Parametrizando la epicicloide

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Parametrizando la epicicloide"

Transcripción

1 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ)) Ahoa bien como el punto P se encuenta en un cículo de adio R podemos paametiza dicho cículo asi: ademas según la figua también P (cos β, senβ) OAP β + θ = π β = OAP + θ π OAP = OAX θ 0 = OAP θ 0 = OAP

2 2 po lo tanto β = θ 0 +θ π P P ( ( θ 0 cos ( ( θ 0 cos + θ ) ) ( θ 0 + θ π, sen ( θ 0, sen + θ Po lo tanto las coodenadas del punto P desde O son: ( ( )) θ 0 x = ( 0 + ) cos(θ) cos + θ ( ( )) θ 0 y = ( 0 + ) sen(θ) sen + θ Ejemplos de cuvas )) )) + θ π Detemine la cuva intesección del cilindo x 2 +y 2 = 1 y el plano y+z = 2

3 3 El cilindo lo podemos paametiza asi: x = cos t y = sen t t [0, 2π] y de la ecuaciòn del plano se tiene y+z = 2 z = 2 y z = 2 sen t po tanto c(t) = (cos t, sen t, 2 sen t) Taza las cuvas x(t) = t 2, y(t) = t 2, z(t) = 5 x(t) = 3, y(t) = t, z(t) = 2 cos(t)

4 4

5 Funciones Vectoiales Funciones de R en R n Llamaemos función vectoial de vaiable eal o simplemente función vectoial, a aquellas con dominio en un subconjunto de R y contadominio en un espacio vectoial R n. De esta manea una función vectoial f asocia a cada elemento t de un conjunto A de númeos eales, un único vecto f(t). Puesto que f(t) es un punto en el espacio R n, éste tiene n coodenadas, las cuales son en geneal, funciones de la vaiable t. Así podemos escibi f(t) = (x 1 (t)), x 2 (t)),..., x n (t)) R n En los cusos de Geometía Analítica, ya han sido consideadas funciones de este tipo, po ejemplo, la ecuación vectoial de una ecta L, en el espacio, que pasa po un punto P 0 y que es paalela a un vecto a, que puede dase en la función L = {P ɛ R 3 P = P 0 + ta, t ɛ R} en donde, si consideamos que P 0 es un punto fijo y a es un vecto tambien constante, entonces tenemos que P es una función vectoial del paameto eal t, es deci, cada valo de t esta asociado con un punto P de la ecta. Ejemplo.- Si f es la función vectoial po f(t) = (2 cos(t), 2 sin(t)) con t ɛ [0, 2π], tenemos entonces que f asocia a cada númeo eal t en el intevalo t ɛ [0, 2π], un pa odenado (x, y) con x = 2 cos t y y = 2 sin t, que son las ecuaciones paaméticas de una cicunfeencia de adio 2 y cento en el oigen. Asi pues la gáfica de f es una cicunfeencia. 1

6 Obsevemos que cada una de las componentes de una función vectoial es una función eal (de vaiable eal) y que las llamadas ecuaciones paaméticas se obtienen pesisamente al expesa cada una de las componentes en función del paámeto. Así pues, las ecuaciones paaméticas definen una función vectoial y vicevesa una ecuación en dos vaiables define un luga geomético que po lo geneal, y paa nuesto popósito, seá una cuva plana. Cuando este luga geometico se define mediante ecuaciones paameticas y pensando que el punto se mueve sobe la cuva confome el paameto ecoe el dominio, tendemos que las ecuaciones paaméticas definian además, el punto de patida, la apidez con la que se hace el ecoido, que poción de la cuva se considea (vaiando el dominio) y, si la cuva es ceada, cuantas veces se eccoe. Cada una de las funciones vectoiales que se dan a continuación, define el mismo luga geomético o una pate de éste; sin embago, el sentido, el punto de patida y la apidez de ecoido así como la poción de la cuva que se considea en cada caso vaia. f 1 (t) = (2 cos t, 2 sin t) t ɛ [0, 2π] f 2 (t) = (2 cos t, 2 sin t) t ɛ [0, 2π] f 3 (t) = (2 cos 3t, 2 sin 3t) t ɛ [0, 2π] f 4 (t) = (2 cos t, 2 sin t) t ɛ [0, π] f 5 (t) = (2 cos t, 2 sin t) t ɛ [0, 6π] 2

7 f 6 (t) = (2 cos t, 2 sin t) t ɛ [ π, π] Paa una función vectoial en R 3 decimos que: Si D es un conjunto de R, entonces es una función vectoial con dominio D si y sólo si, paa todo t ɛ D (t) = f(t)i + g(t)j + h(t)k donde f, g y h son funciones escalaes con dominio D. Ejemplo.- Sea (t) = (t + 2)i + (2t 2 3)j + t 3 k paa todo t ɛ R Paa que valo de t el vecto de posición de (t) está en uno de los planos?. El vecto de posición de (t) está en el plano xy si su componente segun k, o sea t 3, es igual a 0, es deci, t = 0, el vecto de posición esta en el plano yz si la componente según i que es t + 2 = 0 o sea t = 2 finalmente, está en el plano xt si 2t 2 3 = 0, es deci, t = ± 3/2 ±1,225.. Ejemplo.- Desciba la cuva definida po la función vectoial (t) = (1 + t, 2 + 5t, 1 + 6t). Las ecuaciones paaméticas coespondiente son, x = 1 + t, y = 2 + 5t, z = 1 + 6t o sea (1, 2, 1) + t(1, 5, 6) se tata de una ecta que pasa po (1, 2, 1) y es paalela a (1, 5, 6) Ejemplo.- Dibuje la cuva cuya ecuación vectoial es (t) = 2 cos ti + sin tj + tk. Las ecuaciones paaméticas paa esta cuva son, x = 2 cos t, y = sin t, z = t x/2 = cos t ( x 2 )2 +y 2 = 1 la cuva se encuenta en el cilindo elíptico ( x2 4 )+y2 = 1. Ya que z = t la cuva foma una espial ascendente alededo del cilindo confome t se incementa 3

8 Ejemplo.- Halle una función vectoial que epesente la cuva de la intesección del cilindo x 2 + y 2 = 1 y el plano y + z = 2. La figua muesta la foma en que se cuzan, el plano y el cilindo, así mismo la figua ilusta la cuva de intesección. La poyección C sobe el plano xy es el ciculo x 2 + y 2 = 0, z = 0, x = cos t, y = sin t, 0 t 2π, con base en la ecuacion del plano, tenemos que z = 2 y = 2 sin t x = cos t, y = sin t, z = 2 sin t, 0 t 2π la ecuación vectoial coespondiente es (t) = cos ti + sin tj + (2 sin t)k 0 t 2π. Sea f(t) = (x 1 (t)), x 2 (t)),..., x n (t)) R n entonces el Dom(f) = n i=1 x i(t) Ejemplo.-Halle el dominio de la función vectoial f(t) = (t 2, t 1, 5 t) Sol. tenemos que Si x 1 (t) = t 2 entonces Dom(x 1 (t)) = R Si x 2 (t) = t 1 entonces Dom(x 2 (t)) = {t R t 1} Si x 3 (t) = 5 t entonces Dom(x 3 (t)) = {t R 5 t} 4

9 Po lo tanto Dom(f(t)) = {Dom(x 1 (t)), Dom(x 2 (t)), Dom(x 3 (t))} = {t R 1 t 5} Ejemplo.-Halle el dominio de la función vectoial f(t) = (Ln(t), t t 1, e t ) Sol. tenemos que Po lo tanto Si x 1 (t) = Ln(t) entonces Dom(x 1 (t)) = {t R 0 < t} Si x 2 (t) = t t 1 entonces Dom(x 2 (t)) = {t R 1 t} Si x 3 (t) = e t entonces Dom(x 3 (t)) = R Dom(f(t)) = {Dom(x 1 (t)), Dom(x 2 (t)), Dom(x 3 (t))} = {t R 0 < t, t 1} Una intepetación Física Cuando una paticula se mueve en el espacio duante un intevalo de tiempo I, se pueden considea las coodenadas de la paticula como funciones definidas sobe I: x(t), y(t) y z(t) t R. Los puntos (x, y, z) = (f(t), g(t), h(t)) confoman la cuva en el espacio que llamamos tayectoia de la patícula. Estas ecuaciones paametizan la cuva y el vecto f(t) = OP = (f(t)i + g(t)j + h(t)k) del oigen a la posición P ((f(t), g(t), h(t)k)) de la patícula en el tiempo t es el vecto de posición de la patícula. Ejemplo.- La función de posición de una paticula en el plano XY es f(t) = (t + 1)i + (t 2 1)j encuente una ecuación en x e y cuya gáfica sea la tayectoia de la patícula. Sol. Tenemos que x = t + 1 y = t 2 1 y = (x 1) 2 1 y = x 2 2x 5

10 Algeba de fuunciones vectoiales Sean f, g R R n entonces definimos las opeaciones ente funciones vectoiales asi: Suma 1. h(t) = f(t) + g(t) = (f 1 (t), f 2 (t),..., f 1 (n)) + (g 1 (t), g 2 (t),..., g 1 (n)) = ((f 1 + g 1 )(t), (f 2 + g 2 )(t),..., (f n + g n )(t)) Difeencia 2. h(t) = f(t) g(t) = (f 1 (t), f 2 (t),..., f 1 (n)) (g 1 (t), g 2 (t),..., g 1 (n)) = Poducto po un escala ((f 1 g 1 )(t), (f 2 g 2 )(t),..., (f n g n )(t)) 3. c f(t) = c (f 1 (t), f 2 (t),..., f 1 (n)) = (c f 1 (t), c f 2 (t),..., c f 1 (n)) 6

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO V CONTENIDO PROLOGO I PRTE I FUNDMENTOS DE L MECÁNIC PR L INGENIERÍ Y DINÁMIC DE L PRTÍCUL EN MOVIMIENTO PLNO 1. Fundamentos de la Mecánica paa la Ingenieía. 1.1 Intoducción. 1 1. Conceptos básicos. 1.3

Más detalles

Teoría Electromagnética

Teoría Electromagnética José Moón Fundamentos de Teoía Electomagnética I. Campos Estáticos 3 Índice Geneal CAPÍTULO Intoducción al Análisis Vectoial. Intoducción. Escalaes Vectoes.3 Multiplicación Vectoial 5.4 Vectoes Base Componentes

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

GRAFICANDO EN COORDENADAS POLARES

GRAFICANDO EN COORDENADAS POLARES GRAFICANDO EN COORDENADAS POLARES Maía Guadalupe Amado Moeno, Ángel Gacía Velázquez Instituto Tecnológico de Meicali, Baja Califonia, Méico lupitaamado@hotmail.com, angel.g0@hotmail.com RESUMEN El tabajo

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

CAPITULO VI FUERZAS CENTRALES. " Qué es lo que hace que los planetas giren en torno al Sol?

CAPITULO VI FUERZAS CENTRALES.  Qué es lo que hace que los planetas giren en torno al Sol? FUEZAS CENALES CAPIULO VI " Qué es lo que hace que los planetas gien en tono al Sol? En los tiempos de Keple algunas pesonas contestaban esta pegunta diciendo que había ángeles detás de ellos, agitando

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION.

CAPITULO 2. MOVIMIENTO EN UNA DIMENSION. Cap. Movimiento en una dimensión. CAPITULO. MOVIMIENTO EN UNA DIMENSION. La cinemática es la ama de la mecánica que estudia la geometía del movimiento. Usa las magnitudes fundamentales longitud, en foma

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

CINEMÁTICA DE LA PARTICULA

CINEMÁTICA DE LA PARTICULA CAPITULO I CINEMÁTICA DE LA PARTICULA "La natualeza es una esfea infinita cuyo cento está en todas pates y su cicunfeencia en ninguna" Blas Pascal Pensamientos. "No definié tiempo, espacio y movimiento

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

UNIDAD IV: CAMPO MAGNETICO

UNIDAD IV: CAMPO MAGNETICO UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento

Más detalles

UNIVERSIDAD DE ZARAGOZA

UNIVERSIDAD DE ZARAGOZA Reflectometía en el dominio del tiempo UNIERIDAD DE ZARAGOZA FACUTAD DE CIENCIA DEPARTAMENTO DE FIICA APICADA AREA DE EECTROMAGNETIMO CARACTERIZACIÓN DIEÉCTRICA POR T. D. R. DE UNA MEZCA REINA EPOXY TITANATO

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Los cosenos de estos tres ángulos son los llamados cosenos directores del vector A r.

Los cosenos de estos tres ángulos son los llamados cosenos directores del vector A r. MECÁNICA RACIONAL ING. LINO SPAGNOLO Capítulo 1 Intoducción a vectoes y tensoes La Física es una ciencia que equiee de mediciones muy pecisas de las múltiples magnitudes obsevables en la natualeza, paa

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

7. INTERFERENCIA Y DIFRACCIÓN

7. INTERFERENCIA Y DIFRACCIÓN 7. INTERFERENCIA Y DIFRACCIÓN Fenómenos de singula impotancia que distinguen las ondas de las patículas son la intefeencia y la difacción. La intefeencia es la combinación po supeposición de dos ó más

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape.

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape. TEM : INTERCCIÓN GRVITTORI PRTE Genealización del concepto de tabajo a una fueza vaiable. Teoema del tabajo y la enegía cinética. Fuezas consevativas. Enegía potencial asociada a una fueza consevativa.

Más detalles

El campo eléctrico(i):ley de Coulomb

El campo eléctrico(i):ley de Coulomb El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

Cinética de partículas: segunda ley de Newton

Cinética de partículas: segunda ley de Newton bee76985_ch12.xd 23/10/06 5:44 PM Página 691 PÍTUL12 inética de patículas: segunda ley de Newton uando un automóvil se desplaza sobe el tamo cuvo de una pista de caeas, está sujeto a una componente de

Más detalles

Visión para Posicionar un Manipulador Utilizando un Sistema de Visión Mono-ocular

Visión para Posicionar un Manipulador Utilizando un Sistema de Visión Mono-ocular to. Congeso Nacional de Mecatónica, Novieme 8-0, 007 Asociación Mexicana de Mecatónica A.C. Visión paa Posiciona un Manipulado Utilizando un Sistema de Visión Mono-ocula Viamontes Reyna José Luis, González

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Radiación Solar = [ 2] n 365

Radiación Solar = [ 2] n 365 Radiación Sola Radiación Sola 1. EL SOL Y LA TIERRA 1.1. Movimiento obital de la Tiea alededo del Sol La Tiea, al igual que el esto de los planetas, de acuedo con la pimea ley de Keple, gia en tono al

Más detalles

PROBLEMAS DE MÁXIMOS Y MÍNIMOS.

PROBLEMAS DE MÁXIMOS Y MÍNIMOS. PROBLEMAS DE MÁXIMOS Y MÍNIMOS. Los métodos paa detemina los máimos y mínimos de las funciones se pueden aplica a la solución de poblemas pácticos, paa esolvelos tenemos que tansfoma sus enunciados en

Más detalles

I MAGNITUDES Y MEDIDAS

I MAGNITUDES Y MEDIDAS I MAGNITUDES Y MEDIDAS 1. MAGNITUDES Se llama magnitud a cualquie caacteística de un cuepo que se puede medi y expesa como una cantidad. Así, son magnitudes la altua de un cuepo, la tempeatua, y no son

Más detalles

DIBUJO TÉCNICO. 1º Bachillerato. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

DIBUJO TÉCNICO. 1º Bachillerato. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein DIUJO TÉCNICO 1º achilleato Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein utoizado po el Depatamento de Educación, Univesidades e Investigación del Gobieno Vasco (3-7-2003) Diseño

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiciones de Secndaia) TEM 41 MOVIMIENTOS EN EL PLNO. COMPOSICIÓN DE MOVIMIENTOS. PLICCIÓN L ESTUDIO DE LS TESELCIONES DEL PLNO. FRISOS Y MOSICOS. 1. Intodcción. 2. Conceptos Básicos.

Más detalles

XIII. La a nube de puntos-variables

XIII. La a nube de puntos-variables XIII. La a nube de punto-vaiable Una vaiable e epeentada con un vecto en R n. El conunto de etemidade de lo vectoe que epeentan la vaiable contituyen la nube de punto N. m im m n i m Pogama PRESTA - 999

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

[1] que podemos escribir como:

[1] que podemos escribir como: ema 3 abajo y Enegía 3.1. abajo, enegía y otencia. 3.1.1. Enegía y tabajo mecánico. En Mecánica los concetos de tabajo y enegía son muy útiles aa esolve oblemas dinámicos en los que las fuezas vienen dadas

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Actividad xx Determinación de resistividades Efecto piel en conductores.

Actividad xx Determinación de resistividades Efecto piel en conductores. Actividad xx Deteminación de esistividades Efecto piel en conductoes. Método de las cuato puntas o método de Kelvin Objetivo Deteminación expeimental de la esistividad (o conductividad) de divesas muestas

Más detalles