Módulo Tres. Bloque 9 Tema 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Módulo Tres. Bloque 9 Tema 7"

Transcripción

1 Ámbito Científico y Tecnológico Módulo Tres. Bloque 9 Tema 7 Las formas y las medidas que nos rodean Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 1 de 30

2 ÍNDICE Presentación 1. Introducción 1.1. Qué es la geometría? 1.2. Un poco de historia 1.3. Introducción a los problemas geométricos 2. Repaso a las figuras planas elementales. 2.1 Triángulos. Clasificación y trazados. Teorema de Pitágoras 3. Poliedros y cuerpos de revolución 3.1. Poliedros Poliedros regulares Prisma Pirámides 3.2. Cuerpos redondos El cilindro El cono Esfera 3.3 Resumen de fórmulas de poliedros ACTIVIDADES Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 2 de 30

3 Presentación Dónde podemos encontrar geometría? En todas partes! Basta mirar para ver geometría, basta únicamente pensar, en todo hay geometría, hasta en nuestros sueños. Seguramente ahora mismo estés leyendo estas líneas dentro de una habitación, es decir, dentro de un ortoedro, si has impreso el tema estarás usando un rectángulo de papel, si no, una pantalla rectangular. Tu ojo es un prodigio geométrico esférico que te permite leer, tu cuerpo, el edificio en el que vives, tu calle, la farola más cercana,... Todo está hecho utilizando geometría. No es extraño el interés que esta rama de la matemática despertó ya en la antigua Grecia, en el Egipto de los faraones o incluso antes. En este tema se presentaran formas geométricas elementales, estudios sencillos y métodos para trabajar usado la geometría. 1. Introducción 1.1. Qué es la geometría? Geometría (del griego geo, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y perímetro de figuras planas y de la superficie y volumen de cuerpos sólidos Un poco de historia El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica (resultados geométricos que vienen de la experiencia), que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos. En el siglo VI a.c. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados. Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios. Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos". Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas. Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados" (conocido como teorema de Pitágoras). La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 3 de 30

4 Pitágoras Euclides Arquímedes 1.3. Introducción a los problemas geométricos. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 4 de 30

5 Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 5 de 30

6 Actividades de 1, 2, 3, Repaso a las figuras planas elementales Antes de meternos en el estudio de los cuerpos geométricos elementales recordemos algunas de las figuras planas que vamos a necesitar, así como sus elementos, perímetro y área. Recordamos que el perímetro es la suma de la longitud de los bordes de una figura geométrica y el área es el trozo de plano que queda encerrado por el borde de una figura geométrica. Finalmente profundizaremos un poco más en los triángulos debido a la importancia de los mismos. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 6 de 30

7 Recordamos que un polígono regular es aquel que tiene todos sus lados y todos sus ángulos iguales. En general, para todos los polígonos regulares. Siendo el perímetro la suma de todos los lados Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 7 de 30

8 2.1 Triángulos. Clasificación y trazados. Teorema de Pitágoras Para terminar este apartado repasemos algunos conceptos relacionados con los triángulos. A la hora de clasificar los triángulos lo podemos hacer de distintas maneras: Por sus lados: Equilátero: tiene la longitud de los tres lados igual. Isósceles: tiene la longitud de dos lados iguales y una desigual. Escaleno: tiene los tres lados de distinta longitud. Por sus ángulos: Rectángulo: Tiene un ángulo recto. Acutángulo: Todos sus ángulos miden menos de noventa grados. Obtusángulo: Tiene un ángulo de más de noventa grados. Otros resultados interesantes sobre triángulos son los siguientes: La suma de las medidas de los ángulos de un triángulo es siempre de 180º, en la imagen siguiente vemos una demostración práctica de por qué ocurre esto: Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 8 de 30

9 Teorema de Pitágoras: Dado un triángulo rectángulo se cumple que: Hipotenusa 2 = (cateto 1) 2 + (cateto 2) 2 a 2 = c 2 + b 2 En la imagen siguiente podemos ver una demostración gráfica del teorema de Pitágoras: Y otra imagen más con una demostración para el caso particular en el que los catetos del triángulo rectángulo miden 3 y 4 y la hipotenusa 5. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 9 de 30

10 : Trazados de triángulos Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 10 de 30

11 Actividades 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, Poliedros y cuerpos de revolución 3.1. Poliedros Cuando estamos andando por la calle continuamente estamos viendo figuras geométricas. Torres Petronas, Kuala Torres Kio, Madrid, España Poliedro de la Armonía Lumpur, Malasia Leonardo da Vinci Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 11 de 30

12 Unas de las figuras que normalmente nos encontramos son los poliedros, estos son cuerpos geométricos que se forman a partir de polígonos (triángulos, cuadrados, rectángulos, pentágonos, ) Todos los poliedros tienen unos elementos comunes, algunos de los cuales son: Cara: cada uno de los polígonos que forman o limitan un poliedro. Arista: segmento formado por la intersección de dos caras de un poliedro. Vértice: punto de intersección de dos o más aristas de un poliedro. En la siguiente imagen podemos ver estos elementos sobre un poliedro regular formado por doce caras pentagonales, un dodecaedro: Los elementos de un poliedro convexo cumplen una propiedad curiosa que relaciona el número de caras, el de vértices y el de aristas. Es conocido como la fórmula de Euler y dice que: El número de caras más el número de vértices es igual al número de aristas más dos, es decir: C+V=A+2 Un punto de vista especial, con respecto a un poliedro se obtiene al realizar el denominado desarrollo plano del mismo, que consiste en dibujar sobre un papel una figura que permita construir el poliedro mediante operaciones de plegado. Por ejemplo, aquí mostramos un desarrollo plano para un cubo, cuerpo geométrico formado por seis caras cuadradas Poliedros regulares Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 12 de 30

13 Dentro de todos los poliedro que existen hay unos pocos, concretamente cinco, que se les conoce como poliedros regulares o sólidos platónicos. Estos poliedros tienen una propiedad especial y es que todas sus caras están formadas por polígonos regulares iguales. Debido a esta propiedad sólo cinco son los cuerpos geométricos que la cumplen: el tetraedro, el cubo o hexaedro, el octaedro, el dodecaedro y el icosaedro. Actividades: 18, 19, 20, 21, 22, 23, 24 Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 13 de 30

14 Prisma Otro tipo de poliedros son los prismas, estos tienen las características especiales de que sus bases son polígonos regulares iguales y las caras laterales son rectángulos. El nombre de los primas depende del polígono regular de la base: Prisma Triangular Prisma Hexagonal Otro elemento de los prismas son las diagonales que son segmentos que unen dos vértices no consecutivos. Hay diferentes tipos de prismas, en función de sus características podemos hablar de: Prismas regulares: aquellos cuyas bases son polígonos regulares. En función del polígono de las bases, los prismas pueden ser de base triangular, cuadrangular, pentagonal, hexagonal, etc. Prismas irregulares: aquellos cuyas bases son polígonos irregulares. Prismas rectos: aquellos cuyas caras laterales son cuadrados o rectángulos. Prismas oblicuos: aquellos cuyas caras laterales son romboides o rombos. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 14 de 30

15 Paralelepípedos: prismas cuyas bases son paralelogramos. Ortoedros: prisma que tiene todas sus caras rectangulares.. Desarrollo plano de un prisma, cálculo de áreas y volúmenes Desarrollo plano de un prisma (Hexaedro de base cuadrada) Cálculo de áreas y volumen(hexaedro de base cuadrada) Ab = Área de la base, en este caso es un cuadrado=a*a AL = Área de las caras laterales, en este caso es un rectángulo=a*c Área total= A T AT = 2*Ab + 4*AL V T = Volumen del prisma = Área de la base del prisma por la altura =Ab*c Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 15 de 30

16 Desarrollo plano de un prisma. (Pentaedro de base un triángulo equilátero) Cálculo de áreas y volumen (Pentaedro de base un triángulo equilátero) Ab = Área de la base, en este caso es un triángulo = (base * altura)/2 Base= a Altura del triángulo= h Ab= a*h/2 AL = Área de las caras laterales, en este caso es un rectángulo=a*c Área total= A T AT = 2*Ab + 3*AL V T = Volumen del prisma = Área de la base del prisma por la altura del prisma=ab*c Actividades 25, 26, 27, Pirámides Siguiendo el análisis de los distintos poliedros llegamos al último que vamos a estudiar a fondo, estos son las pirámides: Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 16 de 30

17 Esfinge y pirámide de Keops, Giza, Egipto Pirámides de Giza, Egipto Como se ve, este poliedro es conocido desde hace mucho tiempo. Las pirámides están formadas por una cara (la base) que es un polígono regular y caras laterales que son triángulos que se unen en un vértice. A la hora de llamar a las pirámides el nombre varía dependiendo del polígono regular que tienen por base. Pirámide Pentagonal Pirámide octogonal Desarrollo plano de la pirámide de base cuadrangular, cálculo de áreas y volúmenes Desarrollo plano. En los siguientes dibujos, podemos observar en colores, rojo, azul, verde y amarillo, las diferentes apotemas, aristas y altura de una pirámide. Para la resolución y el cálculo de áreas y volúmenes necesitamos únicamente 3 de los 4 datos coloreados. Estos datos son los siguientes: Arista básica en azul Apotema en rojo Altura en verde Resolviendo por Pitágoras, podemos sacar todos los datos que necesitamos y normalmente en estos problemas nos dan 2 de los 3 datos necesarios. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 17 de 30

18 En el siguiente triángulo rectángulo, hemos respetado el mismo código de colores, es decir. Como puedes observar por el código de colores: El cateto mayor de nuestro triángulo rectángulo es la altura de nuestra pirámide. El cateto menor de nuestro triángulo rectángulo es la mitad de la arista básica de nuestra pirámide. La hipotenusa de nuestro triángulo rectángulo es la apotema de nuestra pirámide. Una vez obtenidos todos los datos necesarios, podríamos calcular el área y el volumen. Cálculo de áreas y volumen AL= base * altura/2 = a*b/2 Ab= a*a AT= Área de la base de la pirámide más 4 veces el área de las caras laterales = Ab + 4 *AL VT= Área de la base de la pirámide por la altura de la pirámide dividido entre 3= Ab* altura /3 Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 18 de 30

19 Actividades 29, Cuerpos redondos Los cuerpos geométricos que hemos estudiado por ahora tiene todas sus caras planas, pero también hay los que las tienen curvas. Estos son los cuerpos redondos. Nos vamos a centrar sólo en el estudio de tres de ellos, son cuerpos que se denominan de revolución, ya que se obtienen cuando hacemos girar una figura geométrica plana. Si partimos de un rectángulo y lo hacemos girar sobre uno de sus lados obtenemos un cilindro. Si partimos de un triángulo rectángulo y lo hacemos girar sobre uno de sus catetos obtenemos un cono. Si partimos de una media circunferencia y la hacemos girar sobre el diámetro obtenemos una esfera. La imagen siguiente ilustra la construcción de los cuerpos de revolución citados: Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 19 de 30

20 El cilindro Cilindros en el arte Columna Torre de Pisa (Cilindro oblicuo) Como hemos dicho antes se obtiene al hacer girar un rectángulo sobre uno de sus lados. Los elementos de un cilindro son: Donde h simboliza la altura del cilindro, g la generatriz y r el radio de la base. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 20 de 30

21 Desarrollo plano de un cilindro, cálculo de áreas y volúmenes Desarrollo plano de un cilindro. Donde L=2 π r, es la longitud de la circunferencia de radio r Cálculo de áreas y volumen. Siendo: Ab= Área de la base AL= Área de la cara lateral AT= Área total del cilindro VT= Volumen total del cilindro Ab= π r 2 AL= L h AT= 2 Ab+ AL VT= Ab h Actividades 31, 32, 33, El cono Espacio y estética Plaza de Europa de la Expo92 Silos de Santa Mónica, hacienda de San Juan de Trancoso, México Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 21 de 30

22 Al igual que el cilindro es un cuerpo de revolución, obtenido, como ya hemos dicho, al hacer girar un triángulo rectángulo sobre uno de sus catetos. Los elementos de un cono son: Donde h simboliza la altura del cilindro, g la generatriz y r el radio de la base. Desarrollo plano de un cono, cálculo de áreas y volúmenes Desarrollo plano de un cono. Donde A es el ángulo del abanico del cono, el cual es necesario para poder dibujarlo. Cálculo de áreas y volumen. Datos necesarios: h= altura del cono= cateto mayor de nuestro triángulo rectángulo g= generatriz del cono= hipotenusa de nuestro triángulo rectángulo r =radio del cono= cateto menor de nuestro triángulo rectángulo Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 22 de 30

23 Normalmente nos darán 2 de los 3 datos necesarios y deberemos aplicar el teorema de Pitágoras. h 2 =C 2 + c 2, en nuestro caso sería g 2 = h 2 + r 2 Área del círculo=ac= πr 2 Área del abanico=aa= πrg Área total=at= Aa+Ac Volumen total Actividades 35, 36, 37, Esfera Centro Cultural de Tijuana, México Embarcadero. Toronto. Canada Vista desde el espacio de la Tierra y la Luna Por último, la esfera, cuerpo de revolución que se obtiene al girar una semicircunferencia. Se usa como modelo ya sea para arquitectura, moda, deportes, balones, ; además es una de las formas que más se repite en la naturaleza: los planetas, distintas frutas, semillas, Sus elementos son: Cálculo de área y volumen Actividades 39, 40, 41 Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 23 de 30

24 PIRÁMIDE RECTA DE BASE CUADRADA PRISMA RECTO DE BASE TRIANGULAR PRISMA RECTO DE BASE CUADRADA Módulo III. Tema Resumen de fórmulas de poliedros CUERPO DESARROLLO PLANO ÁREA Y VOLUMEN Ab = a*a AL = a*c AT = 2*Ab + 4*AL V T = Ab*c Ab = a*h/2 AL = a*c AT = 2*Ab + 3*AL V T = Ab*c Ab= a*a AL= a*b/2 AT= Ab + 4 *AL VT= Ab* altura /3 Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 24 de 30

25 ESFERA CONO RECTO CILINDRO RECTO Módulo III. Tema 7. Ab= π r 2 AL= L h AT= 2 Ab+ AL VT= Ab h g 2 = h 2 + r 2 Área del círculo=ac= πr 2 Área del abanico=aa= πrg At= Aa+Ac Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 25 de 30

26 ACTIVIDADES. 1. Trazar con el semicírculo graduado los siguientes ángulos: 50º 135º 215º 355º -20º 2. Realizar las bisectrices de los ángulos anteriores 3. Trazar la mediatriz de un segmento de 8 centímetros de largo. 4. Cuántas rectas pasan por un punto? Cuántas pasan por dos puntos? Y por tres? 5. Cuántas circunferencias pasan por dos puntos? Y por tres? 6. Clasifica los siguientes triángulos según sus lados y según sus ángulos a) b) c) 7. Dibujar un triángulo isósceles conociendo su lado desigual de 8 centímetros y los dos ángulos iguales de 35º. 8. Dibujar un triángulo isósceles conociendo su lado desigual de 4 centímetros y sus 2 lados iguales de 6 centímetros. 9. Dibujar un triángulo escaleno sabiendo dos lados de 5 y 7 centímetros y el ángulo que forman esos lados, que es de 90 º. 10. Observa la figura siguiente. Podrías dar un valor para su área utilizando como unidad el triángulo más pequeño que aparece? Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 26 de 30

27 11. Calcula el área de un triángulo equilátero de lado 12 m. 12. Dibuja un triángulo de catetos 3 y 4 centímetros de lado 13. Calcula la hipotenusa del triángulo anterior grafica y numéricamente. 14. Dibuja un triángulo de 4 centímetros de cateto y 7 centímetros de hipotenusa. 15. Calcula el cateto que falta en el triángulo anterior grafica y numéricamente 16. Determina el área de un hexágono regular de lado 10 cm. 17. Calcular la apotema, el perímetro y el área de un pentágono regular de 6cm de lado. 18. Observa el siguiente desarrollo plano de un poliedro. Cuántas caras, aristas y vértices tendrá la figura que resulta de su composición?. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 27 de 30

28 19. Completa la siguiente tabla sobre los poliedros regulares: POLIEDROS REGULARES Forma del Nº de Nº de Nº de Nombre caras vértices Polígono de sus caras Aristas 20. Un poliedro convexo tiene 8 caras y 18 aristas. Cuántos vértices tendrá? 21. Cada lado de un octaedro mide 14cm. Cuál es su superficie? 22. El lado de un dodecaedro mide 4cm, y la apotema de una de sus caras mide 2 75cm. Cuál es su superficie? 23. Clasifica los siguientes prismas en función de sus características: Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 28 de 30

29 24. Clasifica las siguientes pirámides en función de su base. a) b) c) d) 25. Cada arista de un Hexaedro o Cubo mide 3 cm. Dibuja su desarrollo plano. Cuál es su superficie? Y su volumen? 26. Cuál es el área y el volumen de prisma triangular con base un triángulo isósceles de lados iguales 5 cm y el otro 6 cm. y cuya altura del prisma es 7 cm? Dibuja el desarrollo plano. 27. Cuál es el área y el volumen de un prisma cuadrangular cuya arista de base mide 4 cm. y de altura 7 cm.? Dibuja el desarrollo plano. 28. Cuál es el área y el volumen de un prisma rectangular cuyas dimensiones de base son 3 y 4 cm. y la altura es 10 cm.? Dibuja el desarrollo plano. 29. Cuál es el área y el volumen una pirámide cuadrangular con longitud de arista de base 6 cm. y apotema de las caras 5 cm.? (la apotema de una pirámide es la altura de una de sus caras). Dibuja el desarrollo plano. 30. Cuál es el área y el volumen de una pirámide cuadrangular con longitud de arista de base 6 cm. y de altura de la pirámide 4 cm.?. Dibuja el desarrollo plano. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 29 de 30

30 31. Cuál es el área y el volumen de un cilindro de altura 3 cm. y radio: 1 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 32. Cuál es el área y el volumen de un cilindro de altura 2 cm. y radio: 2 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 33. Cuál es el área y el volumen de un cilindro de altura 1 cm. y radio: 3 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 34. Cuál es el área y el volumen de un cilindro de altura 4 cm. y radio: 3 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 35. Cuál es el área y el volumen de un cono de generatriz 5 cm. y radio 3 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 36. Cuál es el área y el volumen de un cono de generatriz 7 cm. y radio 4 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 37. Cuál es el área y el volumen de un cono de generatriz 8 cm. y radio 5 cm? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 38. Cuál es el área y el volumen de un cono de altura 12 cm. y radio 9 cm.? Usa como aproximación del número π = 3,14. Dibuja el desarrollo plano. 39. Cuál es el área y el volumen de una esfera cuyo radio es 2 cm.? Usa como aproximación del número π = 3, Cuál es el área y el volumen de una esfera cuyo radio es 3 cm.? Usa como aproximación del número π = 3, Cuál es el área y el volumen de una esfera cuyo radio es 4 cm.? Usa como aproximación del número π = 3,14. Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 30 de 30

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de

Más detalles

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras.

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras. LOS POLIEDROS: El cubo, la pirámide, la esfera, el cilindro... son figuras sólidas. Observando tales figuras, vemos que algunos sólidos, como el cubo y la pirámide, tienen su superficie exterior formada

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO RESUMEN ÁSICO DEL LOQUE DE GEOMETRÍA Matemáticas 3º de ESO 1-. Conceptos fundamentales. Punto Recta Plano Semirrecta: porción de recta limitada en un extremo por un punto Semiplano: es cada una de las

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

ELEMENTOS Y CLASES DE ÁNGULOS

ELEMENTOS Y CLASES DE ÁNGULOS Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

MODULO III - GEOMETRIA

MODULO III - GEOMETRIA PRIMERA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO SEIS Y SIETE Calculo de Áreas y volúmenes. 31 DE AGOSTO DE 2014 MANAGUA FINANCIADO

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c)

11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c) 11 POLIEROS EJERIIOS 1 ibuja una línea recta en tu cuaderno. escribe algún segmento real en el techo de la clase que se cruce con la línea que has dibujado. 6 uántas caras, vértices y aristas hay en los

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices

Más detalles

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

open green road Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno .co

open green road Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno .co Guía Matemática CUERPOS GEOMÉTRICOS tutora: Jacky Moreno.co 1. Geometría en el espacio Al observar nuestro alrededor podemos notar una infinidad de objetos que ocupan un lugar en el espacio físico en el

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P

MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) TALLER DE REPASO PARA EL BIMESTRAL 3P COLEGIO COLOMBO BRITANICO Formación en la Libertad y para la Libertad MATEMÁTICAS (TIC) REPASO BIMESTRAL (3P) GRADO:7 O DOCENTES: Natalia A. Gil V. Nubia E. Niño C. FECHA: 18 / 08 /15 Taller Adicional

Más detalles

3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 8 FIGURAS PLANAS. CUERPOS GEOMÉTRICOS.

3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 8 FIGURAS PLANAS. CUERPOS GEOMÉTRICOS. 3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 8 FIGURAS PLANAS. CUERPOS GEOMÉTRICOS. a) Presentación b) Evaluación Inicial c) Conceptos d) Actividades e) Autoevaluación f) Otros recursos: bibliografía

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

CUERPOS GEOMÉTRICOS. POLIEDROS

CUERPOS GEOMÉTRICOS. POLIEDROS INTRODUCCIÓN CUERPOS GEOMÉTRICOS - POLIEDROS Este texto te servirá para que estudies los contenidos sobre poliedros que fueron desarrollados por los distintos grupos en clases y tiene como objetivos que

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo.

Cuerpos Geométricos Son aquellos elementos que ocupan un volumen en el espacio se componen de tres partes: alto, ancho y largo. CUERPOS GEOMÉTRICOS 06 Describe qué son e identifica las características de los cuerpos geométricos. El maestro comenta qué es, cómo se forman y cuáles son las partes de un cuerpo geométrico. Los alumnos

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Geometría

Geometría Geometría Geometría www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN

SOLUCIONES DE LAS ACTIVIDADES DE EVALUACIÓN 11 Medida de tiempo 1. Completa y relaciona los elementos de estas dos columnas que sean equivalentes. Trimestre 3 meses Lustro 5 años Quincena 15 días Siglo 100 años Semestre 6 meses 2. Escribe el siglo

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

Geometría en el espacio. Poliedros

Geometría en el espacio. Poliedros Geometría en el espacio. Gemma Hermida Granado Trinidad Gómez Ramírez 28 de junio de 2006 Geometría en el espacio. 1 Programación de la unidad Objetivos didácticos Conceptos Procedimientos Actitudes Criterios

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles