PRIMERA PRÁCTICA SONIDO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRIMERA PRÁCTICA SONIDO"

Transcripción

1 PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros sobr l sonido rsultant. Rango d frcuncias audibls. Rspusta n frcuncia dl oído. Sonidos gravs, mdios y agudos. Scuncias d sonido d distintas frcuncias, amplituds y duracions (mlodía). Ccombinación d sonidos simultános con frcuncias distintas ntr sí (armonía). PARTE 1: RANGO DE FRECUENCIAS AUDIBLES Y RESPUESTA EN FRECUENCIA DEL OÍDO. Objtivos: Con sta práctica s trata d qu l alumno sa conscint d la rspusta auditiva d su propio oído y d la rlación qu xist ntr volumn, amplitud y frcuncia. Al mismo timpo db concrtar sus ida d frcuncias bajas, mdias y altas a rangos dtrminados por la frcuncia. Las curvas isofónicas (d igual sonoridad) mustran la dpndncia qu xist ntr amplitud y frcuncia. Es dcir, prcibimos distinto volumn no sólo dbido a difrncia n amplitud, sino también a difrncias n frcuncia. Esta curva rprsnta la rspusta n frcuncia dl oído. Como parámtro stándar s l volumn prcibido d cualquir sonido con l volumn al qu s prcib un tono d 1 Khz d frcuncia. Si la curva nos indica qu ncsitamos muchos más dciblios qu l tono patrón para qu s scuch al mismo volumn, sto indica qu a nustro oído l custa dtctar los sonidos con dicha frcuncia. Tara: Copia l siguint fichro con un nombr acabado n.csd o dscarga l fichro audiodb.csd d la página moodl d la asignatura. <CsoundSynthsizr> <CsOptions > ;salida a un archivo WAV d nombr audiciondb.wav -o audiciondb.wav </CsOptions > <CsInstrumnts> ;sampl rat sr = 44100

2 ;control rat ksmps = 1 ;numbr of channls nchnls = 1 ;dfinición dl instrumnto 1 instr 1 ;asignamos a la variabl iamplitud l valor d p4 iamplitud = p4 iampdb=ampdb(iamplitud) ;asignamos a la variabl ifrquncy l valor d p5 ifrquncy = p5 ;asignamos a la variabl iphas l valor 0 iphas = 0 ;asignamos a la variabl asound la salida dl opcod oscili asound oscils iampdb, ifrquncy, iphas ;nviamos asound a la salida d audio out asound ;fin d la dfinición dl instrumnto 1 ndin </CsInstrumnts> <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 indica la amplitud n db ;l valor d p5 indica la frcuncia d la nota i i i i i i i i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> El parámtro p1 indica l instrumnto a utilizar, l parámtro p2, indica l instant d cominzo n sgundos, l parámtro p3 indica la duración, p4 la amplitud n dciblios (db) y p5 la frcuncia d la nota. En clas: Gnrar una curva isofónica a partir dl fichro jmplo. Para llo hay qu jcutar l programa cambiando las amplituds hasta qu l alumno scuch todas las notas con l mismo volumn. En casa: 1. modificar l fichro para incluir al mnos l dobl d frcuncias a mdir y hacrlo n cuatro situacions, sgún la intnsidad dl tono d 1024 Hz valga: 20, 40, 60 y 80 db. 2. Ejcutar dicho programa (con las nuvas frcuncias) y ajustar los valors d la amplitud para qu todas las notas s scuchn al mismo volumn. Es dcir, hay qu gnrar cuatro

3 curvas difrnts. 3. Construir una gráfica con octav qu rprsnt la amplitud d cada una d las cuatro curvas obtnidas n db frnt a la frcuncia. 4. Indicar cuals son las frcuncias bajas, mdias y altas, sgún tu prcpción. Indicar qu frcuncias scuchas a un nivl muy bajo tanto por l lado d las frcuncias altas como por l lado d las frcuncias bajas. PARTE 2: DURACIÓN Y RITMO Objtivo: El alumno db comprndr l fcto qu la duración d un sonido tin n su prcpción dl mismo. Las notas s clasifican por su duración. En primr lugar s db fijar una duración d una nota d rfrncia. Por jmplo, la duración d la nota d rfrncia s 1 sgundo. Esto gnra qu las posibls notas más rápidas durn: 0.5 s., 0.25 s., s, s.,la duración d las notas más lntas sría d 2 y 4 sgundos. Si cambiamos l timpo d la nota d rfrncia a 0.75 s., por jmplo, dbrá cambiar también l d sus múltiplos y submúltiplos. Tngamos n cunta qu l caso mas rápido prsntado n st jmplo prmitiría jcutar 16 notas por sgundo. Esta clasificación s pud aplicar también a sonidos gnrados artificialmnt. No obstant, n st caso, l autor tin librtad total para dcidir la duración d los mismos. Tara: Ahora vamos a utilizar una scala linal d amplituds, por lo qu dbmos tnr n cunta las siguints línas: instr 1 ;asignamos a la variabl iamplitud l valor d p4 iamplitud = p4 ;asignamos a la variabl asound la salida dl opcod oscili asound oscils iamplitud, ifrquncy, iphas Partindo dl fichro antrior, (o dl fichro duracion.csd) modificar la partitura dl fichro d la siguint manra. <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s la amplitud (n scala linal) ;l valor d p5 s la frcuncia d la nota

4 i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Construir varios fichros, tal qu las duracions y frcuncias d cada una d las notas san variabls siguindo algún patrón dtrminado por l alumno. PARTE 2: ESCALA MUSICAL Objtivo: A través d sta práctica l alumno db comprndr qu la sparación ntr dos sonidos corrspondints al mismo tono no s constant sino qu aumnta con la frcuncia. Por otro lado, l conociminto d las frcuncias fundamntals d la scala cromática y l conociminto d las frcuncias utilizadas n las cuatro octavas más comuns l prmitirá tnr critrios a la hora d podr gnrar sonidos más compljos. En la imagn prcdnt podmos vr una scala d 12 notas. Para gnrar la siguint scala mas aguda s ncsario multiplicar la frcuncia d cada nota por 2, y para gnrar una octava más grav, dividir la frcuncia d la nota por 2. Tara: Utilizando l fichro scala.csd gnrar cuatro scalas, la antrior a la dada n la imagn, y las trs postriors. Situar cada una d las scalas n las curvas isofónicas obtnidas y dcir n cuál d las trs rgions n qu s pud dividir la rspusta s ncuntra cada una d llas. PARTE 4: Composición d sonidos compljos (armonía)

5 Objtivo: El objtivo d sta práctica s qu l alumno comprnda qué sonidos pud combinar ntr sí para producir sonidos agradabls o poco agradabls al oído. S xplorarán trs casos: Frcuncias crcanas ntr sí, frcuncias sin ninguna rlación d multipliciadad ntr llas y frcuncias múltiplos ntr sí (armónicas). Taras: Problma d tonos con frcuncias próximas: Utilizando l fichro armo1.csd comprobar si dos notas con frcuncias muy crcanas s scuchan bin o s pud rconocr algún tipo d fcto no dsabl n las mismas. Hacrlo para frcuncias n l ntorno d 200, n l ntorno d 800 y n l ntorno d 3400 Hz). Ocurr l mismo fnómno simpr?. Con los valors d las frcuncias utilizadas componr una sñal d 600 puntos n octav y rprsntarla gráficamnt. S obsrva alguna pauta qu prmita xplicar l fcto?. La partitura db modificars d la siguint manra. <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s la amplitud d la nota n scala linal ;l valor d p5 s frcuncia d la nota i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Problma d tonos con frcuncias qu no guardn rlación d multiplicidad ntr sí: Utilizando l fichro armo2.csd comprobar con l siguint programa qu ocurr si las frcuncias no guardan ninguna rlación d multiplicidad ntr sí (al dividir la frcuncia mayor por la mnor l númro rsultant no s ntro). Hacrlo para varios conjuntos d frcuncia difrnts ( Qu conclusión sacas?). La partitura db modificars como sigu:

6 <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s ;l valor d p5 s 440 i i Problma d tonos con frcuncias qu no guardn rlación d multiplicidad ntr sí: Utilizando l fichro armo3.csd modificar la partitura para qu cr un conjunto d tonos qu s van a jcutar progrsivamnt pro qu acaban todos a la vz. La caractrística más important s qu la frcuncia d todos los tonos añadidos db sr múltiplo d la primra d llas. Mjora l sonido al añadir armónicos? <CsScor> ;l valor d p1 indica l instrumnto con l qu s crará la nota ;l valor d p2 indica l instant d cominzo ;l valor d p3 indica qu la duración d la nota ;l valor d p4 s la amplitud n scala linal ;l valor d p5 s la frcuncia d la nota. i i i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Obsérvs qu la amplitud d los armónicos d mayor frcuncia s bastant mnor qu la d los armónicos d baja frcuncia. Crar un sonido nuvo modificando l númro d armónicos y sus amplituds. La primra d las frcuncias tal qu todas las dmás son múltiplos d lla s dnomina fundamntal y también pud sr cambiada por l alumno.

7 PARTE 5: Combinación d tonos compljos con distintas amplituds Objtivo: A partir dl concpto d armónico d la práctica antrior l alumno db comprndr qu la amplitud d cada armónico tin una importancia primordial sobr l sonido gnrado y qu d hcho, la variación d las amplituds d los armónicos modifica l timbr dl sonido. Tara: A partir d los fichros antriors (jmplo fichro aditiva.csd) gnrar un fichro nuvo qu gnr una mlodía. El fichro.csd s pud gnrar a partir d los antriors con la siguint modificación: ;primr parcial o fundamntal apartial1 oscils iamplitud, ifrquncy, iphas ;sgundo parcial, frcuncia dobl, amplitud 0.8 dl parcial 1 apartial2 oscils iamplitud * 0.8, ifrquncy * 2, iphas ;añadimos pquñas dsafinacions apartial3 oscils iamplitud * 0.5, ifrquncy * 4, iphas apartial4 oscils iamplitud * 0.7, ifrquncy * 8, iphas apartial5 oscils iamplitud * 0.4, ifrquncy * 16, iphas asound = apartial1 + apartial2 + apartial3 + apartial4 + apartial5 D sta manra, cada vz qu jcutmos una nota, s jcutará un sonido con una frcuncia fundamntal y 4 armónicos. Cambiando l valor d ifrquncy, cambiarmos la tonalidad d cada nota. Implmntar la mlodía crada para l apartado 2 con un programa crado a partir d sta modificación. El alumno tin librtad total para modificar las amplituds (factor qu multiplica a iamplitud) y las frcuncias (factor qu multiplica a ifrquncy) d cada nota.

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

La función gamma. en la disciplina Matemática para las carreras de ingeniería

La función gamma. en la disciplina Matemática para las carreras de ingeniería La función gamma n la disciplina Matmática para las carrras d ingniría Antonio Mazón Ávila INTRODUCCIÓN Por todos s conocido qu la formación Matmática s bas part sncial n la formación dl ingniro, d sto

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

- Se trata en el fondo, de la misma manera de medir la asociación entre X y M.

- Se trata en el fondo, de la misma manera de medir la asociación entre X y M. BOLETÍN EPIDEMIOLÓGICO DE CASTILLA-LA MANCHA FEBRERO 2007/ Vol.19 /Nº 10 LA REGRESIÓN LOGÍSTICA EN EPIDEMIOLOGÍA II (*) A.- VARIABLE X CUALITATIVA CON DOS CATEGÍAS (DICOTÓMICA) X rprsnta, por jmplo, l

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

Competencia en cultura humanística y artística

Competencia en cultura humanística y artística Comptncia n cultura humanística y artística d r r i r r g o g zk hz k bi ar r n o u h b t zk n h a x il g au r o h n 1 2 3 t z h n z ba t 5 1 l h 8 8 13 z u 21a 34 5 z 13 h k n tz h k k r 55 d i ri g o

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 Chil, agosto d 2005 El prsnt manual rprsnta la visión dl quipo d profsionals prtncints al Proycto FONDEF Aprndindo con

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ -----------.------------ CALENDARIOS Y FESTIVIDADES 1 TEODORO AGUSTíN LÓPEZ y LÓPEZ Ants d qu l concpto «timpo» fus objto d studio n la historia dl pnsaminto grigo, surgn sistmas difrnts d mdir l timpo

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS Las opracions a las qu s rfir la fracción II d la Disposición 6.7.4, así como las garantías rals financiras o prsonals

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N" 8.797)

LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N 8.797) LA MUNICIPALIDAD LA SIGUIENTE ORDENANZA (N" 8.797) Concjo Municipal: Vustra Comisión d Gobirno y Cultura ha tomado n considración l proycto d Ordnanza dl concjal Boasso, mdiant l cual cra l mapa rosarino

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias.

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias. Mdllín, d nro d 5 Doctor: LUBIER DE JESÚS CALLE RENDÓN Grnt BENEFICENCIA Asunto: Inform d sguiminto a Pticions, Qujas, Rclamos y Sugrncias (PQRS). Rsptado Doctor Call: El artículo 76 d la ly 474 d : FICINA

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

CENTRO DE EXCELENCIA MEDICA EN ALTURA. Clave:CEMA-PR-FC-ACON-23 Versión: 0001 Próxima revisión: cada 30 días. Página 1 de 9

CENTRO DE EXCELENCIA MEDICA EN ALTURA. Clave:CEMA-PR-FC-ACON-23 Versión: 0001 Próxima revisión: cada 30 días. Página 1 de 9 Vignt a partir d 16/03/2016. Sustituy a: Ninguno Próxima rvisión: cada 30 días. Página 1 d 9 PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE ATENCION DE CONTINGENCIAS PARA PREVENIR SU IMPACTO EN LA CALIDAD Y

Más detalles

Paso de los diagramas de grafos a los diagramas de bloques

Paso de los diagramas de grafos a los diagramas de bloques Capíítullo T Paso d los diagramas d graos a los diagramas d bloqus.. INTODUCCIÓN Uno d los lnguajs d simulación más antiguo y más utilizado s l d los diagramas d bloqus. D hcho, aún n la actualidad s l

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

PROGRAMA DE LICENCIATURA EN INFORMATICA EDUCATIVA UPTC. Gustavo Cáceres C. Edgar Nelson López L. Daniel Quintero T. Josefina Rondón N.

PROGRAMA DE LICENCIATURA EN INFORMATICA EDUCATIVA UPTC. Gustavo Cáceres C. Edgar Nelson López L. Daniel Quintero T. Josefina Rondón N. IV Congrsso RIBIE, Brasilia 1998 PROGRAMA DE LICENCIATURA EN INFORMATICA EDUCATIVA UPTC Gustavo Cácrs C. Edgar Nlson Lópz L. Danil Quintro T. Josfina Rondón N. jrondon@tunja.ctcol.nt.co INTRODUCCION La

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS PLÁSTICAS

Más detalles

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA

núm. 117 lunes, 24 de junio de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BRIVIESCA C.V.E.: BOPBUR-2013-04928 Por acurdo dl Plno dl Ayuntaminto d Brivisca d fcha 29 d mayo d 2013, s adoptó l Acurdo dl tnor litral siguint: Antcdnts d

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr

Más detalles

r t a r r e e d a l r o m e n i t

r t a r r e e d a l r o m e n i t a r t x d s c o la r para l d s a r r o l lo da aritmética mntal i iv t c a m n t a l www.alohaspain.com índic Si hacs plans para un año, simbra arroz. Si los hacs para dos lustros, planta árbols. Si los

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES III. ADMINISTRACIÓN LOCAL C.V.E.: BOPBUR-2015-01676 AYUNTAMIENTO DE MERINDAD DE VALDEPORRES Bass para la bolsa d trabajo para sustitucions d Auxiliars d Griatría, Cocinros/as y Prsonal d Limpiza d la rsidncia

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6 Índic Escalras scamotabls AET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 4 ALU 3 IO aluminio 3 tramos 5 ALU 2 IO aluminio 2 tramos 6 Escalras d tijra ZX E TEO 7 ZX E ARE 8 ZX E TERRAZA 9 Escalras

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

Coeficiente de correlación parcial

Coeficiente de correlación parcial Coficint d corrlación parcial.- Introducción....- Corrlación parcial mdiant l rcurso d diagramas d Vnn.... 3 3.- Corrlación parcial como corrlación ntr rsiduals... 6 4.- Coficint d rgrsión múltipl y coficint

Más detalles

Fernando Cervantes Leyva

Fernando Cervantes Leyva INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍA DIGITAL Mastría n Cincias con Espcialidad n Sistmas Digitals Adaptación d malla n l análisis d disprsión n guías d onda

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas ÁNALISIS BIVARIADO Estudiar la rlación ntr dos variabls cualitativas ANALISIS DE FRECUENCIAS, INDEPENDENCIA Estudiar la rlación ntr dos variabls cuantitativas CORRELACIÓN Y REGRESIÓN LINEAL Estudiar la

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

núm. 234 miércoles, 11 de diciembre de 2013

núm. 234 miércoles, 11 de diciembre de 2013 NÚMERO 220 ORDENANZA FISCAL REGULADORA DE LA TASA POR LA PRESTACIÓN DE SERVICIOS DE ABASTECIMIENTO Y SANEAMIENTO DE AGUAS Artículo 1. I. PRECEPTOS GENERALES El prsnt txto s apruba n jrcicio d la potstad

Más detalles