Gestión de operaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Gestión de operaciones"

Transcripción

1 Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez

2 Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos de programacó NO leal Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 2

3 Modelado de restrccoes especales () Dsyucoes e mplcacoes Ua parea de restrccoes dode ua se debe satsfacer, metras que la otra o es ecesaro que se cumpla ó f () x gx () es equvalete e a: f() x > g() x Eemplo: 3x + 2x - 8 ó x+ 4x x + 2 x2-8 My ìï se relaa la ecuacó y = ï í x + 4x - 6 M( -y) ïïî se relaa la ecuacó 2 2 Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI M : u valor sufcetemete elevado Modelado de restrccoes co varables baras 3

4 Modelado de restrccoes especales () Cumplr k de N ecuacoes Se tee u couto de N ecuacoes de las cuales se ha de satsfacer al meos k de ellas f ( x,, x ) f ( x,, x ) 2 f ( x,, x ) N f( x,, x ) My f ( x,, x ) My 2 f ( x,, x ) My N 2 N N y = N -k = y Î {,} =,, N Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 4

5 Modelado de restrccoes especales () Seleccoar etre N valores Sea ua ecuacó co múltples l cotas Se ha de cumplr al meos ua de ellas ìï d d2 fx (,, x) = ï í ïï ïd ïî N Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI N fx (,, x ) dy = N = y y = = Î {, } =,, N Modelado de restrccoes co varables baras 5

6 Modelado de restrccoes lógcas () Tabla de equvalecas lógcas P Q o P o Q P (Q y R) (P Q) y (P R) P (Q o R) (P Q) o (P R) (P y Q) R (P R) o (Q R) (P o Q) R (P R) y (Q R) o (PoQ) o P y o Q o (P y Q) o P o o Q Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI P Q R? Modelado de restrccoes co varables baras 6

7 Modelado de restrccoes lógcas () X Se deoma al cumplmeto de la restrccó Se deoma a la varable bara asocada al cumplmeto Trasformacó de proposcoes lógcas e restrccoes XoX d+ d2³ 2 XyX 2 d =, d = 2 o X d = X X 2 X d- d2 «X d- d2 = 2 Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 7

8 Modelado de restrccoes lógcas () Eemplo: S se fabrca el producto A o B (o ambos), etoces debe fabrcarse al meos uo de los productos C, D o E ( X o X ) ( X o X o X ) A B C D E d + d ³ d + d + d ³ A B C D E Para modelar estas mplcacoes lógcas se separa e dos bloques medate ua varable bara auxlar d + d ³ d = A B d = d + d + d ³ C D E Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 8

9 Modelado de restrccoes lógcas (v) Tabla de equvaleca e restrccoes leales d = ax - b ax b+ M( d) ax b d = ax ³ b+ e+ ( m-e) d d = ³ b ax ax b d ³ = ax b- e+ ( M+ e ) d d = = b ax ax ³ b+ m( -d) ax b+ M( -d) ax ³ b+ m( -d) ax = b d = ax ³ b+ e+ ( m-e) d ax b- e+ ( M+ e) d M costate superor de la restrccó que cumple para cualquer x ax - b M m costate feror de la restrccó que cumple para cualquer x ax - b ³ m costate devalor muy pequeño (co varables baras o eteras vale ) d + d - d ) Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 9

10 Modelado de restrccoes lógcas (v) Eemplo (Cot.): d + d ³ d = d = d + d + d ³ C D E A B C D E da + db 2d dc + dd + de ³ d Eemplo (Otra formulacó): ( X o X ) ( X o X o X ) A B C D E [ XA ( XC o XD o XE) ] y [ X ( X o X o X )] B C D E ìï d A - d í ï db - d ï dc + dd + de ³ d ïî Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras

11 Modelado de restrccoes lógcas (v) Otro eemplo : U etreador de balocesto tee 9 ugadores clasfcados etre y 3 de acuerdo a su vel lde maeo de pelota, tro, rebote y defesa df Jugador Poscoes Maeo de pelota Tro Rebote Defesa Pvot Base Pvot, Alero Alero, Base Pvot, Alero Alero, Base Pvot, Alero Pvot Alero Se debe cosegur u equpo de 5 ugadores co máxma capacdad defesva Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras

12 x Modelado de restrccoes lógcas (v) Otro eemplo (Cot.) : Codcoates Dos ugadores debe poder actuar de pvot, dos de alero y uo de base Su vel medo e maeo de pelota, tro y rebote debe ser o feror a 2 S el ugador 3 uega, el ugador 6 o uega S el ugador uega, el 4 ó 5 uega pero o los dos. S o, o hay codcó El ugador 8 o el 9 debe ugar pero o los dos a la vez VARIABLES ìï s se cluye el ugador e el equpo ìï ï s se cluye el ugador e poscó = í ïïî x = ï í e otro caso ïïî e otro caso =,, 9 =,,9 k = p, a, b k k Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 2

13 Modelado de restrccoes lógcas (v) Fucó obetvo: max 3x+ 2x2 + 2x3 + x4 + 2x5 + 3x6 + x7 + 2x8 + 3x9 Seleccó de 5 ugadores: x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 5 Número mímo de ugadores e puestos: Nveles medos mímos: x x x x x + 3p + 5p + 7p + 8 ³ 2 x + x + x + x + x + x ³ 2 3a 4a 5a 6a 7a 9 x + x + x ³ 2 4b 6b base 2x + 3x + 2x + x + x + 3x + 3x + 2x + 3x ³ x + 3x + 3x + 3x + 3x + x + 2x + x + 3x ³ x + x + 2x + 3x + x + 2x + 2x + 3x + x ³ pvot alero maeo tro rebote Icompatbldad etre los ugadores 3 y 6: x3 + x6 Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 3

14 Modelado de restrccoes lógcas (v) Afdad etre ugador : y ugadores 4 y 5 x ³ x + x = 4 5 x + x 2-x ìï í x 4 + x5 ³ x ïî 4 5 U ugador etre 8 y 9: x8 + x9 = Rl Relacoes de cohereca baras: x + x - x = 3p 3a 3 x + x - x = 4a 4 b 4 x + x - x = 5p 5a 5 x + x - x = 6a 6b 6 x + x - x = 7p 7a 7 Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 4

15 Modelado de productos Las varables baras se puede utlzar para elmar productos de varables que haría el problema o leal dd 2= d = o d 2 = + d2 d Î {, } d Î {, } d dd Reemplazar dd 2 2por d - d 3 + d3 d Î {,} d3 = d = y d2 = - d2 + d3 d + d - d xd x ³ d Î {,} xd Reemplazar por d = y = y 2 3 d Î {, } y ³ y Md d d = y = x - x + y x- y + Md M x M Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 5

16 Modelos de programacó o leal () E alguos campos el modelado o leal o se puede aproxmar por el leal PRODUCCIÓN CON ELASTICIDAD EN PRECIOS/COSTES p x preco catdad x P ( x ) = xp( x )-cx Marge de cotrbucó: ( Maxmzacó ó dl del marge total: t f () x = P () x = éx p ( x )-cx ù ë û = = Aálogamete podría suceder co ua fucó de costes o leal c x Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 6

17 Modelos de programacó o leal () TRANSPORTE CON DESCUENTOS POR VOLUMEN Se modela dl los descuetos por catdad ddpara volúmees grades La fucó de coste es ua fucó e dete de serra para cada tramo C x x x x 2 3 x4 Catdad trasportadax Mmzacó de costes: m fx () C( x) = = = Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 7

18 Modelos de programacó o leal () SELECCIÓN DE UNA CARTERA DE INVERSIONES Se tee e cueta tpos de accoes para formar ua cartera PARÁMETROS: VARIABLES: x : meda del redmeto de las accoes : varaza del redmeto de las accoes : Número de accoes que se cluye e la cartera Rx : Redmeto esperado Rx () = mx = V x : Varaza del redmeto total de la cartera Vx () = = = s xx Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 8

19 Modelos de programacó o leal (v) SELECCIÓN DE UNA CARTERA DE INVERSIONES (cot.) FUNCIÓN OBJETIVO: Maxmzar f() x = R() x -bv() x : factor de aversó al resgo RESTRICCIONES: = Px B x ³ =,..., P : coste de cada accó de tpo B : presupuesto Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 9

20 Eemplos de modelados () CONSTRUCCIÓN DE ALMACENES Ua compañía plaea costrur varos almacees Surtrá a dos cletes Se puede costrur hasta tres almacees Los costes estmados de costruccó so 8, 2 y 7 Los costes de trasporte, capacdad y demada so: Clete Clete 2 Capacdad Almacé Almacé Almacé Demada 3 5 Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 2

21 Eemplos de modelados () CONSTRUCCIÓN DE ALMACENES (Cot.) Solucó: m x, y x, vx + fy x cy " x ³ d " ³, y Î {, } Costrur almacees y 3 y servr del al clete, 3 udades y al clete 2, udades y del almacé 3 al clete 2, 4 udades Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 2

22 PRODUCCIÓN E INVENTARIO Eemplos de modelados () OBJETIVO: Plafcacó dela polítca deproduccó/vetaro de agosto, septembre, octubre y ovembre a coste mímo Demada estmada e esos meses: 5, 6, 8 y udades Capacdad de produccó mesual es 6 udades a 25 euros/udad El vetaro cal es 25 udades La capacdad máxma del vetaro es 4udades El coste mesual de almaceameto por udad es de 3 euros Se requere u vetaro al fal de ovembre de udades Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 22

23 Eemplos de modelados (v) PRODUCCIÓN E INVENTARIO (Cot.) ( c + c p ) m + p - d = + p p 5 = 25, =, p ³ Departameto de Orgazacó Idustral Escuela Técca Superor de Igeería ICAI Modelado de restrccoes co varables baras 23

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Tema 2: Modelos lineales de optimización con variables enteras.

Tema 2: Modelos lineales de optimización con variables enteras. Tema 2: Modelos leales de optmzacó co varables eteras. Objetvos del tema: Itroducr la programacó leal etera y los domos de aplcacó. Apreder a formular el modelo de u problema de programacó leal etera.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

PROGRAMACIÓN MATEMÁTICA: MODELOS DE OPTIMIZACIÓN

PROGRAMACIÓN MATEMÁTICA: MODELOS DE OPTIMIZACIÓN PROGRAMACIÓN MATEMÁTICA: MODELOS DE OPTIMIZACIÓN Begoña Vtorao bvtorao@mat.ucm.es www.mat.ucm.es/~bvtora Facultad CC. Matemátcas, Uversdad Complutese, Pza. Cecas 3, 28040 Madrd http://www.mat.ucm.es ÍNDICE

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS HERRAIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS Dr. J. Iñak De La Peña Curso de Postgrado Especalsta e Cotabldad y aplcacó de las Normas Iteracoales de Cotabldad Facera Departameto de Ecoomía Facera

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia

Dyna ISSN: 0012-7353 dyna@unalmed.edu.co Universidad Nacional de Colombia Colombia Dya ISSN: 00-7353 dya@ualmed.edu.co Uversdad Nacoal de Colomba Colomba ARANGO SERNA, MARTÍN DARIO; VERGARA RODRÍGUEZ, CESAR; GAVIRIA MONTOYA, HORACIO MODELIZACIÓN DIFUSA PARA LA PLANIFICACIÓN AGREGADA

Más detalles

4. ESQUELETOS Y CAMINOS OPTIMALES...

4. ESQUELETOS Y CAMINOS OPTIMALES... . INTRODUCCION.... Qué es la Ivestgacó de Operacoes... 3. I.O como apoyo a la toma de decsoes... 5.3 Problemas tpo e Ivestgacó Operatva... 7. OPTIMIZACIÓN... 9. Itroduccó... 9. Covedad... 3.3 Optmos Locales

Más detalles

MODELO DE GESTION PARA EL PROCESO DE PRODUCCIÓN DE PRODUCTOS FUNDIDOS EN HIERRO NODULAR PARA LA EMPRESA METACOL S.A.

MODELO DE GESTION PARA EL PROCESO DE PRODUCCIÓN DE PRODUCTOS FUNDIDOS EN HIERRO NODULAR PARA LA EMPRESA METACOL S.A. MODELO DE GESION PARA EL PROCESO DE PRODUCCIÓN DE PRODUCOS FUNDIDOS EN HIERRO NODULAR PARA LA EMPRESA MEACOL S.A. MODEL OF MANAGEMEN OF HE PRODUCION PROCESS OF PRODUCS FUSED IN IRON NODULAR FOR COMPANY

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE LA BOLSA ESPAÑOLA

SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE LA BOLSA ESPAÑOLA Seleccó de ua cartera de valores medate la aplcacó de métodos multobjetvo teractvos... SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS 5 ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS María C. Paz Sabogal Profesor Auxlar. Uversdad del Valle, Escuela de Igeería Idustral Estadístca, Cal. karo.paz@gmal.com

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Elaborado por: Ing. Rubén Toyama U. 1

Elaborado por: Ing. Rubén Toyama U. 1 CONTENIDO IDENTIFICACIÓN... 2 PLANIFICACIÓN DE LOS ENCUENTROS... 2 PROGRAMA ANALITICO... 3 ORIENTACIONES METODOLÓGICAS... 8. - Itroduccó.... 8..- Objetvos Geerales.... 9 2.- Desarrollo... 9 Prmer ecuetro...

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores Modelo Matemátco Multobjetvo para la Seleccó de ua Cartera de Iversó e la Bolsa Mexcaa de Valores José Crspí Zavala-Díaz, Marco Atoo Cruz-Chavez, Jorge Ruz Vaoye 3, Martí H. Cruz-Rosales 4 Facultad de

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA Nura Padlla Garrdo Departameto de Ecoomía Geeral y Estadístca Uversdad de Huelva padlla@uhu.es Flor María Guerrero

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA)

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA) Teoría de carteras de versó para la dversfcacó del resgo: efoque clásco y uso de redes euroales artfcales (RNA) Ivestmet portfolo theory ad rsk dversfcato: classc ad eural etworks methodology D. Cot* y

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones 2 CÁLCULO FINANCIERO Teoría, Ejerccos y Aplcacoes 3 Uversdad de Bueos Ares Facultad de Cecas Ecoómcas Autores: Jua Ramó Garca Hervás Actuaro (UBA) Master e Ecoomía y Admstracó (ESEADE). Docete de Posgrado

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO ESTATAL NUEVA ESPERANZA

INSTITUTO SUPERIOR TECNOLÓGICO ESTATAL NUEVA ESPERANZA SILABUS DE CABLEADO ESTRUCTURADO I. INFORMACION GENERAL CARRERA PROFESIONAL : ELECTRONICA INDUSTRIAL MODULO PROFESIONAL : SISTEMAS DE CONTROL DE PROCESOS INDUSTRIALES Y COMUNICACIONES. UNIDAD DIDACTICA

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

Topología General Capítulo 0-2 -

Topología General Capítulo 0-2 - Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Estudio de eventos extremos enfocado a seguros y finanzas

Estudio de eventos extremos enfocado a seguros y finanzas Cuestoes Ecoómcas Vol. 0 No :3004 Estudo de evetos extremos efocado a seguros y fazas KLEVER MEJÍA ADRIANA UQUILLAS * Resume Muchos campos de la ceca modera y la geería tee que ldar co evetos que so poco

Más detalles

A2.1 SUMA PRESENTE A SUMA FUTURA

A2.1 SUMA PRESENTE A SUMA FUTURA A2. APÉNDICE MATEMÁTICAS FINANCIERAS E este apédce se preseta las fórmulas tradcoales para hallar las sumas equvaletes e el tempo y ua coleccó de fórmulas para equvaleca de tasas omales y efectvas. Para

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012 Solucó Práctca Evaluable. Olgopolo y Copeteca Moopolístca. 6//0 Cosdere u olgopolo de Courot co epresas que produce u be hoogéeo. La fucó versa de deada es p ) = 0 y todas las epresas tee el so coste argal

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles