Tema: Equilibrio de fases en sistemas de multicomponentes B. Quintero /M.C. Cabeza. Diagrama de fases para un sistema de dos componentes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema: Equilibrio de fases en sistemas de multicomponentes B. Quintero /M.C. Cabeza. Diagrama de fases para un sistema de dos componentes"

Transcripción

1 Diagrama de fases para un sistema de dos componentes En un tema anterior se describieron los diagramas de fases para compuestos puros y, en particular, el diagrama de fases del agua. Esos diagramas permitían la representación de los diferentes estados de equilibrio en función de la temperatura y la presión ya que la regla de las fases demuestra que sólo se necesitaban dos variables intensivas para definir cualquier estado del sistema formado por un componente puro. hora bien, la aplicación de la ecuación L ci p 2 en el caso de sistemas formados por dos componentes (c i = 2), daría los siguientes resultados, dependiendo del número de fases en equilibrio: p 1 L 3 p 2 L 2 p 3 L 1 p 4 L 0 así se puede comprobar que en un sistema de dos componentes pueden existir hasta cuatro fases en equilibrio (obsérvese que p no puede valer 5 ya que entonces L tendría un valor negativo, lo cual carece de sentido físico). or otra parte, en los resultados anteriores se hace evidente que el máximo valor de L es 3, o sea que para representar cualquier estado de equilibrio se necesitarán como máximo tres variables intensivas. Como es lógico, si se quiere representar todos los estados de equilibrio se pueden elegir tres variables intensivas que sean fáciles de medir. sí, se podría optar por la, la T y la composición. Sin embargo, el resultado sería un diagrama tridimensional que no es muy práctico. En consecuencia, es habitual que en vez de emplear tres variables, se utilicen sólo dos, manteniendo constante la tercera. De este modo se pueden construir diagramas de fases /composición a temperatura constante o T/composición a presión constante. Estos diagramas de fases son necesariamente parciales y están limitados a unos determinados intervalos de T o. De otro lado, ya que en los diagramas pueden representarse estados en los que el sistema es heterogéneo, la composición conviene expresarla como la fracción molar total. sí, para el componente de un sistema binario (formado por y B) donde es posible un equilibrio líquido-vapor, la fracción molar total de (x T, ) se define del siguiente modo x T, n n ( l ) n v n( l ) n( v ) n ( l ) n ( v ) n ( l ) n ( v ) B B continuación se analizarán diversos ejemplos de diagramas de fases en sistemas de dos componentes. 1

2 Diagrama /composición a T constante para el equilibrio líquido-vapor en un sistema ideal de dos componentes Se supone en este caso un sistema ideal formado por dos componentes ( y B) que da lugar a un equilibrio líquido-vapor en determinadas condiciones de presión, temperatura y composición. ara este tipo de sistema el diagrama de fase presión/composición a temperatura constante, tiene el aspecto mostrado en la figura. Como se puede observar en dicha figura, aparecen delimitadas tres zonas que pueden ser identificadas con un sencillo razonamiento. formada por los componentes y B. En efecto, si se piensa en cualquier sistema que pueda existir como líquido o como gas, una presión relativamente alta será compatible con un sistema formado sólo por una fase líquida. Esto significa que la parte superior del diagrama reunirá las condiciones de temperatura, presión y composición bajo las cuales el sistema se presenta constituido por sola fase líquida que sería la disolución ideal De un modo similar, resulta sencillo asociar una presión relativamente baja con la existencia de un sistema gaseoso. Esto justifica que la parte inferior del diagrama represente las condiciones de temperatura, presión y composición bajos las cuales el sistema se presenta como una fase gaseosa que sería la mezcla de gases ideales formada por los componentes y B. Con la identificación de las zonas superior e inferior, sólo queda la zona intermedia que necesariamente debe ser considerada como zona de transición. Es decir, esta zona indica las condiciones de temperatura, presión y composición en las que el sistema es heterogéneo, constituido por el equilibrio entre las fases líquida y gaseosa. Una vez identificadas las zonas del diagrama, interesa conocer lo que representan las líneas que limitan la zona de heterogeneidad (la zona intermedia en la que el sistema es heterogéneo). ara ello se supondrá que inicialmente el sistema es líquido y está representado por el punto a la presión 1 siendo la composición la que viene dada por la fracción molar x T,. 2

3 Teniendo en cuenta que el sistema es cerrado, si se disminuye la presión a T constante, el sistema evolucionará por la línea vertical discontinua ya que la composición debe mantenerse constante. De esta forma el sistema pasará de la presión 1 a la presión 2. esa presión, el sistema está representado por un punto sobre la línea superior de la zona de heterogeneidad. Es fácil entender que si se pasa de la zona superior (en la que sólo existe una fase líquida) a la zona intermedia (en la que existen dos fases, líquido y gas, en equilibrio) un punto sobre la línea que limita la zona de heterogeneidad debe representar las condiciones en las que se inicia el proceso de evaporación. El sistema en estas condiciones debe estar formado en su mayor parte por una fase líquida y una pequeña cantidad de fase gaseosa. ara el gas se debe cumplir que B y, además, se debe cumplir la ley de Raoult de modo que x l y x l que sustituidas en la ecuación previa, lleva a * * B B B x l x l x l 1 x l * B B B x l..[1] B B esta ecuación puede ser deducida para cualquier composición del sistema (cualquier punto de la recta) y en todos ellos representaría las condiciones en las que se inicia la vaporización y dado que en estas condiciones la fase líquida es la mayor parte del sistema, se puede aceptar sin gran error que x l x T, de esta forma la recta superior de la zona de heterogeneidad queda representada por la ecuación x B B T, que expresa una relación lineal entre y x T, tal como se aprecia en la figura. partir de esta ecuación se puede deducir que cuando x T, = 0 (sistema formado sólo por el componente B) la presión del sistema será B *, que es la presión de vapor del componente B puro. demás, se puede igualmente comprobar que si x T, = 1 (sistema formado sólo por el componente ) la presión del sistema será *. La línea superior de la zona de heterogeneidad en este diagrama se denomina línea del líquido. ara justificar la línea inferior de la zona de heterogeneidad, se supondrá que la presión se vuelve a disminuir isotérmicamente. Eso llevaría al sistema hasta la presión 4. Se 3

4 puede comprobar en la siguiente figura que, a dicha presión, el sistema está representado por un punto que está situado en la línea inferior de la zona de heterogeneidad. Se puede igualmente considerar que, siendo la línea inferior el límite entre la zona de heterogeneidad y la zona en la que el sistema existe como una única fase gaseosa, a la presión 4 el proceso de vaporización debe estar finalizando de forma que estará formado en su mayor parte por gas y sólo quedará una pequeña parte de fase líquida. or supuesto estas consideraciones son también válidas para cualquier composición del sistema, o sea para cualquier punto de la línea inferior. sí pues, se debe cumplir en cualquier punto de la línea inferior que o sea que y sustituyendo en la ecuación [1], resulta * x l x v x l x v * x l xv B B B B * y, reorganizando los términos de la ecuación, queda de modo que x v * * B B x v * * B B B x v * * B B 4

5 Esta ecuación justifica la línea inferior de la zona de heterogeneidad (que recibe el nombre de línea del vapor) ya que, como se ha indicado, en cualquier punto de la curva se puede considerar que el sistema está prácticamente constituido por una fase gaseosa, de modo que x v x T, de manera que la ecuación de la curva se puede escribir también como x * * B B T, quí se puede comprobar que si x T, = 0 (sistema formado sólo por el componente B) la presión del sistema será B * y si x T, = 1 (sistema formado sólo por el componente ) la presión del sistema será *. Estos son los resultados que se obtenían con la ecuación de la línea del líquido. or lo tanto, las líneas del líquido y del vapor coinciden en los extremos tal como aparece en las anteriores figuras. Debe hacerse notar que en el diagrama de fases que se ha analizado se ha supuesto que el componente es más volátil que el componente B ya que * > B *. Un aspecto interesante de la zona de heterogeneidad en los diagramas de fases de dos componentes es que si, por ejemplo, se considera la línea HI que corta transversalmente la zona de heterogeneidad (ver figura adjunta), es evidente que en cualquier punto de HI se define un estado de equilibrio en el que el sistema está formado por dos fases en equilibrio: líquido y vapor de modo que, aplicando la regla de las fases, resultará que los grados de liberad serán dos. Como resulta que para HI la presión es constante ( 2 ) y la temperatura es igualmente constante (para poder construir el diagrama), es evidente que todas las propiedades intensivas deben ser constantes y tener el mismo valor para todos los estados representados en la línea HI. Esto significa que todos los puntos de la línea HI representan al sistema en el mismo estado de equilibrio. Esto es aplicable a cualquier línea que cruce transversalmente la zona de heterogeneidad. Cualquiera de estas líneas recibe el nombre de línea de conjunción. Las líneas de conjunción pueden ser utilizadas para conocer la composición de las fases en el equilibrio. Obsérvese que el punto H está en la línea del líquido de modo que la abcisa de H (x T, ) y, según se ha discutido anteriormente, para ese punto se cumple que 5

6 x l x ' T, o sea que la abcisa de H permite conocer el valor de la fracción molar de en la fase líquida (y a partir de ella, el valor de x B (l)). Y dado que cualquier estado representado por cualquier punto de la línea HI tiene el mismo valor de sus propiedades intensivas, los valores de x (l) y x B (l) para cualquiera de estos estados puede ser calculado a partir del valor de abcisa del extremo H de la línea de conjunción. De un modo similar se puede considerar el punto I que está sobre la línea del vapor. En este punto se cumple que x v x '' T, Y como todos los puntos de la línea HI están en el mismo estado de equilibrio todos ellos tendrán ese mismo valor x (v) para su fase gaseosa. El valor de x (v) viene dado por la abcisa del punto I. En resumen: para conocer la composición de las fases para un determinado estado de equilibrio (como, por ejemplo, el representado por el punto en la figura anterior) se traza la línea de conjunción que pase por ese punto y los valores de x (l) y x (v) vendrán dados por los valores de las abcisas correspondientes a los extremos de la línea de conjunción. 6

En este apartado. para un. er a estados del sistema. zona. componentes). las temperaturas. en la. es, tal como se. condiciones. heterogéneo.

En este apartado. para un. er a estados del sistema. zona. componentes). las temperaturas. en la. es, tal como se. condiciones. heterogéneo. Diagrama de fases para ell equilibrioo sólido-líquido. Eutéctico simple. En este apartado se considera el diagrama de fases correspondiente al equilibrio sólido- miscibles en fase líquida y totalmente

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 8. Equilibrio de fases en sistemas multicomponentes II

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 8. Equilibrio de fases en sistemas multicomponentes II María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 8 Equilibrio de fases en sistemas multicomponentes II Esquema Tema 8. Equilibrios de fases en sistemas multicomponentes

Más detalles

Diagrama de fases de una sustancia pura: el agua

Diagrama de fases de una sustancia pura: el agua Diagrama de fases de una sustancia pura: el agua Apellidos, nombre Departamento Centro Lorena Atarés Huerta (loathue@tal.upv.es) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica

Más detalles

Problemas Tema 11. Generalidades sobre la transferencia de materia PROBLEMAS TEMA 11

Problemas Tema 11. Generalidades sobre la transferencia de materia PROBLEMAS TEMA 11 PROBLEMAS TEMA 11 Problema 1 Las mezclas binarias de n-hexano (H) con n-octano (O) suelen considerarse ideales dada la semejanza de ambos hidrocarburos. Conocidas las presiones de vapor de ambos compuestos

Más detalles

Aplicación de los criterios de espontaneidad a una reacción química completa

Aplicación de los criterios de espontaneidad a una reacción química completa Algunas reflexiones sobre el equilibrio químico a partir de consideraciones termodinámicas Prof. Marisa García Dra. María Antonia Grompone 1 Introducción En los programas de Química del Bachillerato Diversificado

Más detalles

La ley de Raoult. Lorena Atarés Huerta Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural

La ley de Raoult. Lorena Atarés Huerta Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural La ley de Raoult Apellidos, nombre Departamento Centro Lorena Atarés Huerta (loathue@tal.upv.es) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural 1 Resumen

Más detalles

TEMPERATURA DE EBULLICIÓN-COMPOSICIÓN DE UNA MEZCLA LÍQUIDA BINARIA

TEMPERATURA DE EBULLICIÓN-COMPOSICIÓN DE UNA MEZCLA LÍQUIDA BINARIA DIAGRAMA DE FASES TEMPERATURA DE EBULLICIÓN-COMPOSICIÓN DE UNA MEZCLA LÍQUIDA BINARIA 1 OBJETIVOS 1. Construcción del diagrama de fases T-x para la mezcla metanol-cloroformo cloroformo. 2. Caracterización

Más detalles

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado.

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado. Función de estado Una función de estado es una propiedad de un sistema termodinámico que depende sólo del estado del sistema, y no de la forma en que el sistema llegó a dicho estado. Por ejemplo, la energía

Más detalles

EQUILIBRIO ENTRE FASES

EQUILIBRIO ENTRE FASES UNCUYO FCULTD DE CIENCIS GRRIS Cát. de Química General e Inorgánica EQUILIRIO ENTRE FSES S I S T E M S D E D O S C O M O N E N T E S 2 da RTE INTRODUCCIÓN Efecto de las condiciones externas (,T) sobre

Más detalles

Equilibrio Líquido-Vapor de soluciones binarias, en el sentido de la Ley de Raoult

Equilibrio Líquido-Vapor de soluciones binarias, en el sentido de la Ley de Raoult Equilibrio Líquido-Vapor de soluciones binarias, en el sentido de la Ley de Raoult La representación tridimensional de los sistemas de equilibrio binario puede ser difícil de analizar por lo que podemos

Más detalles

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4)

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4) POTENCIAL QUÍMICO Y CAMBIO DE FASES I. Potencial químico: gas ideal y su estado patrón. A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3)

Más detalles

PRÁCTICA NO. 2: EQUILIBRIO LIQUIDO-VAPOR EN SISTEMAS LIQUIDOS BINARIOS

PRÁCTICA NO. 2: EQUILIBRIO LIQUIDO-VAPOR EN SISTEMAS LIQUIDOS BINARIOS 31 de 59 PRÁCTICA NO. 2: EQUILIBRIO LIQUIDO-VAPOR EN SISTEMAS LIQUIDOS BINARIOS INTRODUCCIÓN En la industria farmacéutica se emplean diferentes mezclas de sustancia líquidas miscibles, ya sea para preparar

Más detalles

TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Presentación hecha exclusivamente con el fin de facilitar el estudio. SIMULACIÓN

Más detalles

TERMODINÁMICA 17. Transformaciones de estado

TERMODINÁMICA 17. Transformaciones de estado ERMODINÁMICA 7. ransformaciones de estado 30. El alumno de enseñanzas medias, asocia a Clapeyron, ingeniero francés y profesor en Rusia, con la ecuación de los gases perfectos y con el estudio de la vaporización

Más detalles

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas.

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Tema 2: Disoluciones Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Presión de vapor. Presión osmótica. Aumento ebulloscópico y descenso

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo.

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo. Zulia DIAGRAMAS DE FASES Realizado por: RINCON, Bianca C.I

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

Biofísica FCEFyN Introducción a la fisicoquímica de mezclas Mezclas ideales Dra. Dolores C. Carrer

Biofísica FCEFyN Introducción a la fisicoquímica de mezclas Mezclas ideales Dra. Dolores C. Carrer Biofísica FCEFyN Introducción a la fisicoquímica de mezclas Mezclas ideales Dra. Dolores C. Carrer dolorescarrer@immf.uncor.edu Una mezcla ideal es tal que las moléculas de las distintas especies son tan

Más detalles

Equilibrio Heterogéneo

Equilibrio Heterogéneo Equilibrio Heterogéneo Diagrama de fases de una mezcla binaria Laboratorio de Química Física I QUIM 45 Ileana Nieves Martínez agosto 24 ropósito Determinar para un sistema binario sólido-líquido: las curvas

Más detalles

Guía de ejercicios complementarios de equilibrio líquido-vapor y propiedades coligativas

Guía de ejercicios complementarios de equilibrio líquido-vapor y propiedades coligativas Guía de ejercicios complementarios de equilibrio líquido-vapor y propiedades coligativas Universidad de Santiago de Chile Departamento de Ingeniería Química Profesor: Dr. Julio Romero 1) En su calidad

Más detalles

Sistemas homogéneos y heterogéneos

Sistemas homogéneos y heterogéneos istemas homogéneos y heterogéneos IDVH IDVHV La definición de IDVH PDWHULDO involucra la porción del sistema cuyas propiedades químicas y físicas son XQLIRUPHV en toda su extensión. Esta definición incluye

Más detalles

Unidad Propiedades de las sustancias puras

Unidad Propiedades de las sustancias puras Unidad 2 2.1.- Propiedades de las sustancias puras 2.1.1.- Sustancias puras PLANIFICACIÓN Certámenes: Certamen 1 15 de mayo Certamen 2 12 de junio. Certamen 3 6 de julio 2.1.- Propiedades de las sustancias

Más detalles

INTERPRETACIÓN DE UN DIAGRAMA BINARIO DE FASES AL EQUILIBRIO SENCILLO

INTERPRETACIÓN DE UN DIAGRAMA BINARIO DE FASES AL EQUILIBRIO SENCILLO INTERPRETACIÓN DE UN DIAGRAMA BINARIO DE FASES AL EQUILIBRIO SENCILLO Diagramas binarios. En los diagramas de equilibrio, las variables intensivas a considerar son: Temperatura Presión. Composición En

Más detalles

7. DESTILACIÓN FRACCIONADA. Objetivos: Que el estudiante Aprenda los fundamentos y procedimientos de la técnica de destilación fraccionada.

7. DESTILACIÓN FRACCIONADA. Objetivos: Que el estudiante Aprenda los fundamentos y procedimientos de la técnica de destilación fraccionada. 7. DESTILACIÓN FRACCIONADA Objetivos: Que el estudiante Aprenda los fundamentos y procedimientos de la técnica de destilación fraccionada. Material que el estudiante debe traer: Corchos en cantidad y tamaño

Más detalles

Tema 5: Disoluciones. (Químic General) Disoluciones 6 de noviembre de / 38

Tema 5: Disoluciones. (Químic General) Disoluciones 6 de noviembre de / 38 Tema 5: Disoluciones Tipos de disoluciones. Concentración. Solubilidad de gases. Diagramas de fases de dos componentes. Propiedades coligativas: presión osmótica, disminución del punto de fusión y aumento

Más detalles

Modelos de mezcla 30 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5

Modelos de mezcla 30 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 Índice 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIETO Modelos de mezcla 30 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 subrayados y en negrita para voluntarios punto de clase 1. Introducción

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

Es aquella que tiene una composición química fija en cualquier parte. El agua, el nitrógeno, el helio y el dióxido de carbono, son sustancias puras.

Es aquella que tiene una composición química fija en cualquier parte. El agua, el nitrógeno, el helio y el dióxido de carbono, son sustancias puras. Sustancia pura Es aquella que tiene una composición química fija en cualquier parte. El agua, el nitrógeno, el helio y el dióxido de carbono, son sustancias puras. Una mezcla de dos o más fases de una

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 10. Equilibrio químico

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 10. Equilibrio químico María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 10 Equilibrio químico Esquema Tema 10. Equilibrio químico 10.1 Condición de equilibrio químico y espontaneidad en

Más detalles

Equilibrio de fases en sistemas multicomponentes

Equilibrio de fases en sistemas multicomponentes Equilibrio de fases en sistemas multicomponentes Fase; zona de un sistema en el que la composición y estado físico es igual. Se representa por la letra P, una mezcla de liquidos inmiscibles son dos fases

Más detalles

MODELOS DE SOLUCIÓN. Coeficientes de Actividad a partir de propiedades en exceso

MODELOS DE SOLUCIÓN. Coeficientes de Actividad a partir de propiedades en exceso MODELOS DE SOLUCIÓN Coeficientes de Actividad a partir de propiedades en exceso MODELOS DE SOLUCIÓN Margules 2 sufijos MODELOS DE SOLUCIÓN Margules 3 sufijos MODELOS DE SOLUCIÓN Van Laar MODELOS DE SOLUCIÓN

Más detalles

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π EQUILIBRIO DE FASES Reglas de las fases. Teorema de Duhem Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P, T y (N-1) fracciones mol tal que Σxi=1 para

Más detalles

ÍNDICE. Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14

ÍNDICE. Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14 ix ÍNDICE Prefacio y Dedicatoria Índice Constantes de uso frecuente v ix xi Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14 Capítulo 2. Variables

Más detalles

Termodinámica de Procesos

Termodinámica de Procesos Termodinámica de Procesos Equilibrio de fases Regla de las Fases de Gibbs Establece el número de variables intensivas independientes o grados de libertad F a fijar en un problema de equilibrio entre fases

Más detalles

UNIDAD III UNIDADES DE OPERACIÓN DE TRANSFERENCIA DE MASA POR DESTILACIÓN

UNIDAD III UNIDADES DE OPERACIÓN DE TRANSFERENCIA DE MASA POR DESTILACIÓN UNIDAD III UNIDADES DE OPERACIÓN DE TRANSFERENCIA DE MASA POR DESTILACIÓN 1. Introducción La unidad de operación de transferencia de masa conicidad como Destilación, se fundamenta en el efecto de cambio

Más detalles

Guía de Ejercicios PEP nº1 Principios de los Procesos Químicos II Ingeniería de Ejecución Química

Guía de Ejercicios PEP nº1 Principios de los Procesos Químicos II Ingeniería de Ejecución Química Guía de Ejercicios PEP nº1 Principios de los Procesos Químicos II Ingeniería de Ejecución Química Prof. Julio Romero Problema 1 La adsorción de CO 2 sobre carbón activado ha sido estudiada experimentalmente,

Más detalles

FISICOQUÍMICA APLICADA

FISICOQUÍMICA APLICADA UNIVERSIDAD NACIONAL DE TUCUMAN FACULTAD DE BIOQUIMICA QUIMICA Y FARMACIA INSTITUTO DE QUIMICA FISICA San Miguel de Tucumán República Argentina FISICOQUÍMICA APLICADA Cambio de fase. Superficies. Coloides

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

Disminución de velocidad reactivos con el tiempo, véase como disminuye la pte. t (s) [Sustancia] d[sustancia] v = lim = t dt

Disminución de velocidad reactivos con el tiempo, véase como disminuye la pte. t (s) [Sustancia] d[sustancia] v = lim = t dt CINÉTICA QUÍMICA QUÍMICA º BACHILLERATO 1.- Velocidad de reacción 1.1. Expresión de la velocidad de una reacción química..- Ecuación y constante de velocidad..1. Orden de reacción... Forma de determinar

Más detalles

5. DIAGRAMAS DE FASES

5. DIAGRAMAS DE FASES 5. DIAGRAMAS DE FASES MATERIALES 13/14 ÍNDICE 1. Conceptos generales 2. Sistemas termodinámicos 3. Diagramas de fase de sustancias puras 4. Sistemas binarios 2 1. Conceptos generales Definición: Sistema:

Más detalles

Unidad 7: Equilibrio químico

Unidad 7: Equilibrio químico Unidad 7: Equilibrio químico 1. INTRODUCCIÓN Una reacción reversible es aquella en la cual los productos vuelven a combinarse para generar los reactivos. En estos procesos ocurren simultáneamente dos reacciones:

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 6. Termodinámica de las disoluciones

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 6. Termodinámica de las disoluciones aría del Pilar García Santos GRADO EN FARACIA FÍSICA APLICADA Y FISICOQUÍICA I Tema 6 Termodinámica de las disoluciones Esquema Tema 6.1 Propiedades generales de las disoluciones 6.2 Disolución líquida

Más detalles

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA.

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. La relación entre las cantidades de portadores de ambas fases será: L kg de portador L La relación entre portadores

Más detalles

XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA

XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA XII. - PROPIEDADES TERMODINÁMICAS DEL VAPOR DE AGUA XII.1.- ESTUDIO DE LOS FLUIDOS CONDENSABLES La necesidad de los fluidos condensables en general y de los vapores en particular, para su utilización industrial,

Más detalles

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo.

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. N 2 g 3 H 2 g 2 NH 3 g 2 NH 3 g N 2 g 3 H 2 g concentración H 2 N 2 NH 3 concentración NH 3 H 2

Más detalles

ANÁLISIS GRÁFICO DE RESULTADOS AMBIGUOS EN EL CÁLCULO DEL EQUILIBRIO ENTRE FASES

ANÁLISIS GRÁFICO DE RESULTADOS AMBIGUOS EN EL CÁLCULO DEL EQUILIBRIO ENTRE FASES ANÁLISIS GRÁFICO DE RESULADOS AMBIGUOS EN EL CÁLCULO DEL EQUILIBRIO ENRE FASES Salvador Pérez Cárdenas Escuela Superior de Ingeniería Química e Industrias Extractivas Instituto Politécnico Nacional aspcardenas@hotmail.com

Más detalles

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas.

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Tema 2: Disoluciones Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Presión de vapor. Presión osmótica. Aumento ebulloscópico y descenso

Más detalles

Cálculo de operaciones de separación con Mathcad

Cálculo de operaciones de separación con Mathcad ÍNDICE 1 EQUILIBRIO DE LA ABSORCIÓN... 13 1.1 Introducción... 13 1.2 Notación empleada en absorción y desorción... 14 1.2.1 Conversión entre fracción y razón... 15 1.3 Equilibrio de la absorción... 15

Más detalles

EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO

EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO Ejercicio 1 A partir del siguiente diagrama de equilibrio de fases de la aleación de cobre y níquel: a) Indica qué tipo de solubilidad tiene. b) Indica la temperatura

Más detalles

III. Propiedades de una sustancia pura

III. Propiedades de una sustancia pura Objetivos: 1. Introducir el concepto de una sustancia. 2. Discutir brevemente la física de los procesos de cambio de fase. 3. Ilustrar los diagramas de fase de las sustancias s. 4. Demostrar los procedimientos

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADEMICO EL SABINO UNIDAD CURRICULAR: CIENCIAS DE LOS MATERIALES UNIDAD IV:

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADEMICO EL SABINO UNIDAD CURRICULAR: CIENCIAS DE LOS MATERIALES UNIDAD IV: UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADEMICO EL SABINO UNIDAD CURRICULAR: CIENCIAS DE LOS MATERIALES UNIDAD IV: Diagramas de Fases PROFESOR: ING. VANESSA GUARECUCO NOVIEMBRE

Más detalles

Fundamentos de Química. Horario de Tutorías

Fundamentos de Química. Horario de Tutorías Fundamentos de Química Segundo Cuatrimestre Horario de Tutorías Martes 12:00-14:00 16:00-19:00 Edificio 24B.Tercera Planta 14/02/2006 Tema 11: Propiedades de las disoluciones 11.1 Definición de disolución

Más detalles

El punto "a" del diagrama de fases representa una aleación Cu-70% en peso de Ni a 1500 C.

El punto a del diagrama de fases representa una aleación Cu-70% en peso de Ni a 1500 C. DIAGRAMAS DE FASES 1.- Considerar una aleación del 70% en peso de Ni y 30% en peso de Cu. a) Realizar un análisis de fases a 1.500 C y a 1350 C, suponiendo condiciones de equilibrio. En el análisis de

Más detalles

Equilibrio y cinética: Generalidades de sistemas binarios

Equilibrio y cinética: Generalidades de sistemas binarios Equilibrio y cinética: Generalidades de sistemas binarios Jesús Hernández Trujillo Octubre de 2015 Intro sistemas binarios/jht 1 / 13 Soluciones Definición: Una solución es una mezcla homogénea, es decir,

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Rafael María Baralt Programa: Ingeniería y Tecnología Proyecto: Ingeniería en

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 20/01/2017 Programa Ingeniería Química Semestre Sexto Nombre Termodinámica en Ingeniería Química Código 72115 Prerrequisitos

Más detalles

Fig. 40: Diagramas binarios que forman el sistema Bi-Sn-Cd (ASM 1992)

Fig. 40: Diagramas binarios que forman el sistema Bi-Sn-Cd (ASM 1992) 5 Diagramas ternarios y multicomponentes. 49 a) b) c) Fig. 40: Diagramas binarios que forman el sistema Bi-Sn-Cd (ASM 1992) 5 Diagramas ternarios y multicomponentes. 50 En el caso general, el sólido se

Más detalles

TEMA 1 Cambios de fase

TEMA 1 Cambios de fase TEMA 1 Cambios de fase 1.1. Introducción CLIMATIZACIÓN: crear y mantener un ambiente térmico en un espacio para desarrollar eficientemente una determinada actividad CONFORT O BIENESTAR: - Térmico - Lumínico

Más detalles

LABORATORIO DE FISISCOQUIMICA GUIA 5 EQUILIBRIO LIQUIDO VAPOR

LABORATORIO DE FISISCOQUIMICA GUIA 5 EQUILIBRIO LIQUIDO VAPOR LABORATORIO DE FISISCOQUIMICA GUIA 5 EQUILIBRIO LIQUIDO VAPOR I. El Problema: Construir el diagrama de fases de temperatura- composición, para sistemas de líquidos volátiles cuyo comportamiento es cercano

Más detalles

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano Tema 2 Primera ley de la termodinámica M del Carmen Maldonado Susano Objetivo El alumno realizará balances de energía en sistemas termodinámicos, mediante la aplicación de la primera ley de la termodinámica.

Más detalles

Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p.

Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p. Equilibrio físico/j. Hdez. T p. 1/34 Equilibrio físico Prof. Jesús Hernández Trujillo jesus.hernandezt@gmail.com Facultad de Química, UNAM Equilibrio físico/j. Hdez. T p. 2/34 Interacciones intermoleculares

Más detalles

Guía de Problemas de Equilibrio de Fases Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química

Guía de Problemas de Equilibrio de Fases Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química Guía de Problemas de Equilibrio de Fases Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química Profesor: Julio Romero F. Ayudante: Francisca Luna F. Problema 1 Calcule

Más detalles

Tema 3.- Energía libre y equilibrios físicos

Tema 3.- Energía libre y equilibrios físicos Tema 3.- Energía libre y equilibrios físicos Tema 3.- Energía libre y equilibrios físicos 3.1.-Energías libres de Helmholtz y de Gibbs. 3.2.-Relaciones de Maxwell 3.3.-Sistemas abiertos y potencial químico.

Más detalles

Tema 3.- Energía libre y equilibrios físicos. Angela Merkel (!!) 3.2.-Relaciones de Maxwell. oss/gloss.

Tema 3.- Energía libre y equilibrios físicos. Angela Merkel (!!) 3.2.-Relaciones de Maxwell.  oss/gloss. Tema 3.- Energía libre y equilibrios físicos Tema 3.- Energía libre y equilibrios físicos 3.1.-Energías libres de Helmholtz y de Gibbs. 3.2.-Relaciones de Maxwell 3.3.-Sistemas abiertos y potencial químico.

Más detalles

Transferencia de masa en la interfase

Transferencia de masa en la interfase INSTITUTO TECNOLÓGICO DE DURANGO Transferencia de masa en la interfase Dr. Carlos Francisco Cruz Fierro Revisión 2 65259.63 10-dic-11 6.1 EQUILIBRIO QUÍMICO 2 Sistema en Equilibrio Un sistema está en equilibrio

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

SISTEMAS GAS - LIQUIDO Capítulo III Curso: Fisicoquímica para Ingenieros

SISTEMAS GAS - LIQUIDO Capítulo III Curso: Fisicoquímica para Ingenieros SISTEMAS GAS - LIQUIDO Capítulo III Curso: Fisicoquímica para Ingenieros Prof. Silvia Margarita Calderón, PhD Departamento de Química Industrial y Aplicada Contenido BINARIOS IDEALES. Diagramas P vs. X,

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

1.- Definiciones. Formas de expresar la concentración. 2.- Concepto de disolución ideal. Ley de Raoult. 3.- Magnitudes termodinámicas de mezcla. 4.

1.- Definiciones. Formas de expresar la concentración. 2.- Concepto de disolución ideal. Ley de Raoult. 3.- Magnitudes termodinámicas de mezcla. 4. 1.- Definiciones. Formas de expresar la concentración. 2.- Concepto de disolución ideal. Ley de Raoult. 3.- Magnitudes termodinámicas de mezcla. 4.- Disoluciones binarias ideales. Diagramas P-x y T-x.

Más detalles

Práctica No 13. Determinación de la calidad de vapor

Práctica No 13. Determinación de la calidad de vapor Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste

Más detalles

Diagramas ternarios. Dr. Juan Carlos Vázquez Lira

Diagramas ternarios. Dr. Juan Carlos Vázquez Lira Diagramas ternarios Dr. Juan Carlos Vázquez Lira 2016 FISICOQUÍMICA LA REGLA DE LAS FASES DE GIBBS J. Willard Gibbs, 1876, establece una relación fija existente entre el número de grados de libertad (F),

Más detalles

TERMODINÁMICA 17. Transformaciones de estado

TERMODINÁMICA 17. Transformaciones de estado TERMODINÁMICA 7. Transformaciones de estado 30. El alumno de enseñanzas medias, asocia a Clapeyron, ingeniero francés y profesor en Rusia, con la ecuación de los gases perfectos y con el estudio de la

Más detalles

El conocimiento de la ecuación de una línea recta que pasa por dos puntos es fundamental en la interpolación de propiedades termodinámicas.

El conocimiento de la ecuación de una línea recta que pasa por dos puntos es fundamental en la interpolación de propiedades termodinámicas. INTERPOLACIÓN El conocimiento de la ecuación de una línea recta que pasa por dos puntos es fundamental en la interpolación de propiedades termodinámicas. Ecuaciones de una línea recta que pasa por dos

Más detalles

EL GRADO DE AVANCE DE UNA REACCIÓNYSU APLICACIÓN A LA ESTEQUIOMETRÍA Y AL EQUILIBRIO QUÍMICO. Guillermo Carreras Díaz

EL GRADO DE AVANCE DE UNA REACCIÓNYSU APLICACIÓN A LA ESTEQUIOMETRÍA Y AL EQUILIBRIO QUÍMICO. Guillermo Carreras Díaz EL GRADO DE AVANCE DE UNA REACCIÓNYSU APLICACIÓN A LA ESTEQUIOMETRÍA Y AL EQUILIBRIO QUÍMICO Guillermo Carreras Díaz 1 El grado de avance de una reacción química. Dada una reacción química cualquiera es

Más detalles

Universidad Nacional Autónoma de México Facultad de Química

Universidad Nacional Autónoma de México Facultad de Química Universidad Nacional Autónoma de México Facultad de Química Departamento de Fisicoquímica Laboratorio de Termodinámica CONSTRUCCIÓN DEL DIAGRAMA DE FASES DEL CICLOHEXANO Profesora: M. en C. Gregoria Flores

Más detalles

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED

CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED http://louyauns.blogspot.com/ E-mail: williamsscm@hotmail.com louyauns@yahoo.es CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED CONDICIONES DE FRONTERA Distribución de la concentración

Más detalles

CONTENIDOS MÍNIMOS Y CRITERIOS DE EVALUACIÓN

CONTENIDOS MÍNIMOS Y CRITERIOS DE EVALUACIÓN 4 La materia: estados de agregación. Objetivos Observar el aspecto y otras características de la materia, en sus diversos estados de agregación: sólido, líquido y gaseoso. Distinguir y aplicar a ejercicios

Más detalles

Determinación de entalpías de vaporización

Determinación de entalpías de vaporización Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................

Más detalles

Clase 2: Sustancias puras

Clase 2: Sustancias puras Teórico Física Térmica 2012 02 de Marzo de 2012 Agenda... 1 Referencias 2 Sustancias puras Intro Propiedades independientes 3 Fases Definiciones Cambios (o transiciones) de fase Mezcla Superficies P-v-T

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA QUIMICA UNIDAD DE INVESTIGACION DE LA FACULTAD DE INGENIERÍA QUÍMICA INFORME FINAL DEL TEXTO

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA QUIMICA UNIDAD DE INVESTIGACION DE LA FACULTAD DE INGENIERÍA QUÍMICA INFORME FINAL DEL TEXTO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA QUIMICA UNIDAD DE INVESTIGACION DE LA FACULTAD DE INGENIERÍA QUÍMICA INFORME FINAL DEL TEXTO TEXTO: DESARROLLO DE MODELO UNIFAC EN EL ENTORNO DE EXCEL

Más detalles

PLANEACIÓN DEL CONTENIDO DE CURSO

PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE INGENIERÍA PROGRAMA DE AGROINDUSTRIAL PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : Balance de materia CÓDIGO : 730060 SEMESTRE : Tercero (III) NUMERO DE CRÉDITOS :

Más detalles

CONSIDERACIONES ESPECIALES EN EL EQUILIBRIO LÍQUIDO VAPOR

CONSIDERACIONES ESPECIALES EN EL EQUILIBRIO LÍQUIDO VAPOR CONSIDERACIONES ESPECIALES EN EL EQUILIBRIO LÍQUIDO VAPOR En algunas oportunidades se puede evaluar las condiciones del equilibrio líquido vapor realizando una idealización del sistema, cuando las cantidades

Más detalles

UD 6. Equilibrio químico

UD 6. Equilibrio químico UD 6. Equilibrio químico 1- Equilibrio químico. Constante de equilibrio. 2- Equilibrios gaseosos. 3- Factores que modifican el equilibrio. 4- Termodinámica y constante de equilibrio. 1- Equilibrio químico.

Más detalles

Disoluciones: La disolución ideal y propiedades coliga4vas

Disoluciones: La disolución ideal y propiedades coliga4vas Disoluciones: La disolución ideal y propiedades coliga4vas CLASE 06 Dr. Abel Moreno Cárcamo Ins8tuto de Química, UNAM Disolución: es una mezcla homogénea de especies químicas diversas a escala molecular,

Más detalles

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. DISOLUCIONES Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. Soluto es la sustancia que se encuentra en menor proporción. Disolvente es la sustancia

Más detalles

Diagrama triangular. Laboratorio de Simulación de Materiales no Metálicos 1

Diagrama triangular. Laboratorio de Simulación de Materiales no Metálicos 1 Diagrama triangular Laboratorio de Simulación de Materiales no Metálicos 1 El diagrama triangular (DT) es una herramienta que permite realizar gráficamente balances, representar condiciones o especificaciones,

Más detalles

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Contenido Sustancia pura Fase Curvas del agua Curvas del agua: Tv, Pv,PT Calor sensible

Más detalles

Problemas de diagramas de equilibrio

Problemas de diagramas de equilibrio PROBEMA 1 os puntos de fusión del bismuto y antimonio son 271 ºC y 62,2 ºC respectivamente. Una aleación con un 5% de SB comienza a solidificar a 52 ºC formándose cristales con un contenido en Sb de un

Más detalles

UD 6. Equilibrio químico

UD 6. Equilibrio químico UD 6. Equilibrio químico 1- Equilibrio químico. Constante de equilibrio. 2- Equilibrios gaseosos. 3- Factores que modifican el equilibrio. 4- Termodinámica y constante de equilibrio. 1- Equilibrio químico.

Más detalles

LA MATERIA: ESTADOS DE AGREGACIÓN

LA MATERIA: ESTADOS DE AGREGACIÓN LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material

Más detalles

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe mencionar: la densidad,

Más detalles

Problemas resueltos de propiedades coligativas.

Problemas resueltos de propiedades coligativas. Problemas resueltos de propiedades coligativas. Propiedades aditivas: las propiedades son aditivas cuando son iguales a la suma de los valores aislados de sus componentes Propiedades constitutivas: una

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Coeficientes de reparto

Coeficientes de reparto Coeficientes de reparto Supongamos que los disolventes A y B son parcialmente miscibles a la temperatura T y cuando se mezclan a esa T, se forman las fases α (una disolución diluida de B en disolvente

Más detalles

Proyecto: "Inyección de aire al yacimiento como sistema de recuperación mejorada"

Proyecto: Inyección de aire al yacimiento como sistema de recuperación mejorada Proyecto: "Inyección de aire al yacimiento como sistema de recuperación mejorada" CIMAT Octubre 2013 El proyecto AIRE tuvo tres etapas de desarrollo: ˆ La primera etapa se enfocó en el cálculo numérico

Más detalles

Guía de ejercicios Nº2 Problemas de Equilibrio de Fases: Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química

Guía de ejercicios Nº2 Problemas de Equilibrio de Fases: Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química Profesor: Julio Romero F. Ayudante: Francisca Luna F. Guía de ejercicios Nº2 Problemas de Equilibrio de Fases: Métodos de estimación de coeficientes de actividad Termodinámica de Ingeniería Química Problema

Más detalles

Supongamos la reacción de formación de yoduro de hidrógeno a partir de sus componentes. I (g) + H (g) 2HI(g)

Supongamos la reacción de formación de yoduro de hidrógeno a partir de sus componentes. I (g) + H (g) 2HI(g) TEMA 6: EQUILIBRIO QUÍMICO. 1.- Ley de equilibrio. En una reacción química, los reactivos se combinan entre sí para dar productos. Puede ocurrir, si el sistema de estudio es cerrado, que los productos

Más detalles

FENOMENOS DE TRANSPORTE

FENOMENOS DE TRANSPORTE UNIVERSIDD TECNOLOGIC NCIONL FCULTD REGIONL ROSRIO DEPRTMENTO DE INGENIERI QUIMIC FENOMENOS DE TRNSPORTE NOTS DE CÁTEDR: UNIDD TEMÁTIC 9 TRNSPORTE EN INTERFSE BLNCES MCROSCÓPICOS La presente es una recopilación

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles