Talento Matemático 2002/2003. Real Academia de Ciencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Talento Matemático 2002/2003. Real Academia de Ciencias"

Transcripción

1 Volvemos al hermoso tema de la simetría. Además de la imágenes de multitud de objetos y de seres vivos que poseen simetrías recuerdas en qué consistía una simetría desde el punto de vista matemático?, y a qué llamábamos movimiento? Teníamos una lista de todos los movimientos posibles en un plano... 1

2 1. Mundo tridimensional Saltamos al espacio: un objeto geométrico bien conocido es el dado o cubo puedes encontrar los movimientos que lo dejan tal como es? Y la lista de movimientos, será la misma en el espacio que en el plano? Tendremos reflexiones y giros pero con respecto a qué objetos? Además, en tres dimensiones hay muchas más posibilidades que en dos, seguro que aparece algún movimiento nuevo... Encuentra la lista completa y para cada movimiento piensa en algún objeto que se quede quieto cuando se lo aplicas. 2

3 En el mundo de la química, existe una molécula con una estructura increíblemente inusual y con el mayor número de simetrías entre todas las moléculas conocidas. Esto la hace ser especialmente bella y además le aporta propiedades físicas y químicas inusuales. El buckminsterfulereno está formadopor60átomos de carbono, cada uno de los cuales ocupa una posición equivalente. Las uniones químicas entre estos átomos siguen el mismo patrón que las costuras de una pelota de fútbol, como se muestra en la figura. 3

4 Te atreves a encontrar algunas de (o todas) sus simetrías? Pista: Posee las mismas que un icosaedro regular, porque se obtiene de él cortando cada vértice para obtener las 12 caras pentagonales y 20 hexagonales de un icosaedro truncado. Si te sigue resultando difícil, prueba primero con las de una molécula que tenga 6 átomos, pensando que cada uno es una pequeña esfera situada en un vértice de un hexágono regular. 4

5 2. Los grupos de simetría Volvemos a la estrella de mar: si te has fijado bien, hay diez posibles movimientos que la dejan quieta : las rotaciones de ángulo 360/5 =72, 2 72 = 144, 3 72 = 216, 4 72 = 288 y 5 72 = 360 alrededor de su centro y las reflexiones respecto a las rectas que parten de cada una de sus puntas. Imagina que aplicas dos de estas transformaciones seguidas. Por ejemplo, una rotación de ángulo 72 seguida de otra rotación de ángulo 144. Qué le ocurre a la estrella? Qué transformación obtienes al combinar o componer esas dos rotaciones? Pasará lo mismo con otras combinaciones? Acabas de comprobar que la colección de simetrías que posee un objeto no es una colección cualquiera, tiene una estructura especial: la combinación de dos simetríasesotravezunasimetría. Matemáticamente, a esto se le llama tener estructura de grupo. El de las simetríasdelaestrellademar(odeunpentágono regular) se llama grupo diédrico de orden 5, D 5. En un grupo debe cumplirse además que: existe un elemento inofensivo, llamado elemento neutro, que al ser combinado con cualquier otro, no lo altera. Es como el 0 al sumar o el 1 al multiplicar. Quién hace de elemento neutro en el grupo de simetrías de un objeto? cada elemento tiene su media naranja, llamada elemento inverso del elemento original: al combinar los dos, en cualquier orden se 5

6 obtiene el elemento neutro. Encuentra el inverso de cada una de las simetrías de la estrella de mar. También tienen la propiedad asociativa. Peroatención, no tiene por qué cumplirse la propiedad conmutativa. Podríamos pensar de repente que cualquier conjunto va a ser un grupo. Considera, por ejemplo, en el cuadrado, todas las reflexiones en los ejes de simetría. Qué ocurre al combinar dos de ellas? Grupos famosos: Además de Estopa, Mago de Oz... claro. El propio Leonardo da Vinci estudió todas las posibles simetrías de un edificio con capillas adyacentes, demostrando un resultado matemático: todos los grupos de transformaciones del plano con un número finito de elementos son, o bien algún grupo diédrico D n, oalgún grupo de los llamados cíclicos de orden n o simplemente Z n (un ejemplo de Z 3 son las rotaciones de ángulo múltiplo de 360/3 = 120). Antes hemos trabajado con poĺıgonos regulares. Euclides demostró que existen exactamente 5 sólidos regulares (sus caras son poĺıgonos regulares idénticos y el conjunto de caras compartido por un vértice es siempre el mismo). De hecho, Platón ya los conocía y por eso se les llama sólidos platónicos. 6

7 Las esferas de Kepler Losgruposdesimetría de los sólidos platónicos son especialmente interesantes. Ya hemos visto que, para el cubo, el grupo de simetría tiene 48 elementos De ellos, 24 son rotaciones y 24 reflexiones. El resto tienen grupos de: 48 elementos (octaedro), 120 (dodecaedro e icosaedro) y 24 (tetraedro). De hecho, en vez de cinco grupos diferentes, existen sólo tres, llamados octaédrico, icosaédrico y tetraédrico respectivamente. Por qué razón cubo y octaedro, por ejemplo, tienen el mismo grupo de simetría? Piensa en el sólido que obtienes al considerar los centros de las caras del cubo como centros de un nuevo sólido. Encuentras la razón por la que el tetraedro baila solo? 7

8 3. La geometría es simetría Poniendo el mundo al revés, la simetría no es una casualidad o un accidente de la geometría..., ah! no? Desempeña un papel muchísimo más importante. Empecemos diciendo que se puede hablar de diferentes geometrías. Probablemente, todos conocemos la de Euclides: la primera. En ella se habla de ángulos, longitudes, áreas, etc. A todos nos parece natural pensar en esos términos y a todos nos suena que la suma de los ángulos de un triángulo es 180 o. Pero, por ejemplo, la geometría de la superficie de una esfera, es igual que la anterior? Si dibujamos un triángulo en la cáscara de una naranja, nos parece que sus ángulos suman 180 o? Quéestápasando?Lageometría esférica es una geometría diferente de la eucĺıdea, pero igual de lógica y consistente. Simplemente parte de premisas diferentes. 8

9 ...Nosevayantodavía, aún hay más...lageometría proyectiva, por ejemplo, modeliza la manera de ver del ojo humano y, entre otras cosas, distorsiona las longitudes: lo lejano lo vemos pequeño, etc. En ella, dos rectas en un plano siempre se cortan, no existen las rectas paralelas de la geometría eucĺıdea. Por ejemplo, cómo vemos dos vías del tren al mirar al horizonte? Esta geometría ha sido utilizada frecuentemente por los artistas para recrear la perspectiva. Y qué tiene que ver todo esto con la simetría? Pues que las diferentes geometrías surgen como consecuencia de las simetrías. Pero... qué estamos diciendo? Por ejemplo, si pensamos en los grupos de simetría y tomamos el de los movimientos del plano, sabemos que la distancia, propiedad típica de la geometría eucĺıdea,seconserva.si,encambio,consideramos el grupo de las proyecciones, ya no se conserva la distancia pero sí por ejemplo el hecho de dos rectas se corten o varios puntos estén alineados, y entonces estas propiedades son las típicas de la geometría proyectiva... 9

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García GEOMETRÍA SAGRADA Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García Génesis 1:1 En el principio creó Dios los cielos y la tierra. Espacio tridimensional definido Espacio tridimensional creado

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D

GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D GEOMETRÍA FLEXIBLE CON POLIFIELTROS 3D Dolores Jiménez Cárdenas, CEIP Joaquín Tena Sicilia (Abla, Almería) José Luis Rodríguez Blancas, Universidad de Almería http://www.polifieltros3d.com/ RESUMEN. Polifieltros

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Hay 5 sólidos platónicos

Hay 5 sólidos platónicos 1 Un sólido es un poliedro, o sea una figura tridimensional conformada por planos de diversas formas (polígonos) que se intersectan. Hay 5 sólidos platónicos Fueron estudiados y descriptos por los geómetras

Más detalles

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características.

Cuerpos geométricos OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Elementos de un poliedro y su desarrollo. Los poliedros regulares y sus características. 826464 _ 0385-0396.qxd /2/07 09:27 Página 385 Cuerpos geométricos INTRODUCCIÓN Esta unidad completa la serie dedicada a la Geometría y afianza su comprensión mediante la descripción y desarrollo de las

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html

SIMETRÍA. http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html http://www.chem.ox.ac.uk/vrchemistry/sym/splash.html SIMETRÍA Elementos y operaciones de simetría Grupos puntuales de simetría Modelo de repulsión de pares de electrones de la capa de valencia (VSEPR) Simetría de las moléculas Tablas de caracteres http://www.chem.ox.ac.uk/courses/molecular_symmetry/part2.html

Más detalles

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder

Descripciones de las Habilidades de Primaria por Trimestre Materia: Matemáticas Grade: Kinder Grade: Kinder Medición Geometría Leer y escribir los números hasta 5 Entender que escribiendo los números representan la cantidad de objetos (0-5) Contar de uno en uno hasta 10 (empezar con cualquier número

Más detalles

Circunradio y Volumen de Poliedros

Circunradio y Volumen de Poliedros Circunradio y Volumen de Poliedros Julio Castiñeira Merino. Introducción A mis queridos nietos Santiago, Gonzalo y Nicolás Una parte importante de los poliedros convexos con caras regulares son inscribibles

Más detalles

CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR

CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR Cabri-Géomètre: analizar para dibujar CABRI-GÉOMÈTRE: ANALIZAR PARA DIBUJAR Javier Bergasa Liberal y Sergio Sara Goyén PARA QUÉ DIBUJAR EN CLASE DE GEOMETRÍA? Esta pregunta parece tener una respuesta evidente:

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides.

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides. LOS POLIEDROS Una caja de zapatos, un dado y muchos otros objetos con superficies planas que ves a tu alrededor, tienen forma poliédrica. Se llaman poliedros a los cuerpos geométricos cuyas caras son polígonos.

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

ESTRUCTURAS CRISTALINAS (P2)

ESTRUCTURAS CRISTALINAS (P2) ESTRUCTURAS CRISTALINAS (P2) Objetivos - Visualización de estructuras de sólidos mediante el uso de modelos - Estudio de redes cristalinas basadas en ordenamientos de esferas de igual tamaño - Identificación

Más detalles

UNIDAD 4. Transformaciones isométricas (Primera parte)

UNIDAD 4. Transformaciones isométricas (Primera parte) Matemática UNIDD 4. Transformaciones isométricas (Primera parte) 1 Medio GUÍ N 1 INTRODUCCIÓN El artista holandés Maurits Cornelis Escher (1898 1972) es considerado uno de los artistas gráficos más famosos

Más detalles

Grupos. 2.1 Introducción. Capítulo

Grupos. 2.1 Introducción. Capítulo Capítulo 2 Grupos 2.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.

CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación. ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso

Más detalles

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría

Más detalles

Capítulo 8: Movimientos en el plano y el espacio

Capítulo 8: Movimientos en el plano y el espacio 3º de ESO Capítulo 8: Movimientos en el plano y el espacio Autoras: Adela Salvador y María Molero Revisores: Javier Rodrigo y Sergio Hernández Ilustraciones: María Molero; Milagros Latasa; Banco de Imágenes

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno.cl 1. Transformaciones isométricas Las transformaciones geométricas están presentes en diversos campos de la actividad humana así como

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Tema 6: Geometría en dimensión 3

Tema 6: Geometría en dimensión 3 Tema 6: Geometría en dimensión 3 Contenidos: 1. Introducción. 2. Poliedros. 3. Volumen. Capacidad. Unidades. 4. Volumen de sólidos básicos: prismas y cilindros. 5. Volumen de pirámides y conos. 6. Volumen

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

Geometría del plano. Objetivos. Antes de empezar

Geometría del plano. Objetivos. Antes de empezar 8 Geometría del plano Objetivos En esta quincena aprenderás a: Conocer los elementos del plano. Conocer las rectas y sus propiedades. Manipular rectas y otros elementos relacionados con ellas. Conocer

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16 Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso

Más detalles

Matrices y transformaciones

Matrices y transformaciones Matrices transformaciones La simetría corre por nuestras venas. Esta imagen representa el núcleo central del grupo hemo, el centro activo de la hemoglobina que oigena nuestras células. Fuente: http://www.cienciateca.com/simetria.html

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

Jose Manuel Arranz San José. IES Europa. Ponferrada. León jarran2@roble.pntic.mec.es

Jose Manuel Arranz San José. IES Europa. Ponferrada. León jarran2@roble.pntic.mec.es TALLER: INICIACIÓN A LA GEOMETRÍA ESPACIAL CON CABRI 3D. Jose Manuel Arranz San José. IES Europa. Ponferrada. León jarran2@roble.pntic.mec.es RESUMEN Cabri 3D es un software para explorar la geometría

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

SIGMA. Vicente Meavilla Seguí (*) INTRODUCCIÓN

SIGMA. Vicente Meavilla Seguí (*) INTRODUCCIÓN ANILLOS DE BORROMEO, RECTÁNGULOS ÁUREOS E ICOSAEDROS REGULARES: ALGUNOS INGREDIENTES GEOMÉTRICOS PARA EL DISEÑO DE UNA ESCULTURA MATEMÁTICA DEDICADA A ARAGÓN SIGMA 34 Vicente Meavilla Seguí (*) INTRODUCCIÓN

Más detalles

Educación Plástica y Visual. Láminas verano. 3º ESO

Educación Plástica y Visual. Láminas verano. 3º ESO Educación Plástica y Visual. Láminas verano. 3º ESO 1. Título: El Verano. Nº Lámina: V.1. Cuenta una anécdota que te haya sucedido este verano, en plan cómic. Tamaño mínimo una lámina de dibujo. Presta

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE

TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE Vicente Viana Martínez Vicente Viana Martínez Pág 1 CONSTRUCCIÓN DE UN OMNIPOLIEDRO Introducción. Definiciones Un poliedro es un cuerpo geométrico totalmente limitado

Más detalles

Movimientos en el plano-vectores Dirección: http://descartes.cnice.mec.es/aplicaciones/movimientos_plano_vectores/movimientos_vectores.

Movimientos en el plano-vectores Dirección: http://descartes.cnice.mec.es/aplicaciones/movimientos_plano_vectores/movimientos_vectores. Movimientos en el plano-vectores Dirección: http://descartes.cnice.mec.es/aplicaciones/movimientos_plano_vectores/movimientos_vectores.htm Alumno/a: Curso: Grupo 1.- Dibuja un vector en tu cuaderno y pon

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros.

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros. CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS Equilátero Polígonos Según los lados Isósceles Figuras geometrícas Nombre según los lados 3-Triángulo 4-Cuadrilátero 5-Pentágono 6-Hexágono 7-Heptágono

Más detalles

José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal

José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal RESUMEN. Con GeoGebra 5.0 el desarrollo de aplicaciones para la geometría

Más detalles

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación. Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma

Más detalles

PRUEBA DE matemática con PERfilEs o PARA 3 Año 2012

PRUEBA DE matemática con PERfilEs o PARA 3 Año 2012 PRUEBA DE matemática con perfiles o para 3 año 2012 ÍTEM N 1 La maestra dijo: En números debo esctibir: A) 100033,5 B) 100033,05 C) 1033,5 D) 1033,05 Nombre: Sesenta mil cuarenta Dominio: Numeración Contenido:

Más detalles

1.-La Cristalografía. 2.-Simetría

1.-La Cristalografía. 2.-Simetría 1.-La Cristalografía La Cristalografía es la ciencia que se ocupa de los sólidos cristalinos y describe su estructura interna, es decir, como están distribuidos los átomos en su interior. También estudia

Más detalles

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente:

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente: Cuadernillo 2 Actividades a realizar para la superación de la materia pendiente: Matemáticas 3º ESO Recuerda que: Habrá 2 cuadernillos, cada uno con la mitad de las unidades que se trabajaron en el curso

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

TEMA 8 ESTRUCTURA CRISTALINA

TEMA 8 ESTRUCTURA CRISTALINA Tema 8. Estructura cristalina 1 TEMA 8 ESTRUCTURA CRISTALINA Los sólidos pueden clasificarse: 1.- Por su ordenación: 1a. Sólidos amorfos: tienen una estructura desordenada. Sus átomos o moléculas se colocan

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una

Más detalles

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección Práctica 5 Cámara 5.1. Introducción En esta práctica se aborda la creación de la cámara virtual, esto es, el medio o forma mediante el cual vamos a poder observar los elementos de la escena. De nuevo,

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

6. Circunferencia. y polígonos

6. Circunferencia. y polígonos 6. Circunferencia y polígonos Matemáticas 2º ESO 1. Lugares geométricos 2. Polígonos en la circunferencia 3. Simetrías en los polígonos 4. Longitud de la circunferencia y superficie del círculo 192 Circunferencia

Más detalles

Actividades con Geoplano

Actividades con Geoplano Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2012-2013 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Más detalles

Recta, semirrecta y segmento

Recta, semirrecta y segmento TRIÁNGULO CUADRILÁTEROS CIRCUNFERENCIA POLÍGONO Matemáticas del día a día 1 Recta, semirrecta y segmento Recta. Es una sucesión infinita de puntos que tienen la misma dirección. La recta no tiene ni principio

Más detalles

SELECTIVIDAD VALENCIA SEPTIEMBRE 1982.

SELECTIVIDAD VALENCIA SEPTIEMBRE 1982. SELECTIVIDAD VALENCIA SEPTIEMBRE 1982. Sistema diédrico:(el PUNTO) Observa detenidamente las proyecciones diédricas de lso puntos; A, B, C y D. Indica en que cuadrantes se hayan situados dichos puntos.

Más detalles

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

UNIDAD 10. PROPORCIONALIDAD GEOMÉTRICA. TEOREMA DE TALES.

UNIDAD 10. PROPORCIONALIDAD GEOMÉTRICA. TEOREMA DE TALES. UNIDAD 10. PROPORCIONALIDAD GEOMÉTRICA. TEOREMA DE TALES. Unidad 10: Proporcionalidad geométrica. Teorema de Tales. Al final deberás haber aprendido... El examen tratará sobre... Reconocer figuras semejantes.

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

PRUEBA DE matemática con PERfilEs o PARA 4 Año 2012

PRUEBA DE matemática con PERfilEs o PARA 4 Año 2012 PRUEBA DE matemática con perfiles o para 4 año 2012 ÍTEM N 1 Un pueblo tiene sesenta mil cuarenta habitantes. Con números se escribe: A) 6040 B) 60040 C) 601040 D) 6000040 Nombre: Sesenta mil cuarenta

Más detalles

ENTENDER EL ASTIGMATISMO

ENTENDER EL ASTIGMATISMO ENTENDER EL ASTIGMATISMO MAS450/854 PRIMAVERA 2003 9 de marzo de 2003 Introducción Lente esférica sin astigmatismo Lentes cilíndricas cruzadas con astigmatismo o Enfoque horizontal o Enfoque vertical o

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

Movimientos y semejanzas

Movimientos y semejanzas 865 _ 057-068.qxd 7/4/07 :4 Página 57 Movimientos y semejanzas INTRODUIÓN Esta unidad tiene un componente gráfico muy importante, por lo que conviene comenzar la unidad aportando ejemplos reales, sobre

Más detalles

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones 3. Ecuaciones Taller de Matemáticas 2º ESO 1. Lenguaje algebraico 2. Generalización 3. Valores numéricos 4. Ecuaciones 5. Resolución de problemas mediante ecuaciones 2 Ecuaciones 1. Lenguaje algebraico

Más detalles

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso:

GEOMETRIA 8 AÑO 2011 1. Nombre:.Curso: GEOMETRIA 8 AÑO 2011 1 GUÍA DE APOYO AL TEMA : GEOMETRÍA Prof. Juan Schuchhardt E. Nombre:.Curso: UNIDAD #4 GEOMETRIA Tema # 2: Cuerpos geométricos En esta unidad aprenderás a: Identificar cuerpos poliédricos,

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS

RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS RESUMEN DE FORMULAS EJERCICIOS de APLICACIÓN POLIEDROS. 1.-Calcule la superficie total de un tetraedro cuya arista mide 2 (12 3 ) 2.- Se tiene un tetraedro cuya arista mide 6 3 cm. Calcular.- 2.1.-La superficie

Más detalles

Tema 2 Estructuras Cristalinas

Tema 2 Estructuras Cristalinas Tema 2 Estructuras Cristalinas Para poder comprender las propiedades de los materiales, y poder por tanto seleccionar el material idóneo para una aplicación específica, se hace necesario comprender la

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

Cuerpos geométricos: poliedros

Cuerpos geométricos: poliedros Cuerpos geométricos: poliedros Viajar desde la geometría en el plano hacia un espacio tridimensional, donde se insertan los cuerpos geométricos, nos acerca al mundo real. En el proceso de fabricación de

Más detalles

Geometría con papel (papiroflexia matemática)

Geometría con papel (papiroflexia matemática) Geometría con papel (papiroflexia matemática) Covadonga Blanco García y Teresa Otero Suárez Profesora Titular de Escuela Universitaria y Catedrática de Enseñanza Secundaria Departamento de Matemáticas,

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Cambio de planos

Sistema Diédrico (I). Verdadera magnitud. Cambio de planos Sistema Diédrico (I). Verdadera magnitud. Cambio de planos Los cambios de planos se emplean en Geometría Descriptiva para ubicar los elementos geométricos y superficies, respecto de los planos de proyección,

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

TRANSFORMACIONES EN EL PLANO (3º E.S.O.) I.E.S. Cartuja 2010/2011 LAS TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO (3º E.S.O.) I.E.S. Cartuja 2010/2011 LAS TRANSFORMACIONES EN EL PLANO 1.-INTRODUCCIÓN: LAS TRANSFORMACIONES EN EL PLANO 2.-LOS VECTORES: HERRAMIENTA CON QUE SE EXPRESA LA NATURALEZA a) Definición. b) Operaciones e interpretación geométrica. c) Definición de un vector a partir

Más detalles

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;

Más detalles

HERRAMIENTAS PARA CREAR

HERRAMIENTAS PARA CREAR LECTURA 3: DIBUJO Debemos quedarnos con la idea según la cual cuando dibujamos objetos en Flash se generan vectores (también llamados formas) correspondientes a las curvas y rectas que trazamos. Las formas

Más detalles

MATERIA OPTATIVA: DIBUJO TÉCNICO

MATERIA OPTATIVA: DIBUJO TÉCNICO CONTENIDOS 1. Trazados geométricos: Trazados en el plano: ángulos en la circunferencia, arco capaz. Proporcionalidad y semejanza: escalas normalizadas, triángulo universal de escalas y de escalas transversales.

Más detalles

La práctica del análisis de correspondencias

La práctica del análisis de correspondencias La práctica del análisis de correspondencias MICHAEL GREENACRE Catedrático de Estadística en la Universidad Pompeu Fabra Separata del capítulo Biplots en análisis de correspondencias Primera edición: julio

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

Mallas espaciales. Basset Salom, Luisa (lbasset@mes.upv.es)

Mallas espaciales. Basset Salom, Luisa (lbasset@mes.upv.es) Mallas espaciales Apellidos, nombre Basset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura Universitat

Más detalles

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS En las pirámides egipcias, todo parece indicar que fueron diseñadas sobre la base de los Triángulos Sagrados egipcios, que son aquellos triángulos rectángulos

Más detalles

BENDITO TRIÁNGULO! AUTORA: ADRIANA RABINO

BENDITO TRIÁNGULO! AUTORA: ADRIANA RABINO BENDITO TRIÁNGULO! AUTORA: ADRIANA RABINO ES CIERTO QUE EL BURRO ES BURRO? Hace unos días tuve la suerte de conocer uno de los hermosos lugares que hay en la Argentina, Cafayate, en la Prov. de Salta.

Más detalles

SECUENCIACIÓN DE CONTENIDOS

SECUENCIACIÓN DE CONTENIDOS DEPARTAMENTO DE SECUENCIACIÓN DE CONTENIDOS PRUEBA DE DIAGNÓSTICO 1. Números y operaciones Descomposición de números en las distintas clases de unidades y como suma de sumandos de unidades. Lectura y escritura

Más detalles

PRODUCTO ESCALAR DE DOS VECTORES

PRODUCTO ESCALAR DE DOS VECTORES PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores es un número real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman si los vectores son no nulos

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Tema 1: Simetría y teoría de grupos. Química Inorgánica III.

Tema 1: Simetría y teoría de grupos. Química Inorgánica III. Tema 1: Simetría y teoría de grupos. Química Inorgánica III. Simetría y Vida Maurits Cornelis Escher (1898-1972). Simetría y Vida Tema 1: Simetría y teoría de grupos. Simetría y Vida Tema 1: Simetría

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

PÁGINA 59 PARA EMPEZAR

PÁGINA 59 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 59 PARA EMPEZAR Una progresión asombrosa Supón que tienes una hoja de papel de 0,14 mm de grosor. Cada vez que la pliegas se duplica su grosor. Cuando

Más detalles

cómo visualizar un anaglifo impreso en papel BACHILLERATO Adolfo Ventayol Monreal Teoria y Actividades

cómo visualizar un anaglifo impreso en papel BACHILLERATO Adolfo Ventayol Monreal Teoria y Actividades INCLUYE GAFAS *LOS ANAGLIFOS DE ESTE LIBRO SE REALIZARON PARA SER VISUALIZADOS IMPRESOS EN PAPEL.NO OBSTANTE SE PUEDEN VISUALIZAR SOBRE EL ORDENADOR SI AJUSTAMOS EL ÁNGULO DE VISIÓN DE FORMA QUE ESTE FORME

Más detalles