INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1"

Transcripción

1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro de la asgnatura Pagna Prncpal >Apuntes>. Números Complejos Materal en pdf con el sguente contendo: - Repaso de números complejos a nvel de bachllerato - Apuntes de teoría - Ejerccos resueltos - Problemas de examen resueltos Para acceder a ellos se deberá pulsar sobre los sguentes enlaces una vez dentro de la asgnatura: Pagna Prncpal >Recursos Por Temas>Números Complejos Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Necesdad de amplar el conjunto de los números reales. Defncón del conjunto de números complejos C. Forma bnómca de un número complejo. Representacón gráfca de números complejos. Interpretacón geométrca de la suma. Conjugado de un número complejo. Módulo y argumento de un número complejo. Prmeras defncones. Operacones. Representar gráfcamente la regón del plano donde se encuentran los afjos de los sguentes conjuntos de números complejos Solucón: (a) { z C / Imz> 0} (b){ z C / < z< } (c){ z C / 0 Rez } C (e) { z C / Re( z ) = } (d) { z / 0 Imz Rez} Profesora: Elena Álvarez Sáz

2 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE (a) Semplano superor b) El conjunto de los números complejos no es cuerpo totalmente ordenado. c) d) e) Demostrar las sguentes propedades: z Solucón: = z z w z w = z+ z= Re( z) z z= Im( z) z= a+ b z= a b z= a b= a+ b = + entonces + = ( + ) + ( ) = = Re S z a b z z a b a b a z Profesora: Elena Álvarez Sáz

3 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE = + entonces = ( + ) ( ) = = Im S z a b z z a b a b b z Localzar vectoralmente los números z + z y z z cuando (a) z z z= + z= = = (b) ( ) Solucón: (a) z = z = + (b) z 5 5 = 8 z = Dado los números complejos z= +, w= +, s= realzar las sguentes operacones: z w s + szw 5 (a) Im( ) 0 (b) zw s z (c) s + s + s + s (d) s + s + s s (e) zw z w Solucón: 7 6 (a) (d) - (e) 0 (b)( 0 ) ( 5) + (c) 0 5 Verfcar cada una de las sguentes dentdades (a) zz z z z z = (b) = z z (c) z = z 6 Verfcar cada una de las sguentes dentdades (a) arg( z z ) = arg( z ) + arg( z ) (b) arg arg( z ) arg( z ) z = z Profesora: Elena Álvarez Sáz

4 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 7 ϕ Resolver la ecuacón e = para ϕ ( < ϕ ) Solucón: ϕ= 8 Calcular (a) 00 (b) ( 6) / (c) ( + ) 0 Solucón: + + (c) ( + ) (a) (b) ( ), ( ), ( ), ( ) 9 Qué número complejo está más cerca del orgen: -+ ó +? Solucón: -+ 0 Qué puntos del plano complejo están a una dstanca de dos undades del orgen? y del punto +? Solucón: { z C / z = },{ z C / z ( + ) = } Representa el conjunto de puntos determnado por las condcones: (a) z + = (b) z+ (c) z Solucón: (a) Crcunferenca de centro (, -) y rado (b) Círculo de centro (0, -) y rado junto con la crcunferenca de centro (0, -) y rado (c) Todos los números complejos menos los que se encuentran en el círculo de centro (0, ) y rado. Profesora: Elena Álvarez Sáz

5 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Descrbe geométrcamente en el plano complejo las regones cuyos puntos satsfacen las sguentes ecuacones: (a) Re( z ) < (b) ( z) (e) z > () Solucón: z z+ (f) z 0< Re < (c) Im = 0 z z+ z= z (g) z z z z (j) z + z+ (k) (d) z z= = (h) ( ) Im z < z z+ (l) z( z+ ) = (a) y - - O x - b) y - - O x - c) Las rectas x=0, y=0 d) y=/ e) f) y - - O x Profesora: Elena Álvarez Sáz 5

6 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE g) Se trata de la medatrz del segmento PQ sendo P el afjo de z y Q el afjo de z. h) La regón comprendda entre las dos ramas de la hpérbola xy=. ) El exteror de la crcunferenca de centro (-5, 0) y rado j) Exteror de la elpse de centro (0,0) y semeje a= y b=, es decr, de la elpse k) La ecuacón: z z+ = es una hpérbola de focos F=, G=-. La regón comprendda entre las dos ramas de la hpérbola es: z z+ < El resto de puntos serán los que cumplan: x y + = ( ) Profesora: Elena Álvarez Sáz 6

7 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE z z+ > z z+ > z z+ < La regón z z+ > es de las dos zonas sombreadas en el gráfco sguente en la que se encuentra el punto P La regón z z+ < es de las dos zonas sombreadas en el gráfco sguente en la que se encuentra el punto P l) Los puntos reales y - Profesora: Elena Álvarez Sáz 7

8 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Representa en el plano el conjunto A B C D : { C / } B z C z ( z) A= z z = C= z C / z { / arg 0} = = < < D= z C / z+ Solucón: Profesora: Elena Álvarez Sáz 8

9 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Interpretacón geométrca de la suma y el producto. Módulo y el argumento de un número complejo. La fórmula de Movre. Raíces enésmas de un número complejo y su representacón gráfca. La forma exponencal de un número complejo. La funcón exponencal compleja y sus propedades. Defncón de logartmo complejo. La fórmula de Euler. Cómo calcular una potenca con base y exponente números complejos. Interpretacón geométrca de la suma y el producto Elge tres puntos no alneados en el plano y consdera el trángulo de vértces los tres puntos. Calcula el transformado de este trángulo por la aplcacón f( z) z ( ) = + + sobre cada uno de sus vértces. Haz la representacón gráfca e ndca que transformacones (dlatacón, contraccón, rotacón, traslacón) has realzado. Solucón: Dlatacón () +Traslacón (+) Profesora: Elena Álvarez Sáz 9

10 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 5 Consdera el rectángulo de vértces 0,, +,. Calcula el transformado de este rectángulo por la aplcacón f( z) ( ) = + z+ sobre cada uno de sus vértces. Haz la representacón gráfca e ndca que transformacones (dlatacón, contraccón, rotacón, traslacón) has realzado. Solucón: Gro ( / ) +Dlatacón ( ) +Traslacón () 6 Demostrar que s los puntos z, z, z son los vértces de un trángulo equlátero, entonces: + + = + + z z z z z z z z z Potencas. Raíces enésmas. 7 Escrbr en forma bnómca: Solucón: 9 8 Calcula en funcón de sen( ϕ ) y cos( ϕ ) (a) sen( ϕ ) (b) cos( ϕ ) (c) sen( ϕ ) (d) cos( ϕ ) Solucón: cos( ϕ) = cos ϕ senϕ sen( ϕ) = senϕ cosϕ ( ϕ) = ϕ ϕ ϕ+ ϕ sen( ) = cos sen cos sen cos cos 6 cos sen sen ϕ ϕ ϕ ϕ ϕ Profesora: Elena Álvarez Sáz 0

11 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 9 Es certo que la parte real dew 5 + = es mayor que -0.5? + Solucón: Falso 0 Encontrar todas las solucones de la ecuacón z = z y representar tres de ellas. Cuántas hay? Solucón: Hay solucones dstntas (además de la trval) que se obtenen para los valores de k sguentes: Calcular: (a) z 0 k= 0 : z = k= : z = e k= : z = e 6 ( + )( ) = (b) + ( ) Escrbe en forma bnómca y exponencal el resultado. Solucón: (a) k 6 k + 6 z = = e k= 0,,,,,5 k (b) + *0* cos wo = e = e = + sen + 9 cos w = e = e = + sen w = e = e = e = e = = e = cos + sen Fallos habtuales: Consderar que ( )( ) ( + ) ( ) ( ) ( ) + = ( + )( ) = + + ( ) En el conjunto de los números complejos hay n raíces n-ésmas de cualquer número complejo no nulo. En el caso de que se esté calculando: Profesora: Elena Álvarez Sáz

12 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE z = z k= 0,, arg( z ) + k Para k=0 se tene que una raíz es z pero hay dos más (las correspondentes a k= y a k=). De qué número es raíz cúbca +? De qué número es raíz décma? Solucón: Potencas complejas. Logartmo complejo. Calcular: (a) z (d) z + = log = + (b) z = (c) z= ( + ) (e) log + + Solucón: (a) (b) z (c) e (e) z = log = + k k Z + κ + κ + κ e ( + ) e e = = = = + multplcando ( )( + ) ln + por el conjugado κ cos ln sen ln + κ + + con k Z (d) e con k Z ( k)( k) ( k) ( k) ( ln 8) + ( + k ) ln ln ln ln k, k Z Demostrar que los afjos de los valores de ( ) están en la msma línea recta 5 De entre todas las raíces n-ésmas del complejo +. Hay alguna raíz cuyo logartmo prncpal sea real? Solucón: No exste Profesora: Elena Álvarez Sáz

13 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 6 ω Dado a+ b= log ω sendo ω tal que + es real y el módulo de ω es la undad. Hallar a + b. Observacón: Puede ser nteresante consderar la expresón de ω de la forma: al tener módulo uno quedará perfectamente determnado s se conoce arg( ) ω = t. t ω= e = cost+ sent ya que 7 (a) Escrbr el valor de cos( x ) en funcón de sen ( x ) y cos( x ) (b) Calcular el valor prncpal del complejo z=a+b donde A ( ) x= argumento +. = ( ), B cos( x) = sendo = (b) z= A+ B= e Solucón: (a) cos( x) cos x cos( x) sen ( x) Profesora: Elena Álvarez Sáz

14 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Antes de realzar estos ejerccos debes leer y comprender los sguentes apartados: Extensón al plano complejo de las funcones trgonométrcas e hperbólcas. Polnomos en C : Raíz de un polnomo, coefcente de un polnomo, factorzacón, regla de Ruffn. Regón acotada en C Propedades del módulo. Desgualdad trangular y desgualdad trangular nversa. Funcones trgonométrca y funcones hperbólcas 8 Calcular la parte real y la parte magnara del número complejo z= sen + Es la parte real mayor que? Justfcar la respuesta. Solucón: e + e 9 Determnar todos los números z complejos que verfquen que senz= (b) g( z) (a) cot = Solucón: (a) z= + κ ln( ) k Z z= + κ ln( + ) k Z (b) log z= + k+, k Z 0 Calcular la parte real de w log( sen( ) ) =. Profesora: Elena Álvarez Sáz

15 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE e e Solucón: ln = Ln( Sh) Representar las gráfcas de las funcones Shx y Chx sendo x real. Solucón: En azul aparece la gráfca del coseno hperbólco y en rojo la del seno hperbólco. (a) Resolver la sguente ecuacón Sh( z) (b) Resolver la ecuacón: senz= sendo z C = sendo z C z= + k ± k Z Solucón: (b) ln( ) Polnomos Escrbr una ecuacón de segundo grado cuyas raíces sean + y -. Recuerda: S x, x son las raíces de una ecuacón de segundo grado ax + bx+ c= 0 entonces se cumple: x +x =(-b/a); x *x =(c/a). Solucón: x -x+8=0 z z + + = 0 Resolver ( ) Profesora: Elena Álvarez Sáz 5

16 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE Solucón: z=,, +, 5 Demostrar que s zo es una raíz compleja no real de un polnomo con coefcentes reales entonces su conjugada, z o, tambén es raíz del polnomo. p x = x x + 5x 7x 6 un polnomo de manera que b es una raíz. Factorzar el 6 Sea ( ) polnomo. Solucón:, -,, -. 7 Determnar a y b números reales para que ( ) Solucón: a=-, b= p x = x + x + ax+ b tenga como raíz +. Solucón: Conjuntos acotados 8 Comprobar que s z z entonces se cumple: z z z + z z z 9 Acotar, s es posble, el sguente conjunto: z A= / z C, z = z + z( ) Solucón: El conjunto A está acotado por estar contendo en el círculo undad centrado en el orgen. 0 5 Dbujar la regón del plano complejo defnda por la expresón A= z C / z. Calcular en forma bnómca y representar las raíces cúbcas de. Cuáles de estas raíces están en la regón A? Solucón: El conjunto A es el nteror de la crcunferenca de centro (0, -) y de son los números complejos: rado 5/. Las raíces cúbcas Profesora: Elena Álvarez Sáz 6

17 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE zo = + z = + z = Acotar el conjunto de números complejos sguente Solucón: Una cota puede ser: 6e ( z+ ) + e A= / z =, a = z az+ a Determnar s el A= { z / z+ = z + } C está acotado Solucón: No está acotado. Profesora: Elena Álvarez Sáz 7

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente

= x 1º B. 2º- Calcular y simplificar: 3º- Calcular el valor de k para que el cociente Departamento de Matemátcas 1º B 7 / OCT / 05 1º- Defnr conjugado, opuesto e nverso de un nº complejo. Escrbr y representar el conjugado, el opuesto, el conjugado del opuesto, el opuesto del conjugado,

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. de Matemáticas

NÚMEROS COMPLEJOS MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. de Matemáticas NÚMEROS COMPLEJOS MATEMÁTICAS I º Bachllerato Alfonso González IES Fernando de Mena Dpto. de Matemátcas I) NECESIDAD DE LOS NÚMEROS COMPLEJOS (págs. 46 a 48 lbro de texto) Ejemplo : Los números complejos,

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

(p +Q 222 P +Q P +Q )

(p +Q 222 P +Q P +Q ) TEMA S.- PUNTOS. RECTAS Y PLANOS EN EL ESPACO. TEMA 5.- PUNTOS, RECTAS Y PLANOS EN EL ESPACO..- PUNTOS. Sstema de referenca: Un sstema de referenca en el espaco 93 consste en un conjunto formado por un

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

INSTITUCIÓN TÉCNICA AGROPECUARIA DE VIRACACHÁ-2011 MATRIZ DE EVALUACIÓN PROFESOR: JULIO CÉSAR ÁVILA MORALES PERIODO TEMA ACTIVIDAD FECHA

INSTITUCIÓN TÉCNICA AGROPECUARIA DE VIRACACHÁ-2011 MATRIZ DE EVALUACIÓN PROFESOR: JULIO CÉSAR ÁVILA MORALES PERIODO TEMA ACTIVIDAD FECHA NSTTUCÓN TÉCNCA AGROPECUARA DE VRACACHÁ-2011 GRADO 9 ASGNATURA: ALGEBRA Y GEOMETRÍA MATRZ DE EVALUACÓN PROFESOR: JULO CÉSAR ÁVLA MORALES PERODO TEMA ACTVDAD FECHA SSTEMAS DE 9 DE MARZO NUMERACÓN 14 DE

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

EL CONTROL ROBUSTO Y EL ESPACIO DE PARÁMETROS. Roberto Hernández, Fernando Morilla U.N.E.D.

EL CONTROL ROBUSTO Y EL ESPACIO DE PARÁMETROS. Roberto Hernández, Fernando Morilla U.N.E.D. EL CONTROL ROBUSTO Y EL ESPACIO DE PARÁMETROS Roberto Hernández, Fernando Morlla U.N.E.D. RESULTADOS DE PUNTOS EXTREMOS Teorema de Khartonov,, 1978: ntervalo de polnomos. 1 2 2 n PI(, s q) = q0 + qs 1

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Alfredo Weitzenfeld Gráfica: Recortes 1

Alfredo Weitzenfeld Gráfica: Recortes 1 Alfredo Wetzenfeld Gráfca: Recortes 1 3 Recortes (Clppng)... 1 3.1 Recorte de Puntos... 1 3.2 Recorte de íneas... 2 3.3 Recorte de Polígonos... 14 3.4 Recorte de Curvas... 17 Alfredo Wetzenfeld Gráfca:

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

TRANSFORMACIONES PLANAS CON MATLAB: SEMEJANZA DE FIGURAS A TRAVÉS DE TRANSFORMACIONES EN EL PLANO COMPLEJO Y MEDIANTE ANÁLISIS MATRICIAL.

TRANSFORMACIONES PLANAS CON MATLAB: SEMEJANZA DE FIGURAS A TRAVÉS DE TRANSFORMACIONES EN EL PLANO COMPLEJO Y MEDIANTE ANÁLISIS MATRICIAL. III REPEM Memoras Santa Rosa, La Pampa, Argentna, Agosto CB 9 TRANSFORMACIONES PLANAS CON MATLAB: SEMEJANZA DE FIGURAS A TRAVÉS DE TRANSFORMACIONES EN EL PLANO COMPLEJO Y MEDIANTE ANÁLISIS MATRICIAL Néstor

Más detalles

Laboratorio de Física con soporte interactivo en Moodle

Laboratorio de Física con soporte interactivo en Moodle Laboratoro de Físca con soporte nteractvo en Moodle Laboratoro de Físca con soporte nteractvo en Moodle Javer Ablanque Ramírez Rosa María Bento Zafrlla Juan Carlos Losada González Departamento de Físca

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

Chapter Audio Summary for McDougal Littell Algebra 2

Chapter Audio Summary for McDougal Littell Algebra 2 Chapter 8 Exponential and Logarithmic Functions Al principio del capítulo 8 representaste gráficamente funciones exponenciales generales. Luego aprendiste sobre la base natural e. Examinaste la relación

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Capítulo 3. SISTEMAS DE PARTÍCULAS

Capítulo 3. SISTEMAS DE PARTÍCULAS Capítulo 3. SISTEMAS DE PARTÍCULAS 3.1. Introduccón En la mayoría de los sstemas partculados esten partículas de dstnto tamaño tal como se observa en la Fgura 3.1. Muchos de los métodos que mden tamaño

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles