UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES"

Transcripción

1 UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES 1. Introducción al Amplificador Operacional El término amplificador operacional, o OPAMP en forma abreviada, fue acuñado por John R. Ragazzini en 1947, para denotar un tipo especial de amplificador que, con la selección adecuada de sus componentes externos, podía configurarse para diversas operaciones tales como la de amplificar, sumar, restar, derivar e integrar. Las primeras aplicaciones de los OPAMPS tuvieron lugar en las computadoras analógicas, más en específico en la resolución de ecuaciones diferenciales y algunas otras operaciones matemáticas que en su momento fueran muy complejas para ser calculadas por una persona. En un inicio los OPAMPS fueron construidos con tubos de vacío, por lo tanto, eran voluminosos, grandes consumidores de energía y caros. El primer gran avance que tuvieron estos dispositivos fue con la creación del transistor bipolar de unión (BJT, por sus siglas en inglés), sin embargo el verdadero cambio se logró con la construcción del primer amplificador operacional de circuito integrado, cuyos elementos se fabricaron en forma monolítica a partir de un chip de silicio del tamaño de una cabeza de alfiler. Este primer dispositivo fue creado en las instalaciones de Fairchild Semiconductor Corporation, al inicio de la década de En el año de 1968 Fairchild introdujo al mercado el OPAMP µa741 que se convirtió en un estándar en la industria. Desde ese momento, el número de familias y fabricantes de OPAMPS fue creciendo de manera considerable. Aunque, hasta nuestros días el OPAMP 741 sigue siendo uno de los modelos más populares para las aplicaciones en electrónica analógica así como para la enseñanza de estos dispositivos tanto en teoría como en prácticas de laboratorio. %2Fstamp.jsp%3Ftp%3D%26arnumber%3D315199&denyReason=- 134&arnumber=315199&productsMatched=null&userType=mem Finalmente en el 2013, STMicroelectronics ha presentado una nueva generación de amplificadores operacionales miniaturizados que aporta estabilidad a largo plazo y mínimo consumo para facilitar

2 su incorporación en equipos alimentados por batería o energía solar. La serie TSX56 se beneficia de un proceso avanzado de fabricación CMOS 16V que ayuda a aumentar la precisión y simplificar el diseño de sensores en numerosas aplicaciones, desde electrónica de automoción a edificios inteligentes y controles industriales. Los amplificadores TSX561 (single), TSX562 (dual) y TSX564 (quad) se caracterizan por protección ante descarga electrostática (ESD) de hasta 4KV, tensión offset de entrada de hasta 600 µv, corriente de polarización de entrada de 1 pa y corriente en reposo de 240 µa (a 5 V), y temperatura operativa de 40 a +125 C. Estos modelos para acondicionar señales de sensor se encuentran disponibles en encapsulados SOT23-5 (TSX561), DFN8 de 2 x 2 mm y MiniSO-8 (TSX562) y QFN16 de 3 x 3 mm y TSSOP14 (TSX564) y operan sobre un rango de tensión de alimentación de 3 a 16 V, posibilitando su uso con una gran variedad de tensiones estándares, como 3, 5, 12 o ±5 V Aspectos Generales del Amplificador Operacional Símbolo del circuito y terminales eléctricas de un OPAMP El amplificador operacional se ha estado utilizando durante muchos años y, es aún un excelente dispositivo para aplicaciones de electrónica analógica y analógica-digital, ya que no resulta caro, es resistente y se consigue fácilmente. El símbolo del amplificador operacional que se muestra en la figura 1.1 es un triángulo que apunta hacia la dirección del flujo de señal. El número de identificación de parte (NIP) designa al amplificador operacional con características específicas. El amplificador operacional también puede codificarse en un esquema o diagrama de circuito con un número de referencia, por ejemplo U7, IC 14, etc. Después el número de identificación de parte se pone dentro de la lista de partes del esquema del circuito. Todos los amplificadores operacionales poseen por lo menos cinco terminales: (a) la terminal de la fuente de poder positiva, V CC o V S+, en la terminal 7; (b) la terminal de la fuente de alimentación negativa, V EE o V S en la terminal 4; (c) la terminal de salida 6; (d) la terminal de la entrada inversora (-) en la terminal 2, y (e) la terminal de la entrada no inversora (+) en la terminal 3. Algunos amplificadores operacionales de propósito general cuentan con más terminales especializadas (ver figura 1.2).. Figura Símbolo eléctrico de un OPAMP de propósito general.

3 Figura Terminales de un OPAMP de uso general y su distribución. Aplicaciones de los OPAMPS El OPAMP es el dispositivo más básico para aplicaciones analógicas, puede realizar operaciones fundamentales tales como: amplificación, aislamiento, inversión de señal, desplazamiento de señal, suma o resta. Algunas aplicaciones que son más complejas que también se pueden realizar con los OPAMPS son: 1. Acondicionamiento de señales (instrumentación). 2. Procesos de monitoreo y control. 3. Filtros. 4. Generadores de señales. 5. Osciladores. 6. Conversión analógica-digital. 7. Control de servo sistemas. 8. Procesamiento de señales. 9. Comunicaciones. 10. Medicina. Características de un OPAMP ideal A pesar de que las características del OPAMP serán evaluadas cuantitativamente, en este momento se pueden enlistar las características ideales del OPAMP. 1. Impedancia de entrada infinita. 2. Impedancia de salida cero. 3. Ganancia de tensión en modo diferencial infinita. 4. Ganancia de tensión en modo común cero. 5. Corriente de entrada nula. 6. Ancho de banda infinito. 7. Ausencia de desviación en sus características con respecto a la temperatura. 8. No introduce ruido.

4 Circuitos internos simplificados en un amplificador operacional para propósito general Los amplificadores operacionales para propósito general son sistemas de etapas múltiples. Como se puede observar en la figura 1.3, un OPAMP básico consiste en una etapa de entrada que tiene dos terminales; una etapa de salida que cuenta con una terminal de salida; y una etapa intermedia, mediante la que se conecta la señal de salida de la entrada con la terminal de entrada de la etapa de salida. Una fuente bipolar de CD se conecta a las terminales de alimentación del amplificador operacional y, por lo tanto, a cada una de sus etapas internas. Dependiendo de la aplicación de que se trate, las señales de entrada V + y V -, son positivas, negativas o cero. El voltaje de salida obtenido se mide por medio de la resistencia de carga R L, la cual se conecta entre la terminal de salida del amplificador operacional y la tierra. El voltaje de salida, V O, depende de las señales de entrada y de las características del amplificador operacional. Figura Diagrama interno simplificado de un OPAMP de propósito general. Etapa de entrada: amplificador diferencial La etapa de entrada del amplificador operacional de la figura 1.4 se conoce como amplificador diferencial. El amplificador diferencial, está construido por transistores bipolares y proporciona una alta ganancia a señales diferentes o diferenciales y baja ganancia con señales aplicadas simultáneamente a ambas entradas o señales en modo común. Una señal en modo común se produce cuando una señal se aplica a ambas entradas lo que produce que dichas entradas tengan la misma fase y amplitud. La etapa de entrada es la parte más importante de un OPAMP porque en esta se establece la impedancia de entrada y se minimiza la respuesta en modo común y los voltajes de desajuste. El funcionamiento de la etapa de entrada se explica de la siguiente forma: en la figura 1.4 muestra un amplificador diferencial el cual ésta compuesta de dos transistores BJT (Q1 y Q2), dos resistencias R1 y R2, dos fuentes de alimentación V + y V -. Se observa que los transistores están unidos por el emisor. En la unión de los emisores se forma un nodo donde se observa que entra la corriente I3 y las corrientes I2 e I1 salen del nodo, por lo tanto se cumple la ecuación 1.1 I3 = I1 + I2 (1.1)

5 Dónde: I3 es una corriente constante debido a la fuente CCS I1 es la corriente de colector a emisor del transistor Q1 I2 es la corriente de colector a emisor del transistor Q2 V + Polarización CD Polarización CD I1 I2 CCS I3 V - Figura Diagrama simplificado de un amplificador diferencial con transistores BJT. Es claro que la corriente de colector a emisor para cada transistor no es exactamente la misma entre los transistores, aunque si podemos considerar que las corrientes de base que se requieren para polarizar a los transistores es despreciable y no aporta información para el análisis; por lo tanto se puede asumir que I1= IC1= IE1 e I2= IC2= IE2. También, es importante mencionar que en los circuitos reales no siempre son iguales estas condiciones. Para el análisis si se considera que al circular la corriente I2 se produce una caída de voltaje en R2 y en el transistor Q2 (VCE2). El voltaje VCE2 depende de la activación del transistor Q2, la cual está determinada por la señal aplicada en la entrada inversora (-IN). Lo mismo sucedería para Q1 pero ahora con la entrada no inversora (+IN). Si el voltaje que se aplica a las entradas +IN e IN son iguales las corrientes I1 e I2 son iguales. En este caso, los valores de V2 y VCE2 que son aproximadamente iguales y sucede lo mismo con V1 y VCE1. Por la tanto, el voltaje de salida del amplificador diferencial V O se define de tal forma que las aportaciones de V - y V + son iguales y esto produce que el valor de V O es aproximadamente igual a cero ya que las resistencias R1 y R2 no son exactamente iguales.

6 A continuación, si se considera la operación de la entrada inversora, -IN, la cual está conectada a la base del transistor del transistor Q2. Es importante recordar que la entrada inversora produce una señal de salida con un desfasamiento de 180 grados con respecto a la señal de entrada. Si la señal que se aplica a IN es positiva y en +IN es cero, el transistor Q2 se activa. El efecto es un incremento en la corriente I2 porque la resistencia de Q2 disminuye. Lo anterior produce que el voltaje V2 sea mayor que el voltaje en VCE2. El resultado de lo anterior es que la contribución de V - a V O es mayor, por lo tanto V O será negativo. En resumen, la base de Q2 es por lo tanto la entrada inversora porque un voltaje de entrada positivo produce un voltaje de salida negativo. Ahora, si la señal de entrada es negativa en lugar de positiva, la situación cambia en este caso la corriente I2 disminuye debido a que Q2 se desactiva. Por lo tanto, VCE2 aumenta y V2 disminuye, por lo tanto la salida se ve influenciada por el efecto de V + y el V O será positivo. Por lo tanto un voltaje negativo en esta entrada produce un voltaje de salida positivo. Estudio de la configuración de entrada del OPAMP (amplificador diferencial) El amplificador diferencial es un circuito que constituye la parte fundamental de muchos circuitos amplificadores, comparadores y es la clave de la familia lógica ECL (del inglés Emmiter-Coupled Logic). Una de sus características más importantes es su simetría que le confiere unas características muy especiales de análisis y diseño. Un amplificador diferencial es un circuito pensado en amplificar la diferencia de dos señales. En un amplificador diferencial se pueden identificar dos entradas una inversora (-) y otra no inversora (+) y una salida; todas ellas referenciadas a tierra. Etapa intermedia: ganancia La señal de voltaje VO a la salida del amplificador diferencial se acopla directamente a la entrada de la etapa intermedia del desplazador de nivel. En esta etapa se llevan a cabo dos funciones. La primera consiste en desplazar el nivel del voltaje de la salida, CD, del amplificador diferencial hasta el valor necesario para polarizar la etapa de salida. La segunda permite que pase la señal de entrada Vi casi sin modificación y convertirse en la señal de entrada V2 de la etapa de salda. Etapa de salida: en contraste El voltaje de salida V2 de la 1 etapa intermedia se acopla directamente a la etapa de salida. La etapa de salida que más comúnmente se utiliza es la de la configuración del transistor pnp-npn en contrafase. Usar un circuito de contrafase como etapa final permite que el amplificador operacional

7 tenga una resistencia de salida muy baja. Como se muestra en la figura 1.2, la resistencia de carga RL se conecta entre la terminal de salida y la tierra para obtener el voltaje de salida VO. Este modelo simplificado del amplificador operacional nos muestra la información básica sobre su arquitectura interna. El circuito real es más complicado, si bien las funciones son similares.

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos

INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos INDICE 1. Sistemas Electrónicos 1 1.1. Información y señales 2 1.2. Espectro de frecuencia de las señales 3 1.3. Señales analógicas y digitales 5 1.4. Amplificación y filtrado 7 1.5. Comunicaciones 9 1.6.

Más detalles

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP. MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto Unidad de aprendizaje: Electrónica Digital(L41088 ) Unidad de Competencia: Unidad 3 TEMA: 3.1, 3.2, 3.3, 3.4 y 3.5 Docente:

Más detalles

INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo

INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo INDICE Prefacio XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo 3 1.1. introducción 1.2. teoría de funcionamiento 5 1.3. parámetros del JFET 1.3.1. notación 11

Más detalles

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia

Más detalles

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA

OPCIÓN: SISTEMAS ASIGNATURA: ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA ELECTRÓNICA ANALÓGICA ESCUELA SUPERIOR DE CÓMPUTO SUBDIRECCIÓN ACADEMICA INGENIERÍA EN SISTEMAS COMPUTACIONALES ACADEMIA DE SISTEMAS DINÁMICOS NOMBRE: OPCIÓN: SISTEMAS ASIGNATURA: ELECTRÓNICA ANALÓGICA GRUPO: BOLETA: CALIFICACIÓN:

Más detalles

UNIDAD TEMÁTICA NO 4. TRANSISTORES BIPOLARES BJT

UNIDAD TEMÁTICA NO 4. TRANSISTORES BIPOLARES BJT UNIDAD TEMÁTICA NO 4. TRANSISTORES BIPOLARES BJT 4.1 CARACTERÍSTICAS GENERALES DE LOS TRANSISTORES BJT Un transistor BJT es un dispositivo electrónico de estado sólido consistente en dos uniones PN muy

Más detalles

ELECTRONICA III (ELT-2782)

ELECTRONICA III (ELT-2782) ELECTRONICA III (ELT-2782) HORARIO: JUEVES 10:30-12, VIERNES 10:30-12 PONDERACION 3 EX. PARCIALES 30% 1 EX. FINAL 30% LABORATORIOS 20% AUX, PROY Y TRABAJOS 20% BIBLIOGRAFIA DISEÑO ELECTRONICO, SAVANT RODAN

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

Modulo 5 Electrónica. contenido. Amplificadores

Modulo 5 Electrónica. contenido. Amplificadores Modulo 5 Electrónica contenido 1 Amplificadores Contenido: Fundamentos de Circuitos Eléctricos. Amplificador Operacional Amplificador de Instrumentación Amplificadores para biopotenciales Señales variables

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen

Más detalles

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Amplificadores Operacionales

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Amplificadores Operacionales Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Amplificadores Operacionales 1 Introducción: El Amplificador Operacional (en adelante, Operacional) es un tipo de circuito integrado que se usa en un sinfín

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del

Más detalles

INDICE Prologo Capitulo 1. Introducción Capitulo 2. Semiconductores Capitulo 3. Teoría de los diodos Capitulo 4. Circulitos de diodos

INDICE Prologo Capitulo 1. Introducción Capitulo 2. Semiconductores Capitulo 3. Teoría de los diodos Capitulo 4. Circulitos de diodos INDICE Prologo XIII Capitulo 1. Introducción 1-1 los tres tipos de formulas 1 1-2 aproximación 4 1-3 fuentes de tensión 6 1-4 fuentes de corriente 9 1-5 teorema de Thevenin 13 1-6 teorema de Norton 18

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión, en Matemáticas y Computación, así

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

INDICE 1. Dioses Semiconductores 2. Aplicaciones de Diodos 3. Transistores Bipolares de Unión 4. Polarización de DC BJT

INDICE 1. Dioses Semiconductores 2. Aplicaciones de Diodos 3. Transistores Bipolares de Unión 4. Polarización de DC BJT INDICE Prefacio XVII Agradecimientos XXI 1. Dioses Semiconductores 1 1.1. Introducción 1 1.2. El diodo ideal 1 1.3. Materiales semiconductores 3 1.4. Niveles de energía 6 1.5. Materiales extrínsecos: tipo

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción El gran objetivo de los investigadores en el campo de la electrónica es conseguir realizar operaciones cada vez más complejas en el menor espacio posible y con el mínimo

Más detalles

Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5

Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5 ÍNDICE Listas... ix Figuras... ix Tablas... xv Temas para discusión en clase... xvi Ejemplos... xviii Ejemplos de diseño... xix Ejemplos de diseño encadenado... xx Prefacio... xxi Capítulo 1 Introducción...

Más detalles

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1 Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO AMPLIFICADOR DIFERENCIAL DISCRETO LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Se implementarán los circuitos planteados en la guía entregada del laboratorio

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

El amplificador operacional

El amplificador operacional Tema 7 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 5 3.1. Configuración inversora... 7 3.2. Configuración no inversora...

Más detalles

1. PRESENTANDO A LOS PROTAGONISTAS...

1. PRESENTANDO A LOS PROTAGONISTAS... Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN

TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN TTEEMAA 44: :: EEll ttrraanssi issttoorr bbi ippoollaarr dee uunióón 11 1) En un transistor bipolar de unión la zona de semiconductor menos dopada corresponde a, a)

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

Práctica 6 Amplificador de instrumentación

Práctica 6 Amplificador de instrumentación Práctica 6 Amplificador de instrumentación Objetivo de la práctica Analizar el comportamiento de un amplificador de instrumentación Al terminar esta práctica, el discente será capaz de: Crear un amplificador

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º

GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen

Más detalles

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica Planificaciones 6648 - Seminario de Electrónica Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

PROGRAMA ANALÍTICO DE ASIGNATURA

PROGRAMA ANALÍTICO DE ASIGNATURA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO 1.- DATOS GENERALES 1.1 INSTITUTO: Ciencias Básica e Ingeniería. PROGRAMA ANALÍTICO DE

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

Interfaz de transductores. David Márquez Jesús Calderón

Interfaz de transductores. David Márquez Jesús Calderón Interfaz de transductores David Márquez Jesús Calderón Agenda Amplificador diferencial Amplificador de instrumentación Rechazo de Modo Común en Amplificadores de Instrumentación Aplicaciones Amplificador

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA: Área

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S)

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-Operación del transistor bipolar El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico

Más detalles

APUNTE: EL TRANSISTOR BIPOLAR DE JUNTURA (B J T)

APUNTE: EL TRANSISTOR BIPOLAR DE JUNTURA (B J T) APUNTE: EL TRANSISTOR BIPOLAR DE JUNTURA (B J T) Área de EET Página 1 de 11 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP

Más detalles

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro

Más detalles

Curso de Electricidad, Electrónica e - CEEIBS /20. Ing. Daniel Thevenet

Curso de Electricidad, Electrónica e - CEEIBS /20. Ing. Daniel Thevenet Curso de Electricidad, Electrónica e Instrumentación n Biomédica con Seguridad - CEEIBS - 1/20 - Conceptos básicos b Electrónica: Es una rama de la física y la ingeniería que estudia sistemas cuyo funcionamiento

Más detalles

6. Amplificadores Operacionales

6. Amplificadores Operacionales 9//0. Amplificadores Operacionales F. Hugo Ramírez Leyva Cubículo Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx Octubre 0 Amplificadores Operacionales El A.O. ideal tiene: Ganancia infinita

Más detalles

ELECTRÓNICA II. M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310

ELECTRÓNICA II. M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310 ELECTRÓNICA II M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310 Electrónica II 2009-2010 1 Que es la electrónica? La electrónica es el campo de la ingeniería y de la

Más detalles

INDICE. XIII Agradecimiento

INDICE. XIII Agradecimiento INDICE Prefacio XIII Agradecimiento XIV Capitulo 1. Introducción 1-2 fuentes de corriente 1 1-3 teorema de Thevenin 2 1-4 teorema de Norton 4 1-5 teorema de Thevenin 6 1-6 detección de averías 7 1-7 aproximaciones

Más detalles

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

Plan de Estudios. b) El manejo correcto de estos Dispositivos en el armado de los circuitos que se diseñen;

Plan de Estudios. b) El manejo correcto de estos Dispositivos en el armado de los circuitos que se diseñen; 76 Plan de Estudios 1.- Descripción Carrera : Ingeniería Electrónica Asignatura : Laboratorio 2 Clave : IEE - 449 Créditos : 3 (tres) Pre Requisitos : IEE 354 Circuitos Electrónicos IEE 340 Laboratorio

Más detalles

Tema 1.0 Amplificador diferencial basado en transistores BJT

Tema 1.0 Amplificador diferencial basado en transistores BJT Tema 1.0 Amplificador diferencial basado en transistores BJT Particularmente este arreglo, establece un antecedente importante en el estudio de amplificadores operacionales; ya que representa una etapa

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA

EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA EVALUACIÓN DE ELECTRÓNICA BÁSICA, 50 PREGUNTAS, TIEMPO = 1 HORA 1. Es un material semiconductor que se ha sometido al proceso de dopado. a) Intrínseco b) Extrínseco c) Contaminado d) Impurificado 2. Material

Más detalles

INDICE. XV Agradecimientos. XIX 1. Diodos semiconductores 1.1. introducción

INDICE. XV Agradecimientos. XIX 1. Diodos semiconductores 1.1. introducción INDICE Prefacio XV Agradecimientos XIX 1. Diodos semiconductores 1.1. introducción 1 1.2. Características generales 1.3. Niveles de energía 5 1.4. materiales extrínsecos: tipo n y p 7 1.5. diodo ideal

Más detalles

ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN BALASTROS PARA LÁMPARAS FLUORESCENTES, 23

ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN BALASTROS PARA LÁMPARAS FLUORESCENTES, 23 ÍNDICE CAPÍTULO 1 INTRODUCCIÓN 1 1.1 PLANTEAMIENTO DEL PROBLEMA, 2 1.2 OBJETIVO, 3 1.3 METODOLOGÍA, 4 CAPÍTULO 2 SISTEMAS DE ILUMINACIÓN 6 2.1 TIPOS DE LÁMPARAS, 7 2.1.1 TÉRMINOS PARA LÁMPARAS, 8 2.2.1.1

Más detalles

TEMA 3 Amplificadores Operacionales

TEMA 3 Amplificadores Operacionales TEMA 3 Amplificadores Operacionales Simbología. Características del amplificador operacional ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones

Más detalles

TEMA 5.- AMPLIFICADORES OPERACIONALES

TEMA 5.- AMPLIFICADORES OPERACIONALES TEMA 5.- AMPLFCADOES OPEACONALES 5. Características generales de los A.A.O.O.- Un amplificador operacional es un circuito formado por numerosos transistores, diodos y resistencias y se representa gráficamente

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 26 Resumen Amplificador Inversor Amplificador NO Inversor

Más detalles

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro

Más detalles

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO

MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO MÓDULO Nº0 CONVERTIDORES DIGITAL ANALÓGICO UNIDAD: CONVERTIDORES TEMAS: Introducción al tratamiento digital de señales. Definición y Funcionamiento. Parámetros Principales. DAC00 y circuitos básicos. OBJETIVOS:

Más detalles

Practica 2* I. INTRODUCCIÓN

Practica 2* I. INTRODUCCIÓN Practica 2* * Amplificador BJT en modo de autopolarizacion. 1 st Ronald Bailey Diplomado en matematicas Laboratorio de electronica 2 Facultad de ingenieria de la Universidad de San Carlos Guatemala, Guatemala

Más detalles

CIRCUITOS CON TRANSISTORES

CIRCUITOS CON TRANSISTORES CIRCUITOS CON TRANSISTORES Sensor de luz Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica emplearemos unos componentes nuevos que son los transistores, los utilizaremos en esta práctica para

Más detalles

EL PREMIO NOBEL DE FÍSICA 1956

EL PREMIO NOBEL DE FÍSICA 1956 EL PREMIO NOBEL DE FÍSICA 1956 EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR El transistor bipolar (BJT Bipolar Junction Transistor) fue desarrollado en los Laboratorios Bell Thelephone en 1948. El nombre

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

FUNDAMENTOS DE CLASE 3: DIODOS

FUNDAMENTOS DE CLASE 3: DIODOS FUNDAMENTOS DE ELECTRÓNICA CLASE 3: DIODOS RECORTADORES Permiten eliminar parte de la señal de una onda En serie: RECORTADORES: EJERCICIO Ejercicio: Calcular la característica de trasferencia RECORTADORES:

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

EL AMPLIFICADOR OPERACIONAL (II)

EL AMPLIFICADOR OPERACIONAL (II) 1 DSPOSTVOS ELECTRÓNCOS Dispositivos Electrónicos CURSO 2010-2011 Tema 11 11 EL AMPLFCADOR OPERACONAL () Miguel Ángel Domínguez Gómez Camilo Quintáns Graña DEPARTAMENTO DE TECNOLOGÍA ELECTRÓNCA UNVERSDAD

Más detalles

6.071 Prácticas de laboratorio 4 Amplificadores operacionales

6.071 Prácticas de laboratorio 4 Amplificadores operacionales 6.071 Prácticas de laboratorio 4 Amplificadores operacionales 29 de abril de 2002 1 Ejercicios previos AVISO: en las anteriores prácticas de laboratorio, se han presentado numerosos estudiantes sin los

Más detalles

APLICACIONES NO LINEALES TEMA 3 COMPARADOR

APLICACIONES NO LINEALES TEMA 3 COMPARADOR APLICACIONES NO LINEALES TEMA 3 COMPARADOR Es una aplicación sin realimentación. Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, entregando

Más detalles

TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES TTEEMAA 66: :: AAmpplli iffi iccaacci ióón... AAmpplli iffi iccaadoorreess ooppeerraacci ioonaalleess 11 1) La ganancia de tensión a) se mide en voltios.

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Web:

Web: FACULTAD POLITÉCNICA DIRECCIÓN ACADÉMICA I. IDENTIFICACIÓN PROGRAMA DE ESTUDIO Carrera : Ingeniería Eléctrica CARGA HORARIA - (Horas reloj) Asignatura : Electrónica Básica Carga Horaria Semestral 75 Semestre

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL PRIMERA PARTE: TEST NOTA IMPORTANTE: Las respuestas contestadas correctamente valen + punto. Las respuestas contestadas incorrectamente valen 0,5 puntos. Para poder superar la asignatura es condición necesaria

Más detalles

Tema 7: El TRANSISTOR BIPOLAR - TBJ ELECTRONICA I- FACET- UNT

Tema 7: El TRANSISTOR BIPOLAR - TBJ ELECTRONICA I- FACET- UNT Tema 7: El TRANSISTOR BIPOLAR - TBJ 1 TRANSISTOR - HISTORIA TEMA 7 El desarrollo de la electrónicay de sus múltiples aplicaciones fue posible gracias a la invención del transistor, ya que este superó ampliamente

Más detalles

Universidad Nacional de Quilmes 1. Electrónica Analógica 1. Amplificador diferencial

Universidad Nacional de Quilmes 1. Electrónica Analógica 1. Amplificador diferencial Electrónica Analógica Amplificador diferencial La entrada de un Amplificador Operacional está constituida por un Amplificador Diferencial (AD). Abordaremos el análisis del Amplificador o Par diferencial

Más detalles

Polarización del transistor

Polarización del transistor 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE TERCERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca HORAS DE CLASE PROFESOR RESPONSABLE TEORICAS (anual.) PRACTICAS (anual.) Ingeniero Alberto Carlos Russin Por semana total Por semana total PROFESOR AUXILIAR 2,5 0 1,5 4 Ingeniero Adrián Eduardo Gonnet

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA

COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA * Familiarizar al estudiante con el uso de los manuales de los fabricantes de diodos

Más detalles

TIRISTORES. Dispositivos pnpn RECTIFICADOR CONTROLADO DE SILICIO (SCR)

TIRISTORES. Dispositivos pnpn RECTIFICADOR CONTROLADO DE SILICIO (SCR) TIRISTORES INTRODUCCION El diodo semiconductor de dos capas ha dado lugar a dispositivos de tres, cuatro e incluso cinco capas. Se considerará primero una familia de dispositivos pnpn de cuatro capas:

Más detalles

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA. GRUPO (marcar X) Indicar espacio distinto de aula (aula informática, audiovisual, etc.)

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA. GRUPO (marcar X) Indicar espacio distinto de aula (aula informática, audiovisual, etc.) DENOMINACIÓN ASIGNATURA: FUNDAMENTOS DE INGENIERÍA ELECTRÓNICA GRADO: INGENIERÍA MECÁNICA CURSO: 2º CUATRIMESTRE: 2º La asignatura tiene 29 sesiones que se distribuyen a lo largo de 15 semanas. La duración

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

Unidad 4 Electrónica

Unidad 4 Electrónica Unidad 4 Electrónica 1. Componentes electrónicos pasivos: resistores y condensadores Un resistor es un componente pasivo diseñado y fabricado para ofrecer una determinada resistencia al paso de la corriente.

Más detalles