EVALUACIÓN ECONÓMICA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EVALUACIÓN ECONÓMICA."

Transcripción

1 EVALUACIÓN ECONÓMICA. 1. ANTECEDENTES GENERALES. La evaluacó se podría defr, smplemete, como el proceso e el cual se determa el mérto, valor o sgfcaca de u proyecto. Este proceso de determacó os lleva a procedmetos que, dealmete, tedría que ser exactos y justos. S embargo, múltples aspectos de la evaluacó so puramete subjetvos, ya que depede de la opó persoal de algue de acuerdo a la forma e que percbó el ete a ser evaluado, bajo determadas crcustacas. La formulacó o preparacó del proyecto tee como tarea estmar las catdades de gresos y egresos geerados a través de la vda dada al proyecto. La evaluacó ecoómca del proyecto sumara los beefcos etos que se estma geerará el proyecto durate su exsteca, y emtrá u juco sobre la coveeca de llevarlo a cabo. 2. TÉCNICAS DE EVALUACIÓN. Exste crteros de evaluacó, los que el evaluador depededo del proyecto a evaluar ocupara e determada ocasó. A cotuacó, se expodrá dversas herrametas para evaluar ua versó dcado e que casos es recomedable usarlas, y su mportaca a la hora de tomar ua decsó ecoomce para el proyecto. 3. VALOR ACTUAL NETO (VAN). Es el método más coocdo y más aceptado. El VAN dca la catdad eta e el presete, que represeta la dfereca etre los gresos y los egresos e el tempo, a ua certa tasa de terés. El VAN se determa a través de la sguete expresó: F1 F2 VAN = I (1 + ) (1 + ) Dode: : Tasa de Descueto del Iversosta. F : Flujos etos de caja de cada perodo. Io : Iversó Ical. 2 F3 + (1 + ) Flujo de Caja Netos e el Tempo 3 F (1 + ) Como característcas del VAN, ésta cosdera el valor del dero e el tempo, cocetra además el valor total e u puto del tempo sedo este t = 0, es decr, el y por últmo, mde rqueza. Al mometo de estar evaluado u proyecto, este es retable s el valor actual de flujos de gresos es mayor que el valor actual de flujos de costos, cuado estos se actualza hacedo uso de la tasa de terés pertete para el versosta. VAN > 0: Implca Proyecto Retable. El VAN mde e moeda de hoy, cuato más rco es el versosta por vertr e el proyecto e lugar de hacerlo e la alteratva que rde la tasa de descueto. Evaluacó Ecoómca 1

2 Lo mportate de destacar es que u proyecto puede ser evaluado a dferetes tasas de descuetos, y co ello obteemos dferetes valores para el VAN. Por lo tato, la retabldad depede de la tasa de terés o tasa de descueto utlzada. Esto se vsualza a través del sguete gráfco: Gráfco: Valor Actual Neto (V.A.N.) 4. TASA INTERNA DE RETORNO (TIR). Es la tasa de terés que hace guales los gresos de los flujos de los período, a los egresos de cada período. Esta mde la retabldad, como u porcetaje. Este porcetaje o se calcula sobre la versó, so que sobre los saldos o recuperados e cada período. VAN (TIR) = 0 Gráfco: Tasa Itera de Retoro (T.I.R.) A través del sguete ejemplo se explcara el cocepto de la TIR. Evaluacó Ecoómca 2

3 Ejemplo: Cosderaremos ua versó de $1.000 durate cuatro años. Se obtee u beefco aual de $350. El versosta aceptaría vertr e este proyecto s le reporta a lo meos u 10% aual de retabldad. El versosta exgía u 10% de retomo, dode el proyecto le etregaba lo que pedía y $109,45 más. Sedo este el valor del VAN al 10%. O sea esta gaado más del 10%. Probablemete, s el versosta qusera u retomo de 11%, el proyecto se lo daría y aú sobraría u excedete. Como este excedete es todo del versosta, la TIR busca hasta cuato podrá gaar. Para ello buscará aquella tasa que haga el VAN gual a cero. El cálculo de la TIR para este caso, hacedo el VAN gual a cero, es de ua tasa de terés de 14,96%. Lo que dca que como máxmo se le puede pedr al proyecto u 14,96% de retoro. Para tomar ua decsó dode el proyecto es retable la TIR debe ser mayor la tasa de descueto, de lo cotraro el proyecto o es retable. Exste codcoes para usar la TIR: Iversó cal egatva. Exste u sólo cambo de sgo e la sere de flujos. El VAN (0%) debe ser mayor a cero (los gresos mayores a los egresos). E estos casos o es útl utlzar la TIR como decsó de sí es o o retable el proyecto, como lo veremos e el sguete ejemplo. Ejemplo: E el sguete ejemplo se muestra como la exsteca de más de u cambo de sgo hace que aparezca más de ua TIR. Perodo Flujos Evaluacó Ecoómca 3

4 Gráfco: Aálss de dos TIR E ua stuacó ormal o de flujos be comportados, la decsó es que s la TIR es mayor a la tasa de descueto, el proyecto es retable. Como se ve e la fgura ateror, se tee dos TIR dode a ua tasa de terés meor a 9.8% el VAN es egatvo, cotradcedo la teoría de utlzacó de la TIR. E este caso es recomedable utlzar como crtero de decsó el VAN. 5. RAZÓN BENEFICIO COSTO (B/C). La regla dce que debe hacerse sólo s la razó de beefcos a costos es mayor a uo, es decr, sólo s los beefcos so mayores que los costos. La razó beefco costo dca que u proyecto es retable, pero o dca que proyecto es mejor etre varas alteratvas. Por ejemplo la razó beefco costo gual a 2,5 comparada co ua cuyo resultado arrojo 1,5, o es ua dcacó de que el prmer proyecto es mejor que el segudo. Para comparar dos proyecto es meor utlzar el VAN como crtero de comparacó. Ejemplo: Igresos Equvaletes B/C = Egresos Equvaletes $1100 $12100 ValorActualCostos = $ = $ ,1 1,1 $1650 $14520 ValorActualBeefcos = $ = $ ,1 1,1 ValorActualBeefcos $13550 = = 1,22 ValorActualCostos $11100 Como la razó es mayor a uo el proyecto es retable. Evaluacó Ecoómca 4

5 6. PERIODO DE RECUPERACIÓN DEL CAPITAL. El método de período de recuperacó es smple y fácl de eteder. Utlzado por s solo puede llevar a decsoes erróeas. E el caso de evaluacó de múltples proyectos se compara los parámetros del VAR y la TIR, y se escoge aquel co mayor valor. E caso de empate se elge aquel co meor perodo de recuperacó. Ejemplo: E el sguete cuadro se resume los dcadores como el VAN, TIR y el período de recuperacó (R), para cuatro proyectos, co ua vda útl de 6 años. Gráfco: Perodo de Recuperacó S se utlza la regla del perodo de recuperacó, el mejor proyecto sería el C, justamete u proyecto para el cual el VAN es egatvo. Luego sería los proyectos A y B, dode claramete estos dos proyectos so dferetes e su retabldad. E últmo lugar esta el proyecto D, y sucede que este es el mejor de los cuatro proyectos que se está aalzado. Probablemete, ua de las dudas es que método utlzar e la evaluacó de u proyecto. Se recomeda utlzar el VAN, debdo a que mde retabldad de ua catva de versó y també para jerarquzar dsttas alteratvas. Pero, o sgfca que el resto de los crteros deba descartarse. Cada uo etrega formacó que complemeta a la que tee el versosta para tomar ua mejor decsó. Proyecto A Proyecto B Proyecto C Proyecto D VAN - 0,76 5, ,15 TIR 5% 8,7% 2,9% 10% R CONCEPTO DE EVALUACIÓN A UTILIZAR. 7.1 Flujo de Caja. Flujo de Caja es el resultado de la Operacó del Proyecto, e el horzote de estudo acordado o determado para tal efecto. Este Flujo de Caja se calcula de los INGRESOS del proyecto meos los COSTOS de él. La Elaboracó del Flujo de Caja, se realza ex ate, y es la úca maera cetífca de mostrar la vabldad del proyecto. Evaluacó Ecoómca 5

6 Este, costtuye uo de los elemetos más mportates del estudo del proyecto, ya que la evaluacó del msmo, se realzará sobre los resultados que e él se determe. Ejemplo de flujo de caja para u proyecto prvado co la sguetes característcas: ITEM / AÑO I. INGRESOS Igresos por Veta Igresos No Operacoales Total Igresos II. EGRESOS 2.1 Costos Fjos Costos Varables Total Egresos III. INVERSIÓN 3.1 E Actvo Fjo E Maquara Captal de Trabajo Total Iversó FLUJO DE CAJA NETO VAN (12%) $ ,25 TIR 16% Coceptos Relevates a ser utlzados: I. INGRESOS: 1.1 Igresos por Veta: Se defe como el úmero de udades a veder por el preco de cada ua. 1.2 Igresos No Operacoales: Estos so el resultado de otro tpo de actvdades del gro del egoco, como por ejemplo la veta de los Actvos Fjos, Maquaras y Captal de trabajo al falzar el horzote de estudo del proyecto y este es gual e este ejemplo al 25% del total de la Iversó. II. EGRESOS: 2.1 Costos Fjos: So aquellos Costos que o depede de la catdad producda, es decr so catdades depedetes de la catdad que produzca. Ej.: Los Costos de persoal admstratvo, gastos de luz, agua, etc. 2.2 Costos Varables: So aquellos que depede de la catdad producda, es decr a mayor catdad mayor costo varable. Ej.: el costo de empaque de ua plata productora de huevos, aumetará s se produce más huevos. III. INVERSIÓN: 3.1 Actvo Fjo: So aquellas versoes e ofcas, edfcos, e stalacoes ecesaras para realzar la actvdad prcpal del proyecto. 3.2 Maquara: So aquellas versoes e equpos y maquas ecesaras para la operacó del proyecto. 3.3 Captal de Trabajo: So aquellos elemetos ecesaros para la operacó del egoco, como sumos, materas prmas, etc., que so absolutamete ecesaros para comezar a Operar el Proyecto. Evaluacó Ecoómca 6

7 7.2 Ídces para la Evaluacó de Proyectos. VAN: VALOR ACTUAL NETO. Este ídce ecesta la Tasa de descueto, que es la retabldad míma que se le exge al proyecto e cuestó, es decr refleja el costo de oportudad del captal a vertr e él. El Valor Actual Neto, es ua actualzacó de todos los Flujos del Proyecto (obtedos a través del Flujo de Caja), al perodo dóde se realza la Iversó, e este caso año 0. Este ídce se calcula: VAN = Iverso + FC = 1 (1 + td) td: Tasa de Descueto, determada de atemao. ATENCIÓN: LA INVERSIÓN SIEMPRE ES NEGATIVA TIR: TASA INTERNA DE RETORNO. Es aquella tasa de terés dode el VAN es gual a 0. Es decr, la versó es por lo meos atractva co respecto a las otras oportudades presetadas e el Mercado. La TIR es muy dfícl de calcular, debdo a que se forma u polomo de grados, sedo los años del horzote de evaluacó del proyecto, se defe: Co td = TIR 0 = Iverso + FC = 1 (1 + td) 7.3 Evaluacó de Proyectos Públcos o Socales. CONCEPTO DE FLUJO DE CAJA Para los proyectos públcos, o exste muchas dferecas respecto de los proyectos prvados, la más sgfcatva se ecuetra e la determacó de los INGRESOS que e este tpo de proyecto, se deoma BENEFICIOS, y que se dvde e DIRECTOS e INDIRECTOS. Los otros coceptos matee su omeclatura ya aalzada para proyectos de tpo prvados. Flujo de Caja es el resultado de la Operacó del Proyecto o de la ejecucó del msmo, e el horzote de estudo acordado o determado para tal efecto. Este Flujo de Caja se calcula de los BENEFICIOS del proyecto meos los COSTOS de él. La Elaboracó del Flujo de Caja, se realza ex ate, y es la úca maera cetífca de mostrar la vabldad del proyecto. Este, costtuye uo de los elemetos más mportates del estudo del proyecto, ya que la evaluacó del msmo, se realzará sobre los resultados que e él se determe. Evaluacó Ecoómca 7

8 Ejemplo de flujo de caja para u proyecto públco co la sguetes característcas: ITEM / AÑO I. BENEFICIOS 1.1 Drectos Idrectos Total Beefcos VAN II. EGRESOS 2.1 Costos Fjos de Operacó Costos Varables de Operacó Total Egresos III. INVERSIÓN 3.1 Iversó Ical Ejecucó del Proyecto Total Iversó FLUJO DE CAJA NETO TIR 17% (12%) $ 17911,08 Coceptos Relevates a ser utlzados: I. BENEFICIOS: 1.1 Drectos: Se defe como el beefco propo de la realzacó del proyecto públco o socal. 1.2 Idrectos: Estos so el resultado de otro tpo de actvdades que mejoraría al efectuar este Proyecto, que o so propas de él, pero que por la ejecucó del msmo, otorgaría Beefcos. Los Beefcos e alguas veces so dfícles de detfcar, está e la caldad del evaluador, poder detfcar y cuatfcar claramete estos, y el moto de ellos. II. EGRESOS: 2.1 Costos Fjos de Operacó: So aquellos Costos que so mputables al Beefco producdo. Ej.: Los Costos de persoal admstratvo, Gastos de profesoales al servco de u hogar de ños. 2.2 Costos Varables de Operacó: So aquellos que depede del Beefco producdo, es decr a mayor catdad mayor costo varable. Ej.: El costo de brdar ua mayor cobertura a u programa de almetacó fatl. III. INVERSIÓN: 3.1 Iversó Ical: So aquellas versoes ecesaras para realzar la actvdad prcpal del proyecto, las que puede ser: adquscó de equpos, mplemetacó de u hogar, reparacó de ua calle, etc. 3.2 Ejecucó del Proyecto: So aquellas versoes ecesaras para la operacó del proyecto, y que o se realza ecesaramete e el año 0 del horzote de evaluacó del msmo. INDICES PARA LA EVALUACIÓN DE PROYECTOS PÚBLICOS: VAN SOCIAL: VALOR ACTUAL NETO. Este ídce ecesta la Tasa de descueto, que es la retabldad socal míma que se le exge al proyecto e cuestó, es decr refleja el costo de oportudad del captal a vertr e él, co respecto a otros proyectos públcos o socales. El Valor Actual Neto, es ua actualzacó de todos los Flujos del Proyecto (obtedos a través del Flujo de Caja), al perodo dóde se realza la Iversó, e este caso año 0. Este ídce se calcula: Evaluacó Ecoómca 8

9 VAN = Iverso + FC = 1 ( 1 + td ) td: Tasa de Descueto, determada de atemao, para proyectos socales es de 10% o 12%. ATENCIÓN: LA INVERSIÓN ES SIEMPRE NEGATIVA TIR: TASA INTERNA DE RETORNO. Es aquella tasa de terés dode el VAN es gual a 0. Es decr, la versó es por lo meos atractva co respecto a las otras oportudades presetadas e el Mercado. La TIR es muy dfícl de calcular, debdo a que se forma u polomo de grados, sedo los años del horzote de evaluacó del proyecto, se defe: Co td = TIR 0 = Iverso + FC = 1 (1 + td) Evaluacó Ecoómca 9

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS PUNTES DOCENTES SIGNTUR: MTEMTICS FINNCIERS PROFESORES: MRIN JIMES CRLOS JVIER SRMIENTO LUIS JIME DEPRTMENTO DE CIENCIS BÁSICS VERSION: 2-20 QUÉ ES MTEMÁTICS FINNCIERS? Hace alguos años éste era u tema

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

METODOLOGÍA DE PREPARACIÓN Y EVALUACIÓN DE PROYECTOS DE REEMPLAZO DE EQUIPOS

METODOLOGÍA DE PREPARACIÓN Y EVALUACIÓN DE PROYECTOS DE REEMPLAZO DE EQUIPOS METODOLOGÍA DE PREPARACIÓN Y EVALUACIÓN DE PROYECTOS DE REEMPLAZO DE EQUIPOS Versó Dcembre 2005 Mstero de Plafcacó Dvsó de Plafcacó, Estudos e Iversó INDICE Pága Itroduccó 5 I. Teoría sobre la cual se

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

VALORIZACION DE BONOS

VALORIZACION DE BONOS UNIVERSIDAD ANDRES BELLO FACULAD DE ECONOMIA Y NEGOCIOS ESCUELA DE INGENIERIA COMERCIAL PROGRAMA ADVANCE FINANZAS CORPORAIVAS Profesor : Reato Balbotí S. VALORIZACION DE BONOS ) Usted cooce la evolucó

Más detalles

Elaborado por: Ing. Rubén Toyama U. 1

Elaborado por: Ing. Rubén Toyama U. 1 CONTENIDO IDENTIFICACIÓN... 2 PLANIFICACIÓN DE LOS ENCUENTROS... 2 PROGRAMA ANALITICO... 3 ORIENTACIONES METODOLÓGICAS... 8. - Itroduccó.... 8..- Objetvos Geerales.... 9 2.- Desarrollo... 9 Prmer ecuetro...

Más detalles

2 - TEORIA DE ERRORES : Calibraciones

2 - TEORIA DE ERRORES : Calibraciones - TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO LEY FINANIEA E ESUENTO SIMPLE AIONAL. ESUENTO BANAIO Profesor: Jua Atoo Gozález íaz epartameto Métodos uattatvos Uversdad Pablo de Olavde www.clasesuverstaras.com Ley Facera de escueto Smple acoal La ley

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

A2.1 SUMA PRESENTE A SUMA FUTURA

A2.1 SUMA PRESENTE A SUMA FUTURA A2. APÉNDICE MATEMÁTICAS FINANCIERAS E este apédce se preseta las fórmulas tradcoales para hallar las sumas equvaletes e el tempo y ua coleccó de fórmulas para equvaleca de tasas omales y efectvas. Para

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídce Coceptos báscos de la versó 2 Cocepto de Captal Facero 3 Comparacó de captales faceros 3 Ley facera Captalzacó 8 Captalzacó smple 4 Captalzacó compuesta Descueto

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones 2 CÁLCULO FINANCIERO Teoría, Ejerccos y Aplcacoes 3 Uversdad de Bueos Ares Facultad de Cecas Ecoómcas Autores: Jua Ramó Garca Hervás Actuaro (UBA) Master e Ecoomía y Admstracó (ESEADE). Docete de Posgrado

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS Coceptos (cotedos soporte) Udad de trabajo sexta: Geeraldades. Retas auales costates. Retas costates fraccoadas. Retas varables. Udad de trabajo séptma Geeraldades. mortzacó de u préstamo por el sstema

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Estudio y optimización del algoritmo de ordenamiento Shellsort

Estudio y optimización del algoritmo de ordenamiento Shellsort Estudo y optmzacó del algortmo de ordeameto Sellsort Bejam Bustos Departameto de Cecas de la Computacó, Uversdad de Cle bebustos@dcc.ucle.cl Resume Este estudo aalza, e forma empírca, el desempeño del

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS HERRAIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS Dr. J. Iñak De La Peña Curso de Postgrado Especalsta e Cotabldad y aplcacó de las Normas Iteracoales de Cotabldad Facera Departameto de Ecoomía Facera

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*)

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) UNIVERSIDAD NACIONAL DE SALTA Facultad de Cecas Ecoómcas, Jurídcas y Socales Isttuto de Ivestgacoes Ecoómcas Reuó de Dscusó Nº 7 Fecha: /06/003 Hs.: 6 UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) Eusebo Cleto

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica Itroduccó La Estadístca de Idcadores Hosptalaros proporcoa u cojuto de dcadores báscos que stetza los recursos de persoal y de dotacó, ya sea stalada o e fucoameto, de que dspoe los establecmetos sataros

Más detalles

Presupuesto Empresarial

Presupuesto Empresarial 2009 Presupuesto Empresaral U efoque práctco para el aula Materal de apoyo struccoal para estudates de las Carreras de Admstracó y Cotaduría Públca de la UNELLEZ CARLOS A. FAGILDE PROGRAMA DE CIENCIAS

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles