2 Calcula la superficie total de cada cuerpo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 Calcula la superficie total de cada cuerpo:"

Transcripción

1 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π + 9π 4π 75, C Área de la base: a +,5 9 a +,5 a 9,5 6,75 cm a 6,75, Área base P a 8,6, Área de una cara lateral: 5 h +,5 5 h +,5 h 5,5,75 h,75 4, Área lateral 6 7, 4, cm Área total,4 + 4, 66, Área 4,8 7, cm D Área 4πR 4π 6π,0 Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos. h a cm, a) b) e) cm f) 9 cm 9 cm 5 m 0 cm cm c) 6 m g) 0 m 5 m 6 m 5 m cm 0 cm 6 m d) cm 0 cm h) 0 cm

2 8 Pág. 4 a) Área lateral (Perímetro base) altura Área base cm Área total b) 6 Hallamos la altura de la base: , cm 6 5 Área base 0, 6, Área lateral (Perímetro base) altura 9 4 Área total ,5 4 c) 6 6 Área base , 6, ,5 76,5 m 5 Área lateral m Área total ,5 66 m d) Hallamos e y (alturas de las caras laterales): 6 Área de las caras laterales: y ,9 cm y + y 40 y, A 0 0,9 54, ; A 4,8, Área de la base cm Área total ,5 +,6 96, cm

3 8 Pág. 5 e) Hallamos el valor de : cm Área lateral (Perímetro base) altura 4 7 cm Área base 8 6 Área total cm f) Área de una cara lateral (9 + 5) 9 cm Área lateral Área base mayor 9 Área base menor 5 Área total cm g) Área lateral π(r + r') g 5 0 π( + 0) 5 0π Área base menor π 0 00π Área base mayor π 44π Área total 0π + 00π + 44π 574π 80, h) Área lateral (π 0) 6 0π 5 π 6 π Área lateral cono πrg π π Área círculo π 0 00π Área total 0π + 50π + 00π 570π 789,

4 8 Pág. 6 4 Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura y cuya base es un rombo de diagonales 8 y cm. b) Octaedro regular de arista. c) Pirámide heagonal regular de arista lateral y arista básica. d) Pirámide de altura y base cuadrada de lado 9 cm. e) Cilindro de altura 7 cm y cuya circunferencia básica mide 4. f) Tronco de cono generado al girar un trapecio rectángulo de bases 0 cm y cm y altura alrededor de esta. g) Casquete esférico de altura 7 cm de una esfera de radio cm. h) Esfera inscrita en un cilindro de altura m. a) d cm Hallamos el lado del rombo: D , Área lateral 4 (4 0,8) 08,7 cm Área base 8 0 Área total 08, ,7 cm b) Área de una cara: Área 8 5,6 40, Área total 8 40,4, cm 8 h h + 8 h h 4 5, c) Área de una cara lateral: d D h 9 Área 6 6,8 4,6 Área lateral 6 4,64 87,8 h h h + 64 h h 70 6,

5 8 Pág. 7 Área de la base: 6 a a + 64 a a a 9,8 Área P a (6 6),86 665, Área total 87, ,8 95, cm d) Área de la base 9 Área de una cara lateral: 9 cm 9 cm 5 + 4, ,5 645,5 645,5 5,40 cm 4, Área 9 5,40 4,0 cm Área lateral 4 4,0 457,0 cm 9 cm Área total ,0 58,0 cm e) πr 4 r 44 r cm π π 7 cm π 484 π Área base πr π ( ) 54, Área lateral (πr) h Área total ,4 056, f) 0 cm Área base menor π 0 00π g Área base mayor π 44π 45, cm Área lateral π(r + r') g g cm g g 9 5,9 cm Área lateral π(0 + ) 5,9 7, Área total 7, ,6 8,50 cm

6 8 Pág. 8 g) h 7 cm casquete esférico R cm Área πrh π 7 68π 57, h) R R m R R m Área 4πR 4π ( ) 4π π,4 m 4 Página 86 Volúmenes 5 ESTÁ RESUELTO EN EL LIBRO 6 Calcula el volumen de estos cuerpos: A B C D cm cm E 9 m m m m F 0 cm 7 cm cm G 4 m 6 m m 5 m H 9 m m m m A V πr h π 4 6π 6,7 B V C V A base h 4 6 cm D V πr h π 6 54π 69,5

7 8 Pág. 9 E La figura se puede descomponer en cuatro cubos de arista cm. Por tanto: V 4 0 F Área de la base: 0 cm 7 cm ,90 cm Área base 0 4,90 4,50 cm V (Área de la base) h 4,50 59 cm G Área de la base: m m 95 9,7 m 4 m Área de la base ,7 77,9 m V (Área de la base) h 77, ,4 m H Podemos descomponer la figura en cuatro cubos de arista cm. Tiene el mismo volumen que la figura E : V 0 7 Calcula el volumen de los siguientes cuerpos geométricos. a) Octaedro regular de arista. b) Pirámide heagonal regular cuya arista lateral mide 7 cm y la arista de la base 0 cm. c) Tronco de cono de radios cm y y altura 0 cm. d) Semiesfera de radio. e) Cilindro inscrito en un prisma recto de base cuadrada de lado 0 cm y altura. a) Podemos descomponerlo en dos pirámides cuadrangulares regulares de arista : h + 4 h h + 6 h 48 6 h 5,6

8 8 Pág. 0 Volumen V (Área de la base) h 8 5,66 0,7 Volumen total V 0,75 4, b) Hallamos la altura de la pirámide, h: 7 h h + 00 h 89,7 Calculamos el área de la base: h a a + 5 a a 75 8,6 a Área de la base P a 60 8,66 0 cm 59, Volumen (Área de la base) h 59,8,75 90,7 c) + 0 ( + 0) cm cm cm 4 La altura del cono grande es 80 cm y la del cono pequeño es 60 cm. d) h 0 cm 0 cm 0 cm 7 cm V cono grande π π V cono pequeño π π Volumen tronco cono V 0 480π 880π 9, V ( πr ) π 5 50π 7 06 e) 0 cm r 0 cm r V πr h π π

9 8 Pág. 8 ESTÁ RESUELTO EN EL LIBRO 9 Calcula el volumen de estos cuerpos: m 6 m m 5 m 4 m 6 m m m m m Volumen cono V π 4π m Volumen cilindro V π π m Volumen semiesfera V 4 ( π ) 6π m Volumen total V + V + V 4π + π + 6π 64π 66,99 m r,5 m Volumen cilindro eterior V π 5 45π m 5 m Volumen cilindro interior V π,5 5,5π m R m Volumen total V V 45π,5π,75π 05,98 m 0 Cuál debe ser la altura de un cilindro cuya base mide para que su volumen sea l? πr r 4, π π h V πr h π,8 h 45,8 h V l dm 000 cm r 45,8 h 000 h ,8,

10 8 Pág. Página 87 Coordenadas geográficas Dos ciudades tienen la misma longitud O, y sus latitudes son 45 7' N y 4 5' S. Cuál es la distancia entre ellas? R α β α 45 7' β 4 5' Tenemos que hallar la longitud del arco correspondiente a un ángulo de: α + β 45 7' + 4 5' 80 ' Distancia πr 80 ' π ,0 8 89,0 km Cuando en el huso 0 son las 7 a. m., qué hora es en el huso al E? Y en el huso? En el huso E son tres horas menos; es decir, las 4 a.m. En el huso son doce horas menos; es decir, las 7 p.m. La milla marina es la distancia entre dos puntos del ecuador cuya diferencia de longitudes es '. Calcula la longitud de una milla marina. ' grados; radio de la Tierra: R 6 70 km 60 πr Milla marina 60 πr π 6 70,85 km Roma está en el huso E y Nueva York en el 5 O. Si un avión sale de Roma a las 9 a. m. y el vuelo dura 8 h, cuál será la hora local de llegada a Nueva York? horas menos en Nueva York que en Roma. 9 a. m h 5 p.m. hora de Roma 7 6 a.m. (es la hora local de llegada a Nueva York) Las de la mañana. 5 Un avión tiene que ir de A a B, dos lugares diametralmente opuestos en el paralelo 45. Puede hacerlo siguiendo el paralelo (APB) o siguiendo la ruta polar (ANB). Cuál es la más corta? A N B P S

11 8 Pág. Hallamos el radio del paralelo 45 : 45 R R + Por tanto, la longitud del arco APB es: L APB π 4 504,7 El radio de la Tierra es R 6 70 km ,7 km R π 4 504,7 4 4,4 km Para ir de A a B por la ruta ANB se abarca un ángulo de sobre el meridiano. Por tanto, la longitud del arco ANB es: L ANB πr 90 πr πr π ,9 km 60 4 La ruta más corta es la polar R R PIENSA Y RESUELVE 6 Un bidón de pintura de forma cilíndrica, de cm de altura y 0 cm de diámetro de la base, está lleno en sus tres cuartas partes. En su interior se ha caído un pincel de 40 cm de largo. Crees que se habrá sumergido totalmente en la pintura? cm d de 4 El pincel se encontrará sobre la diagonal de una sección rectangular del cilindro. 0 cm Veamos cuánto mide la diagonal del rectángulo 0 cm : d , < 40 cm El pincel, de 40 cm de largo, no quedará completamente sumergido en la pintura. 7 Calcula la longitud del mayor listón que cabe en cada una de estas cajas: cm

12 8 Pág ,6 cm y y ,7 cm z z ,6 8 Calcula la superficie del triángulo coloreado en la figura. Cada uno de los lados del triángulo es la diagonal de una de las caras del cubo. Por tanto, mide: 0 cm ;;; La altura del triángulo es: h ;;; ; 0 cm 4, 4, , 4,4 h + 7,07 00 h + 50 h 50 h 50, El área del triángulo es: A 4,4,5 86, 9 Calcula la superficie del mayor tetraedro que cabe dentro de un cubo de 0 cm de arista. Las caras son triángulos como los del ejercicio anterior; por tanto, el área de una cara es: A 86, Como son cuatro triángulos iguales, el área del tetraedro será: A T 4 86,6 46,4 0 cm ;;; ;;; ; 0 cm

13 8 Pág. 5 0 Se ha construido un tubo cilíndrico soldando, por los lados más cortos, un rectángulo de chapa de 0 cm de largo por de ancho. Cuál es el diámetro del tubo? Y su volumen? Diámetro del tubo d r,8 6, El perímetro de la base del cilindro es de 0 cm: πr 0 r 0 0, π π Volumen V πr h π, ,9 cm Un dependiente envuelve una caja de zapatos de 0 cm de larga, de ancha y 0 cm de alta con un trozo de papel, de forma que un 5% del envoltorio queda solapado sobre sí mismo. Qué cantidad de papel ha utilizado? 0 cm La superficie de la caja es: Área total ( ) 040 cm Si ha solapado un 5% de todo el papel, entonces ha utilizado un 85% del papel para cubrir la caja, es decir: 85% del total 040 cm Total 040 : 0, cm Ha utilizado 040 cm 0,4 m de papel. Observa que al seccionar un cubo como indica la figura, se obtiene de la esquina cortada una pirámide triangular. Dibuja el desarrollo de dicha pirámide. Calcula su superficie lateral considerando la sección como base. Calcula su volumen (apóyala sobre uno de los triángulos rectángulos). Desarrollo: 0 cm r 0 cm d cm Superficie lateral (tomando la sección como base): T cm T A 5 7, T T cm T A 4 T A cm Área lateral A + A + A 7, ,

14 8 Pág. 6 Volumen V (Área base) altura Si consideramos como base el triángulo. Por tanto: V 7,5 4 0 cm, la altura de la pirámide es Al introducir una piedra en un recipiente cilíndrico, de 0 cm de diámetro, la altura del agua que contiene sube. Cuál es el volumen de la piedra? El volumen de agua que ha subido es: V πr h π π 570 cm Por tanto, el volumen de la piedra es de 570 cm, aproimadamente. 4 Calcula el volumen de la mayor pirámide que cabe dentro de un ortoedro de m de ancho, 4 m de largo y 5 m de alto. cm Será una pirámide en la que la base y la altura coinciden con las del ortoedro. Por tanto, su volumen será: V ( 4 5) 0 m 5 Un estanque tiene como base una elipse de m de superficie y una profundidad de,5 m. Cuánto tardará en llenarse mediante una fuente que aporta litros de agua por segundo? Calculamos el volumen del estanque: V (Área de la base) h,5 8 m dm l Como la fuente aporta l/s, tardará: Página segundos 00 minutos h 40 min en llenarse. 6 Calcula el volumen de una habitación de,0 m de altura, cuya planta tiene la forma y dimensiones indicadas en la figura. 4 m m 4 m m,5 m m Hallamos el área de la base: Área rectángulo A 4 m Área semicírculo A π,5,5 m Área base A + A +,5 5,5 m m

15 8 Pág. 7 Por tanto, el volumen es: V (Área de la base) altura 5,5,0 5,7 m 7 Cuál es el peso de un contenedor de embalaje de 0,5 m 0,5 m,0 m, sabiendo que se ha construido con planchas de aglomerado que pesan a razón de kg/m?,0 m 0,5 m 0,5 m Hallamos la superficie del contenedor: S (0,5 ) + 4 (,0 0,5),9 m Por tanto, el contenedor pesa:,9 4,8 kg 8 Un bidón cilíndrico de 0 cm de diámetro pesa, vacío, 5 kg, y lleno de agua, 7,608 kg. Cuál es la altura del bidón? Peso del agua 7,608 5,608 kg Hay,608 litros de agua,608 dm 60 de agua. Volumen del agua: V 608 πr h h 9 Observa la figura y calcula: 8 m 608 π 5 cm de altura tiene el bidón. m 4 m 0 m a) El coste de la construcción del tejado, sabiendo que ha salido a 85 el metro cuadrado. b) El número de radiadores que se deben instalar en su interior, sabiendo que se necesita un radiador por cada 5 m. a) d d 7 8,54 m La superficie del tejado es: A T (0 8,54) 5,4 m Coste 5, b) Calculamos el volumen de la construcción: V T m Número de radiadores radiadores 5 5 m

16 8 Pág. 8 0 Una empresa de carburantes tiene cuatro tanques esféricos de 0 m de diámetro y seis tanques cilíndricos de 0 m de altura y 0 m de radio en la base. Para evitar la corrosión, se contrata a un equipo de operarios que cobra, por pintar los depósitos, /m. Calcula el coste total de la operación. Superficie esférica 4πr 4π 0 400π m Superficie cilíndrica πrh π π m Bases del cilindro (πr ) π 0 00π m Como hay 4 tanques esféricos y 6 cilíndricos, el área total es: A T 4 400π + 6 (400π + 00π) 5 00π 6 8 m El coste total es: Se introduce una bola de piedra de cm de diámetro en un recipiente cúbico de cm de arista lleno de agua y después se retira. Calcula: a) La cantidad de agua que se ha derramado. b) La altura que alcanza el agua en el recipiente después de sacar la bola. a) Volumen de la bola V b 4 π 6 88π 904, cm El volumen que se ha derramado es el volumen de la bola; es decir, 904, cm. b) Volumen del recipiente V r 7 cm cm cm V 8,68 h h h Volumen de agua que queda después de sacar la bola: V V r V b , 8,6 8, ,7 cm es la altura que alcanza el agua después de sacar la bola. Calcula el volumen de los cuerpos de revolución que genera cada una de estas figuras planas al girar alrededor del eje indicado: A B 7 cm cm cm cm

17 8 Pág. 9 A cm cm cm Volumen del cilindro V π 4 6π cm Volumen del cono V π 9π cm Volumen total V + V 6π + 9π 45π 4, cm B Volumen del cilindro V π 7π cm cm cm cm 4 8π cm Volumen total V + V 7π + 8π 45π 4, cm Volumen de la semiesfera V ( π ) a) Qué vaso tiene mayor capacidad? b) Cuántos litros son 0 de estos vasos? a) Volumen del cilindro π,5 8 50π 57 cm Volumen del tronco de cono: 8 + cm cm 8 + (8 + ) Volumen cono grande V G π 4 7π cm Volumen cono pequeño V P π 6 64π cm Volumen tronco de cono V T V G V P 7π 64π 59,09 cm El tronco de cono tiene mayor capacidad que el cilindro. b) Cuántos litros son 0 de estos vasos? Vaso cilíndrico 57 cm cm,57 dm,57 l Vaso tronco de cono 59,09 cm 0 590,9 cm,5909 dm,5909 l

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Volumen de los cuerpos geométricos.

Volumen de los cuerpos geométricos. 10 Volumen de los cuerpos geométricos. Objetivos En esta quincena aprenderás a: Comprender el concepto de medida del volumen y conocer y manejar las unidades de medida del S.M.D. Obtener y aplicar expresiones

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS 14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 14.1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. a) b) 6 6 6 5 1 a) El cuerpo es un cubo: A 6a 6 6 6

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

PROBLEMAS DE GEOMETRÍA. 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?.

PROBLEMAS DE GEOMETRÍA. 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?. PROBLEMAS DE GEOMETRÍA 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?. Sol: 36 m 3 2. Una caja de zapatos tiene de dimensiones 3, 4 y 2 dm. Qué volumen

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 PROBLEMAS MÉTRICOS EJERCICIOS PROPUESTOS 7.1 La hipotenusa y uno de los catetos de un triángulo rectángulo miden 4 y centímetros, respectivamente. Halla las medidas de sus ángulos. cm B 4 cm Cp arc 4

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso:

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso: GEOMETRIA 8 AÑO 2011 1 GUÍA DE APOYO AL TEMA : GEOMETRÍA Prof. Juan Schuchhardt E. Nombre:.Curso: UNIDAD #4 GEOMETRIA Tema # 2: Cuerpos geométricos En esta unidad aprenderás a: Identificar cuerpos poliédricos,

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

Tema 6: Geometría en dimensión 3

Tema 6: Geometría en dimensión 3 Tema 6: Geometría en dimensión 3 Contenidos: 1. Introducción. 2. Poliedros. 3. Volumen. Capacidad. Unidades. 4. Volumen de sólidos básicos: prismas y cilindros. 5. Volumen de pirámides y conos. 6. Volumen

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

Volumen de los cuerpos geométricos

Volumen de los cuerpos geométricos Volumen de los cuerpos geométricos Contenidos 1. Volumen y capacidad Unidades de volumen Capacidad y volumen 2. Volumen de un prisma Cubo Ortoedro Resto de prismas 3. Volumen de una pirámide Relación entre

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 PORCENTAJES 1.- El precio de un libro sin IVA es de 50. Si nos cobran 55, cuàl es el porcentaje del IVA que nos han cobrado. 2.-En un tienda hemos comprado

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

8 LONGITUDES, ÁREAS Y VOLÚMENES

8 LONGITUDES, ÁREAS Y VOLÚMENES 8 LONGITUDES, ÁRES Y VOLÚMENES PR EMPEZR 1 Dibuja un trapecio isósceles de 5 centímetros de altura y bases de 18 y 10 centímetros, respectivamente, y calcula su área y su perímetro. omo es isósceles, dos

Más detalles

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Problemas de Optimización J. Labrin - G.Riquelme 1. Una caja con base cuadrada y parte superior abierta debe

Más detalles

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros.

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros. CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS Equilátero Polígonos Según los lados Isósceles Figuras geometrícas Nombre según los lados 3-Triángulo 4-Cuadrilátero 5-Pentágono 6-Hexágono 7-Heptágono

Más detalles

Capítulo 9: Geometría en el espacio. Globo terráqueo

Capítulo 9: Geometría en el espacio. Globo terráqueo Matemáticas orientadas a las enseñanzas aplicadas: 3º A de ESO Capítulo 9: Geometría en el espacio. Globo terráqueo Autoras: Milagros Latasa Asso y Fernanda Ramos Rodríguez Ilustraciones: Milagros Latasa

Más detalles

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE º ESO PENDIENTE TEMA 5: ÁLGEBRA: MONOMIOS Y POLINOMIOS- OPERACIONES-, PRODUCTOS NOTABLES, ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA,

Más detalles

Aplicaciones de Máximos y Mínimos

Aplicaciones de Máximos y Mínimos Aplicaciones de Máximos y Mínimos Los métodos para calcular los máximos y mínimos de las funciones se pueden aplicar a la solución de algunos problemas prácticos. Estos problemas pueden expresarse verbalmente

Más detalles

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS 1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS

Más detalles

5. De acuerdo con la anterior información, Pablo dice que la casa de Rita está ubicada a a. 16,02 Km. b. 13,06 Km c. 11,26 Km. d. 10,62 Km.

5. De acuerdo con la anterior información, Pablo dice que la casa de Rita está ubicada a a. 16,02 Km. b. 13,06 Km c. 11,26 Km. d. 10,62 Km. UNA CARRERA DE OBSERVACIÓN IGNACIO RENDON MONTENEGRO Un grupo de amigos se citó un sábado por la mañana para realizar una carrera de observación desde la ciudad hasta la Laguna El encanto. El sitio de

Más detalles

Dibuja figuras tridimensionales (páginas 514 517)

Dibuja figuras tridimensionales (páginas 514 517) A NOMRE FECHA PERÍODO Dibuja figuras tridimensionales (páginas 514 517) Las figuras tridimensionales se llaman sólidos. Puedes usar un dibujo en perspectiva para mostrar las tres dimensiones de un sólido

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos Áreas de cuerpos geométricos Contenidos 1. Área de los prismas Área de los prismas 2. Área de la pirámide y del tronco de pirámide Área de la pirámide Área del tronco de pirámide 3. Área de los cuerpos

Más detalles

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud).

Para encontrar el área de un rectángulo se debe calcular el producto de su base (ancho) y su altura (longitud). Materia: Matemática de Séptimo Tema: Área de rectángulos Qué pasaría si los padres de Ed le estuvieran comprando una cama nueva y él tuviera que decidir qué tamaño de cama es mejor para él? En un principio

Más detalles

5.1 RAZÓN DE CAMBIO 5.2 PROBLEMAS PRÁCTICOS DE MÁXIMOS Y MÍNIMOS 5.3 DIFERENCIALES Y APROXIMACIONES 5.4 POLINOMIO DE TAYLOR

5.1 RAZÓN DE CAMBIO 5.2 PROBLEMAS PRÁCTICOS DE MÁXIMOS Y MÍNIMOS 5.3 DIFERENCIALES Y APROXIMACIONES 5.4 POLINOMIO DE TAYLOR 5 5. AZÓN DE CAMBIO 5. POBLEMAS PÁCTICOS DE MÁXIMOS Y MÍNIMOS 5. DIFEENCIALES Y APOXIMACIONES 5.4 POLINOMIO DE TAYLO OBJETIVOS: SE PETENDE QUE EL ESTUDIANTE: esuelva problemas de razón de cambio. esuelva

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras El Teorema de Pitágoras Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... Índice de contenidos. 1. Comprobación del teorema de Pitágoras. 2. Cálculo de un lado en un triángulo rectángulo. 3.

Más detalles

EJERCICIOS MÓDULO 4. 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9?

EJERCICIOS MÓDULO 4. 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9? EJERCICIOS MÓDULO 4 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9? ) Cuántos lados tiene un polígono en el cual la suma de las medidas de los ángulos interiores es cinco

Más detalles

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente:

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente: Cuadernillo 2 Actividades a realizar para la superación de la materia pendiente: Matemáticas 3º ESO Recuerda que: Habrá 2 cuadernillos, cada uno con la mitad de las unidades que se trabajaron en el curso

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

Tema 7. Problemas de ecuaciones de primero y segundo grado

Tema 7. Problemas de ecuaciones de primero y segundo grado Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su

Más detalles

Respuestas a los ejercicios y problemas

Respuestas a los ejercicios y problemas s a los ejercicios y problemas Unidad I. La medición y sus instrumentos Tema 2. Medidas de longitud y sus conversiones 4. En qué utilizará la escuadra don Andrés al construir el juguetero de la señora

Más detalles

Menú degustación: Miscelánea de ejercicios resueltos

Menú degustación: Miscelánea de ejercicios resueltos Menú degustación: Miscelánea de ejercicios resueltos 1. APERITIVO: Proporcionalidad Si el 01/02/2011 anotáis por la mañana la lectura de 01,0 m de consumo de agua y el 15/02/2011 por la mañana anotáis

Más detalles

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides.

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides. LOS POLIEDROS Una caja de zapatos, un dado y muchos otros objetos con superficies planas que ves a tu alrededor, tienen forma poliédrica. Se llaman poliedros a los cuerpos geométricos cuyas caras son polígonos.

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

Los Cuerpos Geométricos

Los Cuerpos Geométricos 06 Lección Apertura Matemáticas Los Cuerpos Geométricos APRENDO JUGANDO Competencia Describe qué son e identifica las características de los cuerpos geométricos. Diseño instruccional El maestro comenta

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

23, 39, 18, 27, 121, 53, 91, 147, 6, 123, 61, 19, 87, 47

23, 39, 18, 27, 121, 53, 91, 147, 6, 123, 61, 19, 87, 47 . Segundo de ESO.. Números, medidas y operaciones... Divisibilidad. Di cuáles de los siguientes números son primos y cuáles son compuestos:, 9, 8, 7,,, 9, 7, 6,, 6, 9, 87, 7 Primos:,, 6, 9, 7 Compuestos:

Más detalles

Ejercicios para aprender a derivar

Ejercicios para aprender a derivar Ejercicios para aprender a derivar Derivación de polinomios y series de potencias Reglas de derivación: f ( ) k f '( ) 0 f ( ) a f '( ) a n n f ( ) a f '( ) an f ( ) u( ) + v( ) f '( ) u' + v' Ejemplos:

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO

POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO POLÍGONOS Polígono es la figura plana cerrada formada por n segmentos P 1P,PP3,P3P4,...,PnP1 ( n 3 ) llamados lados, los puntos P,P,... se llaman vértices. 1 Pn El ángulo

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

3 Sistemas de cálculo, unidades y operaciones

3 Sistemas de cálculo, unidades y operaciones 3 Sistemas de cálculo, unidades y operaciones El fontanero debe poder calcular la cantidad de tubos, de diferentes diámetors, que necesitará para hacer una instalación. Tubería de PVC Tubería de cobre

Más detalles

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA ANÁLISIS DIMENSIONAL. HOMOGENEIDAD TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S MAGNITUDES

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES Mucos problemas físicos dependen de alguna manera de la geometría. Uno de ellos es la salida de

Más detalles

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos. Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Measurement PRACTICE QUESTIONS Set #1/Grade 4/Spanish

Measurement PRACTICE QUESTIONS Set #1/Grade 4/Spanish Set #1/Grade 4/Spanish 1. El peso de una maleta es más bien como cuál de las siguientes medidas? A. 50 onzas B. 10 libras C. 5 galones D. 50 pintas. Un Boeing 777 es un avión muy grande. Examina en el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

- Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz superficie área volumen

- Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz superficie área volumen Descripción curricular: - Nivel: 4º medio - Sector: Matemática - Unidad temática: Geometría. - Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz

Más detalles

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora.

Cálculo Diferencial Taller de pre-requisitos. 1. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. Cálculo Diferencial Taller de pre-requisitos. Exponentes. Simplifique las siguientes expresiones sin usar calculadora. p 6s t v 5p 6st 5 v, b) (x p x ) c) 0 6 y + y y. Multiplicación. Expanda el producto

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f representada en el margen, halla los máimos y los mínimos relativos y los intervalos de crecimiento

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 8 Problemas métricos ACTIVIDADES INICIALES 8.I. Qué forma geométrica tiene un contenedor? Calcula la superficie de la base, el área total y el volumen de un contenedor con los datos de la tabla anterior.

Más detalles

Múltiplos. Múltiplos. 1.- Cuántos kilómetros medirá una circunferencia que dé la vuelta a la Tierra pasando por los polos? -1-

Múltiplos. Múltiplos. 1.- Cuántos kilómetros medirá una circunferencia que dé la vuelta a la Tierra pasando por los polos? -1- 4.- MEDIDAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben dominar las relaciones entre las unidades de medida del sistema métrico decimal, usando múltiplos y submúltiplos sencillos,

Más detalles

Unidad IV. Volumen y capacidad

Unidad IV. Volumen y capacidad Volumen y capacidad Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es .- ESTÁTC DE LOS FLUDOS. HDROSTÁTC..1.- Ecuación fundamental de la estática de fluidos. La estática de fluidos es la parte de la mecánica de fluidos que estudia los fluidos en equilibrio, o dicho de otra

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 5 SEMEJZ EJERIIOS PROPUESTOS 5.1 Un triángulo puede definirse dando la medida de sus tres lados. Indica cuáles de las siguientes parejas de triángulos son semejantes. a) 5, 6, 7 y 15, 18, 0 b) 4, 6, 8

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

REPASO DE LA PRIMERA EVALUACIÓN

REPASO DE LA PRIMERA EVALUACIÓN REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,

Más detalles

3. Teorema de Pitágoras

3. Teorema de Pitágoras 3. Teorema de Pitágoras Taller de Matemáticas 3º ESO 1. Propiedades de los triángulos rectángulos. Rompecabezas sobre el teorema de Pitágoras 3. Aplicaciones del teorema de Pitágoras: cálculo de distancias

Más detalles

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 MATEMÁTICAS: º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 1.- Determina dos números cuya suma sea y tales que el producto de uno de ellos por el cubo del otro sea máimo. = 1 er número;

Más detalles

TEMA 6 SEMEJANZA DE TRIÁNGULOS

TEMA 6 SEMEJANZA DE TRIÁNGULOS Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Bisectrices. Incentro.

Bisectrices. Incentro. 78 CAPÍTULO 7: GEOMETRÍA DEL PLANO. Matemáticas 3º de ESO 1. LUGARES GEOMÉTRICOS Muchas veces definimos una figura geométrica como los puntos del plano que cumplen una determinada condición. Decimos entonces

Más detalles

DEPARTAMENTO DE MATEMÁTICAS TRABAJO DE VERANO 2014 CURSO: 2º ESO

DEPARTAMENTO DE MATEMÁTICAS TRABAJO DE VERANO 2014 CURSO: 2º ESO DEPARTAMENTO DE MATEMÁTICAS TRABAJO DE VERANO 01 CURSO: º ESO ALUMNO:... GRUPO:... Los alumnos con calificación SUSPENSA presentarán este trabajo el día del eamen de recuperación en septiembre. 1. Subraar

Más detalles

Actividades para la recuperación de Matemáticas de 1º de ESO. Nombre y apellidos:

Actividades para la recuperación de Matemáticas de 1º de ESO. Nombre y apellidos: 1 1.- Completa con el número que corresponda y explica en cada caso la propiedad que aplicas. a) 44 + 13 = 13 + b) 5 (7 + 8) = 35 + c) 133 = 86 100 14 = d) 12 ( + ) = 5 + 12 17 2.- Aplica los criterios

Más detalles

MATEMÁTICA. TRABAJO PRÁCTICO: Funciones de proporcionalidad

MATEMÁTICA. TRABAJO PRÁCTICO: Funciones de proporcionalidad ILSE-2º Año- Nombre y apellido: MATEMÁTICA TRABAJO PRÁCTICO: Funciones de proporcionalidad 1) En una librería decidieron aumentar todos los precios el 9%. a) Completar la lista de precios con los nuevos

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Distribución de conocimientos en la implementación de los programas de Matemáticas para la Enseñanza Primaria. Algunas sugerencias

Distribución de conocimientos en la implementación de los programas de Matemáticas para la Enseñanza Primaria. Algunas sugerencias Distribución de conocimientos en la implementación de los programas de Matemáticas para la Enseñanza Primaria. Algunas sugerencias Imagen cortesía de Stuart Miles en Freedigitalphotos.net Costa Rica 2014

Más detalles

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24 CUADERNO DE VERANO º ESO FRACCIONES. Efectúa las siguientes operaciones: a) 0 9 9 b) 0 0 7 c) d) 8 e) 7 9 : f) 9 9 7 : : ) El aire es una mezcla de gases. En la capa más próima a la superficie de la Tierra,

Más detalles

FIGURAS EN EL ESPACIO (1) Estudiar en el libro de Texto: Pág. 198-99 y 202-203

FIGURAS EN EL ESPACIO (1) Estudiar en el libro de Texto: Pág. 198-99 y 202-203 Estudiar en el libro de Texto: Pág. 198-99 y 202-203 FIGURAS EN EL ESPACIO (1) Medidas en prismas Estamos a principio de verano y la piscina está vacía. Sus dimensiones son de 25 m de largo, 10m de ancho

Más detalles

NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS

NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS 1º ESO Curso 2013/2014 NOMBRE: Nº: NOTA: FALTAS: TILDES: NOTA FINAL: 1.- El domingo salí de casa con una cierta cantidad de dinero. Pagué 860 céntimos en la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro.

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA: *Centro: Punto central.

Más detalles

Guía de Matemáticas Segundo Grado

Guía de Matemáticas Segundo Grado Guía de Matemáticas Segundo Grado 1 A cuántos gramos equivale una libra? a) 0022 b) 022 c) 2020 d) 22 2 A cuántos centímetros equivale una pulgada? a) 2.54 cm b) 2.5 cm c) 2 cm d) 1 cm 3 A cuántos kilómetros

Más detalles

A RG. Pirámide recta de base cuadrada y altura 50 mm. Pirámide oblicua de base triangular. Pirámide oblicua de base triángulo equilátero

A RG. Pirámide recta de base cuadrada y altura 50 mm. Pirámide oblicua de base triangular. Pirámide oblicua de base triángulo equilátero de base de base Para dibujar las pirámides, hay que tener en cuenta que todas sus aristas laterales concurren en un punto denominado vértice de la pirámide. dicho esto veamos el dibujo de los distintos

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = =

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = = NÚMEROS NATURALES Y ENTEROS. Efectúa a) ( ) ( ) 8 ( ) b) ( ) ( ) c) ( ) d) ( ) e) ( 8) ( ) f) ( ) ( ) g) [ ( ) ] h) ( ) ( ( ) ) ( ) ( ). Al enchufar la corriente a un congelador, la temperatura desciende

Más detalles

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no:

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (o relación entre magnitudes), de forma que cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

CONCURSO DE MATEMÁTICAS PANGEA

CONCURSO DE MATEMÁTICAS PANGEA CONCURSO DE MATEMÁTICAS PANGEA 2015 PRIMERA RONDA CURSO: 2º E.S.O. 1. Tenéis 60 minutos para resolver las 25 preguntas del cuadernillo. 2. Rellenad correctamente vuestros datos personales en la HOJA DE

Más detalles

3.1.1. Operaciones. a a a a -2 3 2 -3 3-3. a a a a. a) 6 12 27 16 3 12 8-1 5-1 3 3-1 2 3 2 3 2 3 4 4-4 3 1-1 1 3 2 9 300 3.600 720 3.

3.1.1. Operaciones. a a a a -2 3 2 -3 3-3. a a a a. a) 6 12 27 16 3 12 8-1 5-1 3 3-1 2 3 2 3 2 3 4 4-4 3 1-1 1 3 2 9 300 3.600 720 3. 74 Ejercicios y Problemas de Matemáticas de º a º de ESO. Tercero de ESO.. Números, medidas y operaciones... Operaciones. Reduce las expresiones siguientes a una sola potencia: a) c) 6 - - - - 5 - - -

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles