2 Calcula la superficie total de cada cuerpo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 Calcula la superficie total de cada cuerpo:"

Transcripción

1 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π + 9π 4π 75, C Área de la base: a +,5 9 a +,5 a 9,5 6,75 cm a 6,75, Área base P a 8,6, Área de una cara lateral: 5 h +,5 5 h +,5 h 5,5,75 h,75 4, Área lateral 6 7, 4, cm Área total,4 + 4, 66, Área 4,8 7, cm D Área 4πR 4π 6π,0 Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos. h a cm, a) b) e) cm f) 9 cm 9 cm 5 m 0 cm cm c) 6 m g) 0 m 5 m 6 m 5 m cm 0 cm 6 m d) cm 0 cm h) 0 cm

2 8 Pág. 4 a) Área lateral (Perímetro base) altura Área base cm Área total b) 6 Hallamos la altura de la base: , cm 6 5 Área base 0, 6, Área lateral (Perímetro base) altura 9 4 Área total ,5 4 c) 6 6 Área base , 6, ,5 76,5 m 5 Área lateral m Área total ,5 66 m d) Hallamos e y (alturas de las caras laterales): 6 Área de las caras laterales: y ,9 cm y + y 40 y, A 0 0,9 54, ; A 4,8, Área de la base cm Área total ,5 +,6 96, cm

3 8 Pág. 5 e) Hallamos el valor de : cm Área lateral (Perímetro base) altura 4 7 cm Área base 8 6 Área total cm f) Área de una cara lateral (9 + 5) 9 cm Área lateral Área base mayor 9 Área base menor 5 Área total cm g) Área lateral π(r + r') g 5 0 π( + 0) 5 0π Área base menor π 0 00π Área base mayor π 44π Área total 0π + 00π + 44π 574π 80, h) Área lateral (π 0) 6 0π 5 π 6 π Área lateral cono πrg π π Área círculo π 0 00π Área total 0π + 50π + 00π 570π 789,

4 8 Pág. 6 4 Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura y cuya base es un rombo de diagonales 8 y cm. b) Octaedro regular de arista. c) Pirámide heagonal regular de arista lateral y arista básica. d) Pirámide de altura y base cuadrada de lado 9 cm. e) Cilindro de altura 7 cm y cuya circunferencia básica mide 4. f) Tronco de cono generado al girar un trapecio rectángulo de bases 0 cm y cm y altura alrededor de esta. g) Casquete esférico de altura 7 cm de una esfera de radio cm. h) Esfera inscrita en un cilindro de altura m. a) d cm Hallamos el lado del rombo: D , Área lateral 4 (4 0,8) 08,7 cm Área base 8 0 Área total 08, ,7 cm b) Área de una cara: Área 8 5,6 40, Área total 8 40,4, cm 8 h h + 8 h h 4 5, c) Área de una cara lateral: d D h 9 Área 6 6,8 4,6 Área lateral 6 4,64 87,8 h h h + 64 h h 70 6,

5 8 Pág. 7 Área de la base: 6 a a + 64 a a a 9,8 Área P a (6 6),86 665, Área total 87, ,8 95, cm d) Área de la base 9 Área de una cara lateral: 9 cm 9 cm 5 + 4, ,5 645,5 645,5 5,40 cm 4, Área 9 5,40 4,0 cm Área lateral 4 4,0 457,0 cm 9 cm Área total ,0 58,0 cm e) πr 4 r 44 r cm π π 7 cm π 484 π Área base πr π ( ) 54, Área lateral (πr) h Área total ,4 056, f) 0 cm Área base menor π 0 00π g Área base mayor π 44π 45, cm Área lateral π(r + r') g g cm g g 9 5,9 cm Área lateral π(0 + ) 5,9 7, Área total 7, ,6 8,50 cm

6 8 Pág. 8 g) h 7 cm casquete esférico R cm Área πrh π 7 68π 57, h) R R m R R m Área 4πR 4π ( ) 4π π,4 m 4 Página 86 Volúmenes 5 ESTÁ RESUELTO EN EL LIBRO 6 Calcula el volumen de estos cuerpos: A B C D cm cm E 9 m m m m F 0 cm 7 cm cm G 4 m 6 m m 5 m H 9 m m m m A V πr h π 4 6π 6,7 B V C V A base h 4 6 cm D V πr h π 6 54π 69,5

7 8 Pág. 9 E La figura se puede descomponer en cuatro cubos de arista cm. Por tanto: V 4 0 F Área de la base: 0 cm 7 cm ,90 cm Área base 0 4,90 4,50 cm V (Área de la base) h 4,50 59 cm G Área de la base: m m 95 9,7 m 4 m Área de la base ,7 77,9 m V (Área de la base) h 77, ,4 m H Podemos descomponer la figura en cuatro cubos de arista cm. Tiene el mismo volumen que la figura E : V 0 7 Calcula el volumen de los siguientes cuerpos geométricos. a) Octaedro regular de arista. b) Pirámide heagonal regular cuya arista lateral mide 7 cm y la arista de la base 0 cm. c) Tronco de cono de radios cm y y altura 0 cm. d) Semiesfera de radio. e) Cilindro inscrito en un prisma recto de base cuadrada de lado 0 cm y altura. a) Podemos descomponerlo en dos pirámides cuadrangulares regulares de arista : h + 4 h h + 6 h 48 6 h 5,6

8 8 Pág. 0 Volumen V (Área de la base) h 8 5,66 0,7 Volumen total V 0,75 4, b) Hallamos la altura de la pirámide, h: 7 h h + 00 h 89,7 Calculamos el área de la base: h a a + 5 a a 75 8,6 a Área de la base P a 60 8,66 0 cm 59, Volumen (Área de la base) h 59,8,75 90,7 c) + 0 ( + 0) cm cm cm 4 La altura del cono grande es 80 cm y la del cono pequeño es 60 cm. d) h 0 cm 0 cm 0 cm 7 cm V cono grande π π V cono pequeño π π Volumen tronco cono V 0 480π 880π 9, V ( πr ) π 5 50π 7 06 e) 0 cm r 0 cm r V πr h π π

9 8 Pág. 8 ESTÁ RESUELTO EN EL LIBRO 9 Calcula el volumen de estos cuerpos: m 6 m m 5 m 4 m 6 m m m m m Volumen cono V π 4π m Volumen cilindro V π π m Volumen semiesfera V 4 ( π ) 6π m Volumen total V + V + V 4π + π + 6π 64π 66,99 m r,5 m Volumen cilindro eterior V π 5 45π m 5 m Volumen cilindro interior V π,5 5,5π m R m Volumen total V V 45π,5π,75π 05,98 m 0 Cuál debe ser la altura de un cilindro cuya base mide para que su volumen sea l? πr r 4, π π h V πr h π,8 h 45,8 h V l dm 000 cm r 45,8 h 000 h ,8,

10 8 Pág. Página 87 Coordenadas geográficas Dos ciudades tienen la misma longitud O, y sus latitudes son 45 7' N y 4 5' S. Cuál es la distancia entre ellas? R α β α 45 7' β 4 5' Tenemos que hallar la longitud del arco correspondiente a un ángulo de: α + β 45 7' + 4 5' 80 ' Distancia πr 80 ' π ,0 8 89,0 km Cuando en el huso 0 son las 7 a. m., qué hora es en el huso al E? Y en el huso? En el huso E son tres horas menos; es decir, las 4 a.m. En el huso son doce horas menos; es decir, las 7 p.m. La milla marina es la distancia entre dos puntos del ecuador cuya diferencia de longitudes es '. Calcula la longitud de una milla marina. ' grados; radio de la Tierra: R 6 70 km 60 πr Milla marina 60 πr π 6 70,85 km Roma está en el huso E y Nueva York en el 5 O. Si un avión sale de Roma a las 9 a. m. y el vuelo dura 8 h, cuál será la hora local de llegada a Nueva York? horas menos en Nueva York que en Roma. 9 a. m h 5 p.m. hora de Roma 7 6 a.m. (es la hora local de llegada a Nueva York) Las de la mañana. 5 Un avión tiene que ir de A a B, dos lugares diametralmente opuestos en el paralelo 45. Puede hacerlo siguiendo el paralelo (APB) o siguiendo la ruta polar (ANB). Cuál es la más corta? A N B P S

11 8 Pág. Hallamos el radio del paralelo 45 : 45 R R + Por tanto, la longitud del arco APB es: L APB π 4 504,7 El radio de la Tierra es R 6 70 km ,7 km R π 4 504,7 4 4,4 km Para ir de A a B por la ruta ANB se abarca un ángulo de sobre el meridiano. Por tanto, la longitud del arco ANB es: L ANB πr 90 πr πr π ,9 km 60 4 La ruta más corta es la polar R R PIENSA Y RESUELVE 6 Un bidón de pintura de forma cilíndrica, de cm de altura y 0 cm de diámetro de la base, está lleno en sus tres cuartas partes. En su interior se ha caído un pincel de 40 cm de largo. Crees que se habrá sumergido totalmente en la pintura? cm d de 4 El pincel se encontrará sobre la diagonal de una sección rectangular del cilindro. 0 cm Veamos cuánto mide la diagonal del rectángulo 0 cm : d , < 40 cm El pincel, de 40 cm de largo, no quedará completamente sumergido en la pintura. 7 Calcula la longitud del mayor listón que cabe en cada una de estas cajas: cm

12 8 Pág ,6 cm y y ,7 cm z z ,6 8 Calcula la superficie del triángulo coloreado en la figura. Cada uno de los lados del triángulo es la diagonal de una de las caras del cubo. Por tanto, mide: 0 cm ;;; La altura del triángulo es: h ;;; ; 0 cm 4, 4, , 4,4 h + 7,07 00 h + 50 h 50 h 50, El área del triángulo es: A 4,4,5 86, 9 Calcula la superficie del mayor tetraedro que cabe dentro de un cubo de 0 cm de arista. Las caras son triángulos como los del ejercicio anterior; por tanto, el área de una cara es: A 86, Como son cuatro triángulos iguales, el área del tetraedro será: A T 4 86,6 46,4 0 cm ;;; ;;; ; 0 cm

13 8 Pág. 5 0 Se ha construido un tubo cilíndrico soldando, por los lados más cortos, un rectángulo de chapa de 0 cm de largo por de ancho. Cuál es el diámetro del tubo? Y su volumen? Diámetro del tubo d r,8 6, El perímetro de la base del cilindro es de 0 cm: πr 0 r 0 0, π π Volumen V πr h π, ,9 cm Un dependiente envuelve una caja de zapatos de 0 cm de larga, de ancha y 0 cm de alta con un trozo de papel, de forma que un 5% del envoltorio queda solapado sobre sí mismo. Qué cantidad de papel ha utilizado? 0 cm La superficie de la caja es: Área total ( ) 040 cm Si ha solapado un 5% de todo el papel, entonces ha utilizado un 85% del papel para cubrir la caja, es decir: 85% del total 040 cm Total 040 : 0, cm Ha utilizado 040 cm 0,4 m de papel. Observa que al seccionar un cubo como indica la figura, se obtiene de la esquina cortada una pirámide triangular. Dibuja el desarrollo de dicha pirámide. Calcula su superficie lateral considerando la sección como base. Calcula su volumen (apóyala sobre uno de los triángulos rectángulos). Desarrollo: 0 cm r 0 cm d cm Superficie lateral (tomando la sección como base): T cm T A 5 7, T T cm T A 4 T A cm Área lateral A + A + A 7, ,

14 8 Pág. 6 Volumen V (Área base) altura Si consideramos como base el triángulo. Por tanto: V 7,5 4 0 cm, la altura de la pirámide es Al introducir una piedra en un recipiente cilíndrico, de 0 cm de diámetro, la altura del agua que contiene sube. Cuál es el volumen de la piedra? El volumen de agua que ha subido es: V πr h π π 570 cm Por tanto, el volumen de la piedra es de 570 cm, aproimadamente. 4 Calcula el volumen de la mayor pirámide que cabe dentro de un ortoedro de m de ancho, 4 m de largo y 5 m de alto. cm Será una pirámide en la que la base y la altura coinciden con las del ortoedro. Por tanto, su volumen será: V ( 4 5) 0 m 5 Un estanque tiene como base una elipse de m de superficie y una profundidad de,5 m. Cuánto tardará en llenarse mediante una fuente que aporta litros de agua por segundo? Calculamos el volumen del estanque: V (Área de la base) h,5 8 m dm l Como la fuente aporta l/s, tardará: Página segundos 00 minutos h 40 min en llenarse. 6 Calcula el volumen de una habitación de,0 m de altura, cuya planta tiene la forma y dimensiones indicadas en la figura. 4 m m 4 m m,5 m m Hallamos el área de la base: Área rectángulo A 4 m Área semicírculo A π,5,5 m Área base A + A +,5 5,5 m m

15 8 Pág. 7 Por tanto, el volumen es: V (Área de la base) altura 5,5,0 5,7 m 7 Cuál es el peso de un contenedor de embalaje de 0,5 m 0,5 m,0 m, sabiendo que se ha construido con planchas de aglomerado que pesan a razón de kg/m?,0 m 0,5 m 0,5 m Hallamos la superficie del contenedor: S (0,5 ) + 4 (,0 0,5),9 m Por tanto, el contenedor pesa:,9 4,8 kg 8 Un bidón cilíndrico de 0 cm de diámetro pesa, vacío, 5 kg, y lleno de agua, 7,608 kg. Cuál es la altura del bidón? Peso del agua 7,608 5,608 kg Hay,608 litros de agua,608 dm 60 de agua. Volumen del agua: V 608 πr h h 9 Observa la figura y calcula: 8 m 608 π 5 cm de altura tiene el bidón. m 4 m 0 m a) El coste de la construcción del tejado, sabiendo que ha salido a 85 el metro cuadrado. b) El número de radiadores que se deben instalar en su interior, sabiendo que se necesita un radiador por cada 5 m. a) d d 7 8,54 m La superficie del tejado es: A T (0 8,54) 5,4 m Coste 5, b) Calculamos el volumen de la construcción: V T m Número de radiadores radiadores 5 5 m

16 8 Pág. 8 0 Una empresa de carburantes tiene cuatro tanques esféricos de 0 m de diámetro y seis tanques cilíndricos de 0 m de altura y 0 m de radio en la base. Para evitar la corrosión, se contrata a un equipo de operarios que cobra, por pintar los depósitos, /m. Calcula el coste total de la operación. Superficie esférica 4πr 4π 0 400π m Superficie cilíndrica πrh π π m Bases del cilindro (πr ) π 0 00π m Como hay 4 tanques esféricos y 6 cilíndricos, el área total es: A T 4 400π + 6 (400π + 00π) 5 00π 6 8 m El coste total es: Se introduce una bola de piedra de cm de diámetro en un recipiente cúbico de cm de arista lleno de agua y después se retira. Calcula: a) La cantidad de agua que se ha derramado. b) La altura que alcanza el agua en el recipiente después de sacar la bola. a) Volumen de la bola V b 4 π 6 88π 904, cm El volumen que se ha derramado es el volumen de la bola; es decir, 904, cm. b) Volumen del recipiente V r 7 cm cm cm V 8,68 h h h Volumen de agua que queda después de sacar la bola: V V r V b , 8,6 8, ,7 cm es la altura que alcanza el agua después de sacar la bola. Calcula el volumen de los cuerpos de revolución que genera cada una de estas figuras planas al girar alrededor del eje indicado: A B 7 cm cm cm cm

17 8 Pág. 9 A cm cm cm Volumen del cilindro V π 4 6π cm Volumen del cono V π 9π cm Volumen total V + V 6π + 9π 45π 4, cm B Volumen del cilindro V π 7π cm cm cm cm 4 8π cm Volumen total V + V 7π + 8π 45π 4, cm Volumen de la semiesfera V ( π ) a) Qué vaso tiene mayor capacidad? b) Cuántos litros son 0 de estos vasos? a) Volumen del cilindro π,5 8 50π 57 cm Volumen del tronco de cono: 8 + cm cm 8 + (8 + ) Volumen cono grande V G π 4 7π cm Volumen cono pequeño V P π 6 64π cm Volumen tronco de cono V T V G V P 7π 64π 59,09 cm El tronco de cono tiene mayor capacidad que el cilindro. b) Cuántos litros son 0 de estos vasos? Vaso cilíndrico 57 cm cm,57 dm,57 l Vaso tronco de cono 59,09 cm 0 590,9 cm,5909 dm,5909 l

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Página 85 PRACTICA Desarrollos y áreas Haz corresponder cada figura con su desarrollo y calcula el área total: I II cm III cm IV cm 7 cm A B C D 8 Pág. I C Área de una cara: 6 h + 6 h + 9 h 6 9

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos.

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Un poliedro se llama regular cunado cumple las dos condiciones siguientes: Sus caras son polígonos regulares idénticos. En cada vértice

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

2πr r = πr. Aplica la fórmula: para obtener el volumen de la esfera.

2πr r = πr. Aplica la fórmula: para obtener el volumen de la esfera. 10 Soluciones a las actividades de cada epígrafe PÁGIN 191 Pág. 1 PR EMPEZR Calcula al estilo de rquímedes ÁRE DEL CÍRCULO Cuál es la suma de sus bases? Cuál es la altura de todos ellos? Sustituye y obtendrás

Más detalles

CUADERNO Nº 8 NOMBRE: FECHA: / /

CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Contenidos 1. Poliedros regulares Definiciones Desarrollos Planos de simetría Poliedros duales 2. Otros poliedros Prismas Pirámides Planos de simetría Poliedros semirregulares 3. Cuerpos

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones:

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones: GEOMETRÍ DEL ESIO ompetencias: Reconoce a la recta y el plano en R. Describir las posiciones relativas entre dos planos y entre una recta y un lano. Describir el Teorema de las tres perpendiculares. Definir

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

2πr r = πr. Aplica la fórmula: para obtener el volumen de la esfera.

2πr r = πr. Aplica la fórmula: para obtener el volumen de la esfera. 10 Soluciones a las actividades de cada epígrafe PÁGIN 191 Pág. 1 PR EMPEZR Calcula al estilo de rquímedes ÁRE DEL CÍRCULO Cuál es la suma de sus bases? Cuál es la altura de todos ellos? Sustituye y obtendrás

Más detalles

Geometría en 3D: Preguntas del Capítulo

Geometría en 3D: Preguntas del Capítulo Geometría en 3D: Preguntas del Capítulo 1. Cuáles son las similitudes y las diferencias entre prismas y pirámides? 2. Cómo se nombran los poliedros? 3. Cómo encuentras la sección transversal de una figura

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 212 Recorta en cartulina cada una de estas figuras y sujétalas en palillos de dientes. Sosteniendo el palillo entre los dedos y soplando en el lateral, qué ves en cada caso? Triángulo ono

Más detalles

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Nº caras. Nº vértices

Nº caras. Nº vértices Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V

Más detalles

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES 1. Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho y 2500 mm de alto. 2. Una piscina tiene 8 m de largo, 6

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

15 Figuras y cuerpos

15 Figuras y cuerpos 15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas:

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas: Plantear y resolver los siguientes problemas: 1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, determinar el área de cada porción. 2) Determine el área de cada una de las

Más detalles

11 CUERPOS GEOMÉTRICOS. PROPIEDADES MÉTRICAS

11 CUERPOS GEOMÉTRICOS. PROPIEDADES MÉTRICAS A C T I V I D A D E S D E L O S E P Í G R A F E S Poliedros y cuerpos redondos P A R A P R A C T I C A R 11.1 Completa la tabla. Comprueba si se verifica la igualdad: Número de caras número de vértices

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

250 Si la razón entre las longitudes de la realidad y de la representación es razón entre las áreas es ( 20 )

250 Si la razón entre las longitudes de la realidad y de la representación es razón entre las áreas es ( 20 ) Soluciones a las actividades de cada epígrafe PÁGIN Entrénate 1 Una parcela con forma de cuadrilátero irregular tiene 80 m de área y su lado menor mide 40 m. Hacemos un plano de la parcela en el que el

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede.

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede. Unidad 1 Llendo a campar: D írculos 1 D-8. bajo está una mezcla de epresiones racionales. Haga la operación indicada simplifique su solución, si puede. 6 + 8 + 1 + 6 5 + 10 + 8 + + 5 ( + 1) d) + + 5 10

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES 14 UERPOS GEOMÉTRIOS. VOLÚMENES EJERIIOS PROPUESTOS 14.1 Qué condiciones debe cumplir un prisma triangular para ser regular? ibújalo Para que un prisma triangular se regular su base tiene que ser un triángulo

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Volumen de los cuerpos geométricos.

Volumen de los cuerpos geométricos. 10 Volumen de los cuerpos geométricos. Objetivos En esta quincena aprenderás a: Comprender el concepto de medida del volumen y conocer y manejar las unidades de medida del S.M.D. Obtener y aplicar expresiones

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 200

9Soluciones a los ejercicios y problemas PÁGINA 200 PÁGINA 200 Pág. 1 T ipos de cuerpos geométricos 1 Di, justificadamente, qué tipo de poliedro es cada uno de los siguientes: A B C D E F Hay entre ellos algún poliedro regular? A 8 Prisma pentagonal recto.

Más detalles

Matemáticas 3º E.S.O. 2013/14

Matemáticas 3º E.S.O. 2013/14 Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con

Más detalles

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN 11 Medida de tiempo 1. Completa y relaciona los elementos de estas dos columnas que sean equivalentes. Trimestre 3 meses Lustro 5 años Quincena 15 días Siglo 100 años Semestre 6 meses 2. Escribe el siglo

Más detalles

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta: 1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula

Más detalles

MODULO III - GEOMETRIA

MODULO III - GEOMETRIA PRIMERA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO SEIS Y SIETE Calculo de Áreas y volúmenes. 31 DE AGOSTO DE 2014 MANAGUA FINANCIADO

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos olumen de cuerpos geométricos El saqueo de Siracusa El cónsul Marcelo veía desde la distancia el inexorable avance de su ejército sobre la ciudad de Siracusa. El grueso de sus tropas entraba por un boquete

Más detalles

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática Programa Acompañamiento Matemática Cuadernillo de ejercitación Ejercitación Área y volumen de sólidos Mapa conceptual Tienen CUERPOS GEOMÉTRICOS Figuras geométricas que ocupan un lugar en el espacio. Se

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS.

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. PRISMAS 1.) Las dimensiones de un ortoedro son a = 7 cm, b = 5 cm y c = 10 cm. Dibuja esquemáticamente su desarrollo y calcula su área, su volumen y la longitud de la diagonal. Sol: 310 cm 2 ; 350 cm 3

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

7. Calcula el volumen de una pirámide de 6 cm de altura que tiene como base un cuadrado de 4 cm de lado.

7. Calcula el volumen de una pirámide de 6 cm de altura que tiene como base un cuadrado de 4 cm de lado. ACTIIDADES-PÁG. 19 6. Calcula el volumen de los siguientes prismas: a) b) c) 6 1'7 1'1 cm 1 5 7'5 cm cm 7. Calcula el volumen de una pirámide de 6 cm de altura que tiene como base un cuadrado de cm de

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Fórmula de Superficie de Área: Si dos sólidos son similares con un factor de. escala de entonces las áreas de superficie están en una relación de.

Fórmula de Superficie de Área: Si dos sólidos son similares con un factor de. escala de entonces las áreas de superficie están en una relación de. Materia: Matemática de Séptimo Tema: Cálculo de Volumen Y si te dieran dos cubos similares y te preguntan cuál es el factor de escala de sus caras? Cómo encontrarías sus áreas de superficie y sus volúmenes?

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

Hoja de actividad sobre las propiedades de las figuras geométricas planas

Hoja de actividad sobre las propiedades de las figuras geométricas planas Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS 14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 14.1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. a) b) 6 6 6 5 1 a) El cuerpo es un cubo: A 6a 6 6 6

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURS Y UERPOS GEOMÉTRIOS EJERIIOS PR ENTRENRSE Poliedros y cuerpos redondos. Propiedades 10.2 Un poliedro regular tiene 8 vértices y 12 aristas. Utiliza la fórmula de Euler para saber de qué poliedro

Más detalles