PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA"

Transcripción

1 PÁCTICA Nº 5. CICUITOS DE COIENTE CONTINUA OBJETIVO Analzar el funconamento de dferentes crcutos resstvos empleando la Ley de Ohm y las Leyes de Krchhoff. FUNDAMENTO TEÓICO Corrente Eléctrca Una corrente eléctrca está formada por cargas que se desplazan de una regón a otra. Cuando este movmento se lleva a cabo dentro de una trayectora conductora que forma un crcuto cerrado, a la msma se le conoce como Crcuto Eléctrco. En los dferentes materales por los que crcula corrente eléctrca, las partículas en movmento pueden ser postvas o negatvas. En los metales las partículas móvles son los electrones, mentras que en un gas onzado (plasma) o en una solucón ónca, las cargas móvles son tanto los electrones como los ones con carga postva. En materales semconductores como el germano y el slco, la conduccón se realza en parte por los electrones y en parte por el movmento de vacantes o huecos, es decr, por poscones donde falta un electrón y que actúan como cargas postvas. Se defne la corrente eléctrca a través de un área de seccón transversal A, como la carga neta que fluye a través del área por undad de tempo. Profa. Lsmarhen Larreal de Hernández 1

2 dq dt La undad de corrente en el SI es el Ampero ( A ), donde esstenca Eléctrca (1) 1A 1C. s La resstenca eléctrca de un objeto es una medda de su oposcón al paso de corrente. Fue descuberta en 187 por George Ohm en 187. La undad de la resstenca en el SI es el ohmo (Ω), donde 1 1V. Para su medcón en la práctca A exsten dversos métodos, entre los que se encuentra el uso de un ohmímetro. La resstenca de cualquer objeto depende úncamente de su geometría (longtud y área de la seccón transversal del elemento) y de su resstvdad (parámetro que depende del materal del elemento y de la temperatura a la cual se encuentre sometdo). Esto sgnfca que, dada una temperatura y un materal, la resstenca es un valor que se mantendrá constante. La resstenca de un materal puede defnrse como el cocente entre la dferenca de potencal aplcada en los extremos el elemento y la corrente que crcula por él, es decr: V () Ley de Ohm Establece que cuando se mantene constante la temperatura de un conductor metálco, la razón del voltaje aplcado entre sus extremos y la corrente que crcula por él, es un valor constante y representa la resstenca del msmo. Esta relacón se expresó en la ecuacón (). La Ley de Ohm tambén pude escrbrse como: V (3) Profa. Lsmarhen Larreal de Hernández

3 esstor Dspostvo de un crcuto fabrcado especalmente para que tenga un valor específco de resstenca entre sus extremos. Los resstores son elementos dspadores de energía. Dentro de un crcuto eléctrco se representa por: Fgura 5.1. epresentacón del resstor en un crcuto eléctrco. Los resstores en un crcuto eléctrco tenen los sguentes usos: Lmtar la corrente que crcula por una rama del crcuto. En algunas aplcacones ellos pueden actuar como un protector de otros elementos del crcuto, por ejemplo los dspostvos semconductores o sensores de movmento. Dvden el voltaje aplcado cuando se desea que el msmo aparezca sólo en una determnada parte del crcuto. Utlzan la energía eléctrca aplcada, por ejemplo los elementos de calefaccón eléctrca y las lámparas ncandescentes, en este caso trabajan como un dspador de energía. educen o amortguan las osclacones ndeseables por medo de la dspacón de energía. Los resstores en los crcutos se pueden conectar entre sí tanto en sere, paralelo o sere-paralelo. A contnuacón se presentan las característcas de estas conexones. esstores en Sere Cuando se tene un conjunto de resstores conectados en sere, la corrente que crculas a través de ellos es la msma. Consderemos dos resstores conectados en sere, como los mostrados en la fgura 5.. Profa. Lsmarhen Larreal de Hernández 3

4 1 5 F V Fgura 5.. esstores conectados en sere. La corrente que crcula por los dos resstores es la msma, por lo que aplcando la ecuacón (3) la dferenca de potencal en cada uno de ellos será: V, V 1 1 La dferenca de potencal total o el voltaje total sumnstrado por la fuente de la fgura 5. es: V V V ( ) V V 1 y Por lo tanto, la resstenca equvalente de un conjunto de resstores conectados en sere será: eq n 1 (4) esstores en Paralelo Cuando se tene un conjunto de resstores conectados en paralelo, la dferenca de potencal entre los extremos de cada uno de ellos es la msma. Consderemos dos resstores conectados en paralelo como los mostrados en la fgura 5.3. Profa. Lsmarhen Larreal de Hernández 4

5 1 V V Fgura 5.3. esstores conectados en paralelo. Al aplcar la ecuacón (3), las correntes que crculan por cada resstor son: V V, 1 1 La corrente total para los dos resstores es: V V V V 1 La relacón V representa el nverso de la resstenca equvalente de los dos resstores conectados en paralelo. Por lo tanto, cuando se dspone de un conjunto de resstores conectados en paralelo, la resstenca equvalente del conjunto está dada por: n 1 1 eq (5) 1 esstores Sere-Paralelo En la fgura 5.4, se representa una asocacón sere-paralelo de cnco resstores. Los resstores 1 y se encuentran conectados en paralelo, por los que su resstenca Profa. Lsmarhen Larreal de Hernández 5

6 equvalente sería Este resstor equvalente quedaría conectado en sere con 3 y 4, donde la resstenca equvalente del conjunto sería Fnalmente este resstor equvalente estaría conectado en paralelo con 5, por lo que la resstenca equvalente entre los puntos ab quedaría como ab a b a b a b a ab b Fgura 5.4. esstores conectados en sere-paralelo. Profa. Lsmarhen Larreal de Hernández 6

7 Las propedades de las asocacones en sere y en paralelo lo serán tambén de cada una de las subasocacones de la asocacón sere-paralelo. Potenca Eléctrca Cuando una carga pasa a través de un elemento del crcuto, el campo eléctrco realza trabajo sobre la carga. El trabajo realzado sobre una dq que pasa por un elemento del crcuto es: dw V dq (6) Escrbendo la carga en funcón de la corrente que crcula por el elemento tenemos que dq dt, y la ecuacón (6) se puede escrbr como: dw V dt (7) El trabajo representa la energía eléctrca transferda haca dentro del elemento del crcuto. La razón temporal de esta transferenca se conoce como potenca (P). dw P V dt (8) La potenca, en el sstema nternaconal (SI) se expresa en Vatos W J s. Para el caso de un resstor, la ecuacón (8) tambén puede escrbrse como: V P V (9) En la ecuacón (9) el térmno representa la energía dspada por el resstor. Para una fuente, la potenca entregada por ella es: Profa. Lsmarhen Larreal de Hernández 7

8 P (10) Leyes de Krchhoff Exsten muchos crcutos eléctrcos que no tenen componentes n en sere, n en paralelo, n sere-paralelo. En estos casos las reglas de solucón no pueden ser aplcadas y entonces se deben emplear métodos más generales. El físco alemán Gustavo Krchhoff ( ) propuso unas reglas para el estudo de estas leyes. Una red eléctrca consste, en general, en un crcuto complejo en cual fguran resstencas, motores, condensadores y otros elementos. Aquí sólo se consderan redes con resstencas óhmcas y fuerzas electromotrces (voltajes o tensones). Para averguar cómo se dstrbuyen las correntes en una red de conductores se recurre a las Leyes de Krchhoff. En una red, se llama nodo a todo punto donde convergen tres o más conductores. Consttuyen una rama todos los elementos (esstencas, Generadores, ) comprenddos entre dos nodos adyacentes. Consttuyen una malla todo crcuto (cerrado) que puede ser recorrdo volvendo al punto de partda sn pasar dos veces por el msmo elemento. En la Fgura 5.5 se muestra un ejemplo de red y se dentfcan los nodos, ramas y mallas. A B D C E Fgura 5.5. Crcuto para vsualzar nodos, ramas y mallas. Profa. Lsmarhen Larreal de Hernández 8

9 En la fgura 5.5, los nodos están representados por los puntos (A, B, C, D, E), las ramas son (AD, BC, AB, etc.), y la mallas serán (ABCA, DCED, etc.). Evdentemente, la ntensdad de la corrente será la msma en cada uno de los elementos que ntegran una rama. Para los nodos y las mallas tenemos las sguentes leyes. Prmera Ley de Krchhoff (Ley de Nodos o LKC) La suma de las correntes que entran a cualquer nodo debe ser gual a la suma de las correntes que salen de ese msmo nodo, es decr: entran salen (11) Esta ley expresa smplemente que, en régmen estaconaro de corrente, la carga eléctrca no se acumula en nngún nodo de la red. Segunda Ley de Krchhoff (Ley de Mallas o LKV) La suma algebraca de las f.e.m. en una malla cualquera de una red más la suma algebraca de las dferencas de potencales en los elementos de una malla deben ser guales a cero, es decr: f. e. m 0 (1) La aplcacón de las Leyes de Krchhoff a una red de conductores y generadores se faclta utlzando las sguentes reglas práctcas: 1. S hay n nodos en la red, se aplcará la ley de los nudos a n 1 de estos nodos, pudéndose elegr cualesquera de ellos.. S es r el número de ramas en la red (que será el número de ntensdades a determnar) y n el número de nudos, el número de mallas ndependentes es mr n 1. Se aplcará la ley de las mallas a estas m mallas, y dspondremos así Profa. Lsmarhen Larreal de Hernández 9

10 de r m n 1 ecuacones ndependentes que nos permtrán determnar las ntensdades desconocdas. Convencones para la aplcacón de las Leyes de Krchhoff Al resolver un crcuto con las Leyes de Krchhoff se emplearán las sguentes convencones: 1. Se fjan arbtraramente el sentdo de crculacón de las correntes de cada rama, tenendo en cuenta la regla de los nudos.. Las mallas se pueden recorrer en cualquera de los dos sentdos (horaro o anthoraro). 3. Al recorrer una malla, cuando pasemos del polo negatvo al postvo de una batería, esto representa una subda de tensón y el potencal es ese elemento tendrá un sgno postvo. S pasamos del polo postvo al negatvo, representa una caída de potencal y el potencal tendrá un sgno negatvo. 4. Cuando la corrente pasa a través de una resstenca tene el msmo sentdo de recorrdo de la malla, el potencal descende y será gual a, mentras que s la corrente crcula en sentdo contraro al del recorrdo de la malla el potencal aumenta y su valor será. 5. Cuando al resolver el problema, resulta una ntensdad negatva, sgnfca, que su sentdo real es contraro al que se le asgnó. En la fgura 5.6 se lustran las convencones de sgnos antes explcadas. Las flechas rojas representan el sentdo de recorrdo de la malla. Profa. Lsmarhen Larreal de Hernández 10

11 V V V V Fgura 5.6. Convencón de sgno para los elementos del crcuto. MATEIALES Y EQUIPO EQUEIDO Fuentes de almentacón DC. Multímetro dgtal. esstencas fjas. Cables para conexones. POCEDIMIENTO EXPEIMENTAL 1. Complete la tabla mostrada a contnuacón. Tabla 5.1 Etapa Descrpcón Fundamentacón teórca eferencas bblográfcas Profa. Lsmarhen Larreal de Hernández 11

12 . Monte el crcuto ndcado en la fgura V Voltos Fgura 5.7. Crcuto Sere. 3. ealce con el multímetro las medcones ndcadas en las tablas 5. y Calcule utlzando Ley de Ohm la corrente y el voltaje en cada una de las resstencas. Emplee para ello los valores meddos de resstencas y de voltaje en la fuente. Tabla 5. Valor Nomnal Valor Meddo Voltaje Corrente Meddo Teórco Medda Teórca 1 3 esstenca total en sere Corrente total en sere S S Tabla 5.3 Valor Meddo Valor Calculado Profa. Lsmarhen Larreal de Hernández 1

13 5. Analce los resultados obtendos. 6. Monte el crcuto ndcado en la fgura V Voltos Fgura 5.8. Crcuto Paralelo. 7. ealce con el multímetro las medcones ndcadas en las tablas 5.4 y Calcule utlzando Ley de Ohm la corrente y el voltaje en cada una de las resstencas. Emplee para ello los valores meddos de resstencas y de voltaje en la fuente. Tabla 5.4 Valor Nomnal Valor Meddo Voltaje Corrente Meddo Teórco Medda Teórca 1 Profa. Lsmarhen Larreal de Hernández 13

14 esstenca total en paralelo Corrente total en paralelo P P Tabla 5.5 Valor Meddo Valor Calculado 7. Analce los resultados obtendos. 8. Monte el crcuto mostrado en la fgura 5.9 y complete las tablas 5.6 y Calcule utlzando Ley de Ohm la corrente y el voltaje en cada una de las resstencas. Emplee para ello los valores meddos de resstencas y de voltaje en la fuente. 1 V Voltos 3 4 Fgura 5.9. Crcuto Sere-paralelo. Tabla 5.6 esstenca equvalente Corrente total T eq Valor Meddo Valor Calculado Profa. Lsmarhen Larreal de Hernández 14

15 Tabla 5.7 Valor Valor Voltaje Corrente Nomnal Meddo Meddo Teórco Medda Teórca Analce los resultados obtendos. 11. Complete la sguente tabla. Tabla 5.8 Etapa Descrpcón Fundamentacón teórca eferencas bblográfcas 1. ealce el montaje del crcuto mostrado en la fgura Profa. Lsmarhen Larreal de Hernández 15

16 4 1 1 Voltos 3 5 Voltos Fgura Crcuto para aplcar las Leyes de Krchhoff. 13. Con la ayuda del multímetro complete la tabla Utlzando los valores reales de las resstencas, calcule aplcando las reglas de Krchhoff las correntes que pasan por cada rama del crcuto, y con la Ley de Ohm la dferenca de potencal en cada una de ellas. egstre los resultados en la tabla 5.9. Valor Nomnal Valor Meddo Voltaje Teórco Voltaje Meddo Corrente Teórca Corrente Medda Potenca Eléctrca Tabla Profa. Lsmarhen Larreal de Hernández 16

17 15. Analce los resultados obtendos. Etapa Descrpcón Conclusones Profa. Lsmarhen Larreal de Hernández 17

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

Tema 1. Conceptos Básicos de la Teoría de Circuitos

Tema 1. Conceptos Básicos de la Teoría de Circuitos Tema. Conceptos Báscos de la Teoría de Crcutos. Introduccón. Sstema de undades.3 Carga y corrente.4 Tensón.5 Potenca y energía.6 Ley de Ohm.7 Fuentes ndependentes.8 Leyes de Krchhoff.9 Dsores de tensón

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE PRACTCA - 8 HUNT PARA NTRUMNTO D MDCÓN D CORRNT - Fnaldades 1.- Convertr un dspostvo fundamental de medcón (alvanómetro) en un mlamperímetro con márenes de medda más elevados. 2.- Calcular el valor del

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

UNNE Facultad de Ingeniería UNIDAD III: CORRIENTE ELECTRICA Y CIRCUITOS ELÉCTRICOS. Indice

UNNE Facultad de Ingeniería UNIDAD III: CORRIENTE ELECTRICA Y CIRCUITOS ELÉCTRICOS. Indice UNIDAD III: COIENTE ELECTICA Y CICUITOS ELÉCTICOS Desplazamento de cargas eléctrcas. Intensdad y densdad de corrente. Undades. esstenca y resstvdad. Ley de OHM. aracón de la resstvdad con la temperatura.

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

ELEMENTOS DE ELECTRICIDAD BASICA

ELEMENTOS DE ELECTRICIDAD BASICA MODULO 1 ELEMENTOS DE ELECTRICIDAD BASICA A contnuacón se resumen algunos elementos de Electrcdad Básca que se supone son conocdos por los estudantes al ngresar a la Unversdad DESCUBRIMIENTO DE LA ELECTRICIDAD:

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

A TEORÍA DE CIRCUITOS I CAPÍTULO 1: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF

A TEORÍA DE CIRCUITOS I CAPÍTULO 1: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF A.4. TEORÍA DE CIRCUITOS I CAPÍTULO : CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF Cátedra de Teoría de Crcutos I Edcón 5 Capítulo I: CONCEPTOS Y DEFINICIONES. LEYES DE KIRCHHOFF. Los crcutos eléctrcos

Más detalles

Mediciones eléctricas X

Mediciones eléctricas X Medcones eléctrcas X Proesor: Gabrel Ordóñez Plata Ampérmetro Sstema Eléctrco Vóltmetro Clase Prncpo de operacón Subclase Campo de aplcacón Electromagnétco Electrodnámco Interaccón entre correntes y campos

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de Ingenería Eléctrca E.T.S. de Ingeneros Industrales Unversdad de Valladold 2003/2004 MÁQUINAS ELÉCTRICAS: MÁQUINA DE CORRIENTE CONTINUA 3º DE INGENIEROS INDUSTRIALES Boletín de Problemas MÁQUINA

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

Tema 3: Adaptadores de Señal

Tema 3: Adaptadores de Señal Tema 3: Adaptadores de Señal Sstema GENERAL de nstrumentacón (bloques( funconales): Señal sensor Fltrado, A/D Amplfcacón Rado, nternet bus de datos Medo Sensor prmaro Transductor de entrada Adaptacón de

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

DE LA ASIGNATURA DE FÍSICA Y QUÍMICA

DE LA ASIGNATURA DE FÍSICA Y QUÍMICA GUÍA DIDÁCTICA DE LA ASIGNATURA DE FÍSICA Y QUÍMICA SEGUNDO CURSO BLOQUE UNO Tabla de contendo DESARROLLO POR BLOQUES... 3 BLOQUE 1: Electrcdad y magnetsmo... 5 Objetvos... 5 Destrezas con crteros de desempeño...

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

ELECTRICIDAD II - INDICE TEMÁTICO

ELECTRICIDAD II - INDICE TEMÁTICO ELECTRICIDAD II - INDICE TEMÁTICO ELECTRODINÁMICA 1 ELECTRICIDAD II - INDICE TEMÁTICO...1 EFECTOS MAGNÉTICOS DE LA CORRIENTE ELÉCTRICA...2 CAMPO MAGNÉTICO...2 Cómo decrece el campo magnétco con la dstanca?:...2

Más detalles

3. DETECTORES ÓPTICOS

3. DETECTORES ÓPTICOS C3-Detectores 1 3. DETECTORES ÓPTICOS 3.1 Detectores: clasfcacón y prncpos de operacón 3.1.1 Efectos térmcos y fotoeléctrcos. Exsten dos tpos de foto-detectores que son de uso común: Detectores térmcos:

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Electrónicos y Fotónicos

Electrónicos y Fotónicos 2º parcal de Tecnología y omponentes Electróncos y Fotóncos, GTE. 1 Unversdad de Sevlla Escuela Superor de ngeneros DEPARTAMENTO DE NGENERÍA ELETRÓNA APUNTES DEL SEGUNDO PARAL DE LA ASGNATURA: Tecnología

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes

TEOREMAS DE CIRCUITOS ELÉCTRICOS. 2.1 Teoremas de THEVENIN Y NORTON y MILLMAN. Pasivado de fuentes TOMS D IUITOS LTIOS TOMS D IUITOS LÉTIOS. Teoremas de VNIN Y NOTON y MILLMN Pasvado de fentes Una fente qeda pasvada cando el módlo de s magntd eléctrca se hace cero (No tene más capacdad de aportar energía

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

PRACTICA 2. DETERMINACION DE UNA CONSTANTE DE ACIDEZ EMPLEANDO MEDIDAS POTENCIOMETRICAS Y CONDUCTIMETRICAS SIMULACION DE UN CONDUCTIVIMETRO

PRACTICA 2. DETERMINACION DE UNA CONSTANTE DE ACIDEZ EMPLEANDO MEDIDAS POTENCIOMETRICAS Y CONDUCTIMETRICAS SIMULACION DE UN CONDUCTIVIMETRO EXPERIMENTACION EN QUIMICA FISICA 2º Curso er Cuatrmestre Ingenería Técnca Industral - Especaldad en Químca Industral Escuela Unverstara de Ingenería Técnca Industral PRACTICA 2. DETERMINACION DE UNA CONSTANTE

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 )

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 ) El amplfcador operaconal Símbolos y termnales El amplfcador operaconal op amp es un crcuto ntegrado básco utlzado en crcutos analógcos. Aplcacones: amplfcacón/escalamento de señales de entrada nversón

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

TERMÓMETROS Y ESCALAS DE TEMPERATURA

TERMÓMETROS Y ESCALAS DE TEMPERATURA Ayudantía Académca de Físca B EMPERAURA El concepto de temperatura se basa en las deas cualtatvas de calente (temperatura alta) y río (temperatura baja) basados en el sentdo del tacto. Contacto térmco.-

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

INTRODUCCION A LOS METODOS ELECTROANALITICOS

INTRODUCCION A LOS METODOS ELECTROANALITICOS Introduccón a los Métodos Electro-analítcos 2 Tema 7 INTRODUCCION A LOS METODOS ELECTROANALITICOS Los métodos electroquímcos de análss, o métodos electro-analítcos, son, en general, menos utlzados que

Más detalles

Bloque 1 Conceptos fundamentales de los circuitos eléctricos. Teoría de Circuitos

Bloque 1 Conceptos fundamentales de los circuitos eléctricos. Teoría de Circuitos Bloqe Conceptos fndamentales de los crctos eléctrcos Teoría de Crctos .. Magntdes báscas. Crtero de sgnos. Lemas de Krchhoff Introdccón Electromagnetsmo: Estda los campos eléctrcos y magnétcos y s nteraccón

Más detalles

TEORÍA DE MEDIDAS INTRODUCCIÓN

TEORÍA DE MEDIDAS INTRODUCCIÓN Teoría de Meddas TEORÍA DE MEDIDAS ITRODUCCIÓ Las cencas epermentales operan con valores numércos que se obtenen como resultado de efectuar meddas de varables, por ejemplo una temperatura, una longtud

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

1 Aplicaciones básicas del amplificador operacional

1 Aplicaciones básicas del amplificador operacional 1 Aplcacones báscas del amplfcador operaconal 15 1 Aplcacones báscas del amplfcador operaconal El objeto prncpal de esta práctca es la presentacón y expermentacón del amplfcador operaconal (AO) en confguracones

Más detalles

Se desea definir redes lineales y estudiar sus propiedades.

Se desea definir redes lineales y estudiar sus propiedades. apítulo 6 1 EES LINELES Se desea defnr redes lneales y estudar sus propedades. Luego se desarrollará el método de análss por superposcón para redes lneales; y dos mportantes casos partculares de este método:

Más detalles

COMPONENTES ELEMENTALES

COMPONENTES ELEMENTALES Capítulo COMPONENTES ELEMENTALES.. Modelos de Componentes Una componente eléctrca se descrbe por una relacón entre sus arables termnales, la que se denomna relacón de equlbro. El oltaje y la corrente,

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

5. LNAs y Mezcladores

5. LNAs y Mezcladores 5. Ns y Mezcladores 5.1 Característcas de los N El N (ow Nose mplfer es el prmer eslabón de la cadena del receptor. En el caso de un transceptor (transmsor-receptor que use FDD (frequency-dson duplexng

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

1.1 Sistema de unidades utilizados en la resolución de circuitos eléctricos

1.1 Sistema de unidades utilizados en la resolución de circuitos eléctricos IUITOS LTIOS LMTOS, LYS Y MÉTODOS D SOLUIÓ D IUITOS LÉTIOS. Sstema de ndades tlzados en la resolcón de crctos eléctrcos Las magntdes y ndades qe tlzaremos de acerdo al Sstema Métrco Legal rgentno (SIML),

Más detalles

AISLANTES Y CONDUCTORES UTILIZADOS EN LAS MÁQUINAS ELÉCTRICAS

AISLANTES Y CONDUCTORES UTILIZADOS EN LAS MÁQUINAS ELÉCTRICAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA AISLANTES Y CONDUCTORES UTILIZADOS EN LAS MÁQUINAS ELÉCTRICAS Mguel Angel Rodríguez Pozueta AISLANTES UTILIZADOS EN LAS MÁQUINAS

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Simulador Convertidores DC-DC

Simulador Convertidores DC-DC Dept d'eng. Electrònca, Elèctrca, Automàtca (DEEEA) Escola Tècnca Superor d'engnyera (ETSE) Unverstat ovra rgl (U) Proyecto Fnal de arrera Smulador onvertdores D-D AUTO: íctor Galera Ortega DIETO: Abdelal

Más detalles