P 2 V 2n V 2 P 1 V 1n V 1 ) / () {W} = (P 2 V 2 - P 1 V 1 ) / () {W} = (P 1 V 1 / ) [P 2 V 2 / P 1 V 1 1] {W} = (R p T 1 / ) [(P 2 /P 1 ) n-1/n -1] Entonces: {W} = (kj) Como {δq} = c V dt + PdV {Q} = c V (T 2 T 1 ) + PdV T 2 = T 1 (P 2 / P 1 ) n-1/n T 2 = (K) = (ºC) {Q} = (kj) Además: {δq} = c n dt Integrando: {Q} = c n (T 2 T 1 ) Y despejando: c n = {Q} / (T 2 T 1 ) c n = (kj / kgδk)

6 (4) y (12): Expansión politrópica de aire en una turbina: ṁ = 4540 (kg / min), P 1 = (kpa), T 1 = (ºC), P 2 = (kpa), n = Para el aire: k = 1.4, R p = (kj / kgδk), {Ẇ} =? (MW) De la primera ley de la termodinámica para sistemas abiertos: : {Ó} + {Ẇ} = ṁ 2 h 2 - ṁ 1 h 1 {Ẇ} = - {Ó} + ṁ 2 h 2 - ṁ 1 h 1 En régimen estacionario: ṁ 1 = ṁ 2 Así: {Ẇ} = - {Ó} + ṁ (h 2 - h 1 ) Además: (h 2 - h 1 ) = c p (T 2 T 1 ) {Ó} = ṁc n (T 2 T 1 ) c n = c v [(1 - k) / (1 n)] De la ecuación de Mayer: c v = R p / (k 1) c v = (kj / kgδk) c p = R p k / (k 1) c p = (kj / kgδk) Así: c n = (kj / kgδk) Para obtener T 2 : T 2 = T 1 (P 2 / P 1 ) (n-1)/n T 2 = (K) = (ºC) {Ẇ} = - ṁc n (T 2 T 1 ) + ṁc p (T 2 - T 1 ) {Ẇ} = (MW), sale (5) y (13): Nevera con ciclo de Carnot reversible en sentido inverso: ṁ h = 5 (kg / h), T f = 0 (ºC), Tc = 27 (ºC), η = 75 (%).,Para el hielo λ f = 80 (cal / g), {Ẇ} real =? (W) β = {Ó} Carnot / {Ẇ} Carnot = T f / (T c T f ) = {Ẇ} Carnot = {Ó} Carnot / β Sabemos que: {Ó} Carnot = {Q} / t {Q} = m h λ f Así: {Ẇ} Carnot = {Q} / βt = m h λ f / βt {Ẇ} Carnot = (W) {Ẇ} real = {Ẇ} Carnot / η {Ẇ} real = (W)

7 (6) y (14): Máquina que trabaja con el ciclo de Otto estándar de aire: T 1 = 25 (ºC), P 1 = 1 (bar), η = 48 (%). Para el aire: k = 1.4, R p = (kj / kgδk), T 2 =? (ºC), P 2 =? (bar), Para la compresión isoentrópica: η = 1 1 / R c k = 1 (1 / R c 0.4 ) R c 0.4 = R c = 5.13 V 1 / V 2 = 5.13 P 2 / P 1 = (V 1 / V 2 ) K P 2 = P 1 (V 1 / V 2 ) K P 2 = 9.87 (bar) T 2 / T 1 = (V 1 / V 2 ) K-1 T 2 = 573 (K) = 300 (ºC)

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

Ciclos de Aire Standard

Ciclos de Aire Standard Ciclos Termodinámicos p. 1/2 Ciclos de Aire Standard máquinas reciprocantes modelo de aire standard ciclo Otto ciclo Diesel ciclo Brayton Ciclos Termodinámicos p. 2/2 máquinas de combustión interna el

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD PROBLEMAS DE MÁQUINAS. SELECTIVIDAD 77.- El eje de salida de una máquina está girando a 2500 r.p.m. y se obtiene un par de 180 N m. Si el consumo horario de la máquina es de 0,5 10 6 KJ. Se pide: a) Determinar

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

Sistemas termodinámicos. Temperatura

Sistemas termodinámicos. Temperatura Sistemas termodinámicos. Temperatura 1. Se desea construir una escala termométrica que opere en grados Celsius, mediante una varilla que presenta una longitud de 5.00 cm a la temperatura de fusión del

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

TEMA 1b: BIOMECANICA - FLUIDOS

TEMA 1b: BIOMECANICA - FLUIDOS Curso: 00-0 TEMA b: BIOMECANICA - FLUIDOS De un iceberg sólo se ve el 0% http://www.corbisimages.com/ TEMA b: BIOMECANICA - FLUIDOS Los tiburones siempre están nadando porque al no tener vejiga natatoria

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

Ejercicios relacionados con líquidos y sólidos

Ejercicios relacionados con líquidos y sólidos Ejercicios relacionados con líquidos y sólidos. La presión de vapor del etanol es de 35,3 mmhg a 40 o C y 542,5 mmhg a 70 o C. Calcular el calor molar de vaporización y la presión del etanol a 50 o C.

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA TERMODINÁMICA QUÍMICA CLAVE DE MATERIA DEPARTAMENTO

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

EVANGELISTA TORRICELLI

EVANGELISTA TORRICELLI EVANGELISTA TORRICELLI (608-647).Matemático y físico italiano. Descubrió y determinó el valor de la presión atmosférica y en 643 inventó el barómetro. Una unidad de medida, el torr, utilizada en física

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

Propiedades de sustancias

Propiedades de sustancias Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

Tema 12 Termoquímica. Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad En qué dirección se produce? Reacciones Químicas

Tema 12 Termoquímica. Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad En qué dirección se produce? Reacciones Químicas Tema 1 Estequiometría Cuánto se produce? Cuánto reacciona? Tema 15 Equilibrio Cuándo se alcanza? Cómo modificarlo? Tema 12 Termoquímica Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

M del Carmen Maldonado Susano M del Carmen Maldonado Susano

M del Carmen Maldonado Susano M del Carmen Maldonado Susano Antecedentes Temperatura Es una propiedad de la materia que nos indica la energía molecular de un cuerpo. Energía Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos

Más detalles

UNIDAD VII TEMPERATURA Y DILATACIÓN

UNIDAD VII TEMPERATURA Y DILATACIÓN UNIDAD VII TEMPERATURA Y DILATACIÓN TEMPERATURA Expresión del nivel térmico de un cuerpo Un cuerpo con mucha temperatura tiene mucha cantidad de calor; sin embargo hay cuerpos como el mar con gran cantidad

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE ELECTRICIDAD Y CALOR HERMOSILLO, SONORA, JUNIO DEL 2005 1 ELECTRICIDAD Y CALOR Datos de Identificación Nombre de la Institución

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura EQUIVALENCIA CALOR-TRABAJO TRABAJO 1 TRABAJO Y SUS VARIEDADES Tipo de trabajo: δw Donde: Unidades δw (J) Expansión-compresión P op dv P op es la presión de oposición dv es el cambio de volumen Superficial

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. (CLAVE 1212) UNIDAD 1. INTRODUCCIÓN A LA TERMODINÁMICA 1.1 Definición, campo

Más detalles

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.

Más detalles

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario?

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario? Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temas 5. Segunda ley de la Termodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Facultad de Ciencias Fisicomatemáticas e Ingeniería VAPOR - EXERGÍA

Facultad de Ciencias Fisicomatemáticas e Ingeniería VAPOR - EXERGÍA Cátedra: Termodinámica - Ing. Civil e Ing. Ambiental Docente/s: Ing. José Contento / Ing. Jorge Rosasco Guía de trabajos prácticos Nº 6 VAPOR - EXERGÍA.- En un recipiente de paredes rígidas y adiabáticas,

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

67.20 TURBOMAQUINAS. TRABAJO PRACTICO No 1 1 era. parte

67.20 TURBOMAQUINAS. TRABAJO PRACTICO No 1 1 era. parte 67.20 TURBOMAQUINAS Hoja 1 / 2 TRABAJO PRACTICO No 1 1 era. parte Apellido y nombre: Número de padrón:. Consideraremos una turbina de gas de servicio pesado que funciona según un ciclo de BRAYTON real,

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

El Equilibrio Termodinámico. Tipos de Equilibrios.

El Equilibrio Termodinámico. Tipos de Equilibrios. TEMA 1.) CONCEPTOS BASICOS Sistema Termodinámico. Paredes. Tipos de Sistemas. Criterio de Signos. Estado Termodinámico. El Equilibrio Termodinámico. Tipos de Equilibrios. Variables Termodinámicas. Procesos

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

CUESTIONARIO DE PREPARACIÓN DE EXAMENES DEL CURSO DE FISICA II

CUESTIONARIO DE PREPARACIÓN DE EXAMENES DEL CURSO DE FISICA II CUESTIONARIO DE PREPARACIÓN DE EXAMENES DEL CURSO DE FISICA II PRINCIPIOS DE ARQUIMEDES Y PASCAL PREGUNTAS 1.- Cuál es la definición y ecuación de la densidad de un cuerpo o sustancia? 2.- Cómo se obtiene

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 6, Opción B Reserva 3, Ejercicio

Más detalles

PRÁCTICA 6: CAPACIDAD TÉRMICA

PRÁCTICA 6: CAPACIDAD TÉRMICA PRÁCTICA 6: CAPACIDAD TÉRMICA Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica ObjeMvo general Comprender

Más detalles

Tema 2. Primer Principio

Tema 2. Primer Principio ema. rimer rincipio ROBLEMAS EJEMLO.- Un sistema cerrado, inicialmente en reposo sobre la tierra, es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Modulo III: Termodinámica

Modulo III: Termodinámica Modulo III: Termodinámica 1. Temperatura 2. Calor y cambios de estado 3. Primer Principio de la Termodinámica 4. Segundo Principio de la Termodinámica 1.1 Concepto macroscópico de Temperatura 1.2 Dilatación

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo.

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. N 2 g 3 H 2 g 2 NH 3 g 2 NH 3 g N 2 g 3 H 2 g concentración H 2 N 2 NH 3 concentración NH 3 H 2

Más detalles

TRABAJO PRÁCTICO. Estudio de la compresión y expansión de gases ideales, en procesos adiabáticos e isotérmicos

TRABAJO PRÁCTICO. Estudio de la compresión y expansión de gases ideales, en procesos adiabáticos e isotérmicos FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II - Termodinámica TRABAJO PRÁCTICO Estudio de la compresión y expansión de gases

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

Problemas resueltos de termoquímica.

Problemas resueltos de termoquímica. Problemas resueltos de termoquímica. 12 de noviembre de 2014 1. Variables termodinámicas. 1. Calcula el volumen molar en ml/mol del H 2 O a 1 atm y 100 C si su densidad es ρ = 0,958 gr/cm 3. V m = V/P

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 6, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio

Más detalles

Ingeniería en Alimentos Fenómenos de Transporte Ing. Mag. Myriam E. Villarreal

Ingeniería en Alimentos Fenómenos de Transporte Ing. Mag. Myriam E. Villarreal Ingeniería en Alimentos Ing. Mag. Myriam E. Villarreal 111 ENERGÍA DE TRANICIÓN (en moimiento de un sistema a otro) ALMACENADA (asociada con una masa) Escribiendo la 1º Ley de la Termodinámica en forma

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno

Más detalles

Ciclos de Potencia Curso 2007. Ejercicios

Ciclos de Potencia Curso 2007. Ejercicios Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

Termodinámica. Carrera: QUC 0535

Termodinámica. Carrera: QUC 0535 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Termodinámica Ingeniería Química QUC 0535 4 2 10 2. HISTORIA DEL PROGRAMA Lugar

Más detalles

Diagrama de fases de una sustancia pura: el agua

Diagrama de fases de una sustancia pura: el agua Diagrama de fases de una sustancia pura: el agua Apellidos, nombre Departamento Centro Lorena Atarés Huerta (loathue@tal.upv.es) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica

Más detalles

Tema 8: Temperatura y Principio Cero

Tema 8: Temperatura y Principio Cero 1/30 Tema 8: Temperatura y Principio Cero Fátima Masot Conde Ing. Industrial 2007/08 Tema 8: Temperatura y Principio Cero 2/30 Índice: 1. Introducción. 2. Temperatura y Ley Cero. 3. Termómetros y escalas.

Más detalles

Química 2º Bach. Recuperación 1ª Evaluación 13/01/05

Química 2º Bach. Recuperación 1ª Evaluación 13/01/05 Química º Bach. Recuperación 1ª Evaluación 13/1/5 DEPARTAMENT DE FÍSIA E QUÍMIA Nombre: 1. alcula a partir de qué temperatura será espontánea la reacción de descomposición del tetraóxido de dinitrógeno

Más detalles

XVII EXPOSICION INTERNACIONAL DEL GAS

XVII EXPOSICION INTERNACIONAL DEL GAS XVII EXPOSICION INTERNACIONAL DEL GAS EL GAS DE CAMPO Y SUS APLICACIONES EN MOTORES DE COMBUSTION INTERNA UNA BREVE INTRODUCCION Con el Crecimiento de la Demanda Energética Mundial, el hombre se ha visto

Más detalles

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO I. DATOS GENERALES: INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO 1.1 ASIGNATURA : Termodinámica 1.2 CÓDIGO : 3301-33212 1.3 PRE-REQUISITO : 3301-33108 y 3301-33111 1.4 HORAS SEMANALES : 05 1.4.1 TEORÍA

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria mayo de 2006 TECNOLOGÍA INDUSTRIAL

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria mayo de 2006 TECNOLOGÍA INDUSTRIAL Convocatoria mayo de 2006 1. El petróleo es un recurso energético utilizado actualmente. a. Cuál es su procedencia?. b. Qué productos se obtienen de su destilación fraccionada?. 2. Qué pruebas harías pasar

Más detalles

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica.

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica. DRAFT Trabajo, Calor y Primer Principio de la Termodinámica. J.V. Alvarez Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid. 28049 Madrid, Spain. (Dated: October 10, 2007)

Más detalles

Calor y Temperatura. Podemos hacer de ella un concepto preciso y cuantitativo (o sea definirla como magnitud) a partir de otros dos conceptos:

Calor y Temperatura. Podemos hacer de ella un concepto preciso y cuantitativo (o sea definirla como magnitud) a partir de otros dos conceptos: TERMODINÁMICA Calor y Temperatura Nuestro concepto intuitivo de temperatura la asocia con cuán caliente o frío sentimos un objeto, el ambiente, etc. Sin embargo nuestros sentidos no son confiables en este

Más detalles

FÍSICA II. Guía De Problemas Nº4: Energía

FÍSICA II. Guía De Problemas Nº4: Energía Universidad Nacional del Nordeste Facultad de Ingeniería Deartamento de Físico-uímica/Cátedra Física II FÍSICA II Guía De Problemas Nº4: Energía 1 PROBLEMAS RESUELTOS 1 Hallar la energía requerida ara

Más detalles

Procesos termodinámicos

Procesos termodinámicos Procesos termodinámicos Objetivo El objetivo de esta propuesta es el estudio experimental de distintos procesos termodínamicos simples para un gas ideal (aire). En particular se estudiarán procesos adiabáticos,

Más detalles

TEMA 13: Termodinámica

TEMA 13: Termodinámica QUÍMICA I TEMA 13: Termodinámica Tecnólogo Minero Temario ü Procesos espontáneos ü Entropía ü Segunda Ley de la Termodinámica ü Energía libre de Gibbs ü Energía libre y equilibrio químico Procesos espontáneos

Más detalles

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante.

Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento constante. Física y Química 4º ESO Energía Térmica página 1 de 7 CONCEPTO DE CALOR Y TEMPERATURA Según el modelo cinético molecular de la materia, sabemos que las partículas que la forman están sometidas a un movimiento

Más detalles

Práctico de Física Térmica 2 da Parte

Práctico de Física Térmica 2 da Parte Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en

Más detalles

Capítulo 4 Segunda ley de la Termodinámica y Entropia

Capítulo 4 Segunda ley de la Termodinámica y Entropia Capítulo 4 Segunda ley de la Termodinámica y Entropia Índice 4.1. Segunda ley de la termodinámica.............................. 78 4.1.1. Conceptos fundamentales............................... 79 4.1.2.

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez I.- TURBINA DE GAS CICLOS TERMODINÁMICOS IDEALES I.1.- CARACTERISTICAS TÉCNICAS Y EMPLEO

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles