Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4"

Transcripción

1 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un número complejo se expresa con los números reales r,, los cuales pueden escribirse juntos como r, o como r. De la figura que ubica a un vector complejo en el plano, se obtienen las relaciones entre componentes rectangulares y polares. Las coordenadas cartesianas x,y forman los catetos de un triángulo rectángulo que hace el ángulo en el origen entre el vector y la dirección positiva del eje de las abscisas, y la hipotenusa del triángulo es de longitud r, el módulo del número complejo. Por consiguiente, suponiendo que conocemos x,y, el número complejo que en coordenadas cartesianas es z x iy puede escribirse en forma polar como z r cos isin r, con y dado por cualquiera de las relaciones r x 2 y 2 tan y x, cos x r o sin y r Nótese que para aplicar correctamente la fórmula de la tangente es necesario tener presente el cuadrante del plano complejo en el que se encuentra z, porque al tomar el cociente se pierde la información sobre los signos de cada componente cartesiana. Las distintas posibilidades y los cuadrantes correspondientes están dados en la siguiente tabla: signo x signo y cuadrante I - II - - III - IV Las partes real e imaginaria de z son claramente

2 Re z x r cos, Im z y r sin las cuales nos dan la transformación inversa, de la forma polar a la forma rectangular del complejo. La coordenada r de la forma polar del complejo, que es también el módulo del número complejo, es la distancia que separa del origen de coordenadas al punto que lo representa, mientras que el ángulo, que recibe el nombre de argumento del complejo, se toma positivo en sentido contrario a las manecillas del reloj desde el eje real hasta el vector del origen al punto. Nótese que si consideramos un argumento 2 k con k cualquier entero, se obtiene el mismo número complejo. Comúnmente se elige a 0,2 o a, como el intervalo del valor principal del argumento. Basándonos en el significado geométrico del módulo, tenemos que si z y a son dos números complejos cualesquiera, z a representa la distancia entre ellos. Por consiguiente, la expresión z a const., considerando a a fijo y z variable, representa una circunferencia con centro en a, mientras que z a const. representa los puntos interiores de un círculo con centro en a. En ambos casos, el radio de la circunferencia es igual al valor de la constante del lado derecho. Estos son ejemplos de lugares geométricos, regiones o curvas en el plano cartesiano que satisfacen expresiones que pueden ser ecuaciones o inecuaciones. En este caso, los lugares geométricos "puntos sobre una circunferencia" y "puntos del interior del círculo" están definidos, respectivamente, por medio de las fórmulas z a const. y z a const. Fórmula de Euler La fórmula, identidad o ecuación de Euler es e i cos isin Se demuestra aplicando la serie de potencias para la función exponencial: haciendo x i : e x 1 x x2 2! x3 3! x4 4! e i 1 i i 2 i 3 i 4 2! 3! 4! La serie se separa naturalmente en términos reales e imaginarios al tomar en cuenta que i 2 1, de manera que al agrupar para obtener la parte real e imaginaria de e i, coinciden con las series de potencias para el coseno y el seno de, respectivamente. Esto también se puede hacer, más fácilmente, con la fórmula del término general de las series. Obsérvese que la identidad de Euler establece que e i es un número complejo con módulo unitario. Una aplicación inmediata de la identidad de Euler es que podemos escribir cualquier número complejo z como z x iy re i El producto y el cociente con la forma polar Aprovechando la fórmula de Euler, la forma polar proporciona fórmulas muy simples para las operaciones de multiplicación, división y potenciación de los números complejos. Igual que para números reales, para complejos se define la potencia n-ésima como el producto de un número por sí mismo repetido n veces, con n un entero positivo. Sean dos números complejos dados con sus componentes rectangulares z 1 x 1 iy 1 y z 2 x 2 iy 2 y que en su forma polar son z 1 r 1 e i 1 y z 2 r 2 e i 2. Su producto, que se dió antes en coordenadas rectangulares, es particularmente simple en la forma polar, a saber:

3 z 1 z 2 r 1 e i 1 r 2 e i 2 r 1 r 2 e i 1 2 r 1 r 2 cos 1 2 isin 1 2 que muestra que el módulo del producto es el producto de los módulos de los factores y el argumento del producto es la suma de los argumentos de los factores. La última fórmula nos permite identificar con facilidad la parte real e imaginaria del producto. De modo similar, tenemos para el cociente z 1 z 2 r 1e i 1 r 2 e i 2 r 1 r 2 e i 1 2 r 1 r 2 cos 1 2 isin 1 2. Fórmula de De Moivre Elevando la fórmula de Euler a la potencia m, con m cualquier entero positivo, que es el teorema o fórmula de de Moivre. e i m cos isin m e im cos m isinm La potencia en la forma polar Este resultado facilita el cálculo de la potencia n (enésima) de cualquier número complejo z mediante su representación polar y la fórmula de de Moivre: z n x iy n r cos isin n r n cos n isinn re i n r n e in r n n Vemos que el módulo de la potencia n de z es la potencia n del módulo de z, mientras que el argumento de la potencia es n veces el argumento de z. Obsérvese que: esta fórmula es válida para n un número real entero positivo o negativo, y aunque 0,2, n puede estar fuera de ese intervalo, pero al calcular cos n y sinn se obtiene el mismo resultado que si al argumento n se le resta primero un múltiplo entero de 2, pues ambas funciones tienen periodo 2. Raíces n-ésimas de números complejos La operación de extraer raíz es la opuesta de elevar a una potencia. Cuando la potencia de un número, real o complejo se toma igual al recíproco de algún número entero, z 1/n, se representa la raíz n-ésima de z. Por ejemplo, z 1/2, z 1/3, etc., son la raíz cuadrada y raíz cúbica respectivamente de z. Para resolver el problema de encontrar una raíz n-ésima de un número complejo z x iy r cos isin, suponemos que se representa como v z 1/n a ib t cos isin. Por consiguiente, v n z que aplicando la fórmula de de Moivre nos permite escribir t n e in re i 2 k con k entero. Igualando módulo y argumento de cada lado de la ecuación, obtenemos para t y de la raíz n-ésima t n r r 1/n real y positivo 2 k n k, con k 0, 1, 2,,n 1 # Entonces la raíz n-ésima de un número complejo z x iy r cos isin está dada por los n números v r 1/n cos 2 k n isin 2 k n k 0, 1, 2,,n 1 Al tomar k los n valores sucesivos que se indican, se obtienen n raíces n-ésimas distintas

4 de cualquier número z distinto de cero, las cuales son en general complejas. Si extraemos la raíz n-ésima a un número z real, su argumento es 0 o, de modo que tendrá por lo menos una raíz real, la correspondiente a k 0. De la misma fórmula vemos que si además n es par, tendrá también la raíz real correspondiente a k n/2, de signo opuesto a la anterior. Aplicaciones Entre las áreas de la física y las ingenierías en las que es importante la aplicación de los números complejos están los circuitos eléctricos, las vibraciones mecánicas, las oscilaciones y ondas de cualquier tipo, como acústicas, sísmicas y electromagnéticas. La fórmula de Euler simplifica los desarrollos algebraícos en problemas lineales en los que la cantidad de interés tiene una dependencia senoidal con la posición, el tiempo o cualquier otra variable independiente, generalmente asociando la variable física dependiente con la parte real de la correspondiente variable compleja. Todo el desarrollo algebraico, incluyendo el cálculo de derivadas e integrales, se realiza con cantidades complejas y al final, se toma la parte real de la solución compleja encontrada. Límite de una sucesión de números complejos Al igual que con números reales, podemos formar progresiones o sucesiones de números complejos z n, donde cada término de la sucesión, por ser complejo, es z n x n iy n. Los reales x n e y n pueden tener comportamientos independientes, si se desea, y además, es posible generalizar las definiciones de sucesiones aritméticas y geométricas a términos y razones complejos, lo cual produce que el comportamiento de los términos de las sucesiones complejas sea más variado y rico. Conforme crece el índice de los términos de algunas sucesiones complejas, la distancia z n z n 1 entre términos sucesivos se va haciendo más y más pequeña, de modo que en el límite tiende a 0. El punto complejo z que así resulta recibe el nombre de límite de la sucesión y se escribe como z lim n z n o como z n z. Sucesión de las potencias de complejos Podemos formar una progresión geométrica z n de complejos en los que el primer término es el complejo z, es decir, z 1 z y tomar a z también como razón, de modo que cada término sucesivo se obtiene multiplicando por z al anterior: z n z z n 1. Así, los términos sucesivos son z, z 2, z 3, z 4,, z n,, es decir, las potencias sucesivas de z, con z n z n. De hecho, podemos tomar como primer término el correspondiente a n 0 con lo que los términos sucesivos son 1, z, z 2, z 3, z 4,, z n, Al aplicar la fórmula de de Moivre, con z re i, los términos sucesivos son 1, re i, re i 2,, re i n, Bibliografía 1. R. V. Churchill, Complex Variables and Applications. McGraw-Hill, New York (1960). 2. L. E. Dickson, New First Course in the Theory of Equations. John Wiley, New York (1930). 3. E. Kreyszig, Matemáticas Avanzadas para Ingeniería. Vol. II, Cap. 12 y Cap. 14. Limusa, México (1993). 4. H. H. Skilling, Electrical Engineering Circuits. John Wiley, New York (1963). Ejercicios 1. Para cada número complejo, identifica y da el valor numérico de su parte real x, su

5 parte imaginaria y, su módulo r y su argumento. Resume al final los resultados en forma tabular, con las columnas x, y, r, (grados) y (radianes) y cada inciso en un renglón. a. 3 3i b. 1 i c. 3 i d. 1 i 3 e. 1 i f. 1 i g. i 2 2 h. 2 cos isin 6 6 i. 1 i 1 i 2 2. Encuentra la solución para las x,y reales en las siguientes ecuaciones complejas: a. x iy 2 3i x iy (desarrollar el producto del segundo miembro) b. x 2y 3 i 3x y 1 0 c. 2ix 3 y i 3. Identificar y explicar con palabras el lugar geométrico de los puntos para los cuales: a. z 1 1 b. z z 6i c. arg z 4 d. z 1 z Un vector de longitud l con su origen en el origen de coordenadas gira alrededor de éste con velocidad angular constante. Suponiendo que al tiempo t 0 coincide con la parte positiva del eje de las abscisas, encontrar sus proyecciones sobre el eje de las abscisas y de las ordenadas a cualquier tiempo t. (Sugerencia: Cuál es valor del ángulo entre el vector y el eje de las abscisas? 5. Convirtiendo cada factor a su forma polar, encontrar el valor de: a. 4 3i 5 12i 7 24i 40 9i b i 8 15i 12 35i 16 63i 6. Encontrar todos los valores de las raíces siguientes. Expresar los resultados en forma rectangular y forma polar. Si hay raíces que forman parejas conjugadas, escribirlas en la forma x iy. a (raíz séptima) b (raíz octava) c. 4 36i (raíz cuarta) 7. En los circuitos de corriente alterna, la tensión E y la corriente I se consideran vectores complejos o fasores que giran alrededor del origen con una frecuencia angular 2 f, de modo que I I e i t pero E E e i t con el ángulo de fase entre esos fasores. Las cantidades físicas se asocian con la parte real del fasor. En un circuito con R, L y C (resistencia, inductancia y capacitancia) en serie, la tensión está dada por la ecuación E RI L di dt C 1 Idt Sustituir en cada término de la ecuación I por el fasor complejo correspondiente, aplicando las fórmulas conocidas para la derivada y la integral (con constante aditiva nula) de la función exponencial. Demostrar que el resultado puede escribirse como E ZI, con Z un complejo, que es la ley de Ohm para circuitos de corriente alterna.

6 Encontrar la expresión para Z, que recibe el nombre de impedancia compleja. Tomar al final la parte real del resultado e indicar la relación entre los módulos de la tensión, de la impedancia compleja y de la corriente. Encontrar la expresión para el ángulo de fase que muestre su dependencia con la frecuencia angular.

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

1.- Álgebra de números complejos.

1.- Álgebra de números complejos. .- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS. Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

PROGRAMA DE CURSO PRECALCULUS. Horas de Cátedra. Trabajo Personal

PROGRAMA DE CURSO PRECALCULUS. Horas de Cátedra. Trabajo Personal Código Nombre IN1000 Nombre en Inglés SCT Horas semestrales PROGRAMA DE CURSO PRECÁLCULO PRECALCULUS Cátedra ayudantías y laboratorios Trabajo Personal 6 180 45 21 114 Requisitos Carácter del Curso Curso

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Utiliza correctamente el lenguaje algebraico, geométrico y trigonométrico.. Identifica la simbología propia de la geometría y la trigonometría. Saberes

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

UD 1: NÚMEROS REALES Y COMPLEJOS

UD 1: NÚMEROS REALES Y COMPLEJOS UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

Festival Académico Nacional 2018 Contenidos a evaluar por fase de aplicación

Festival Académico Nacional 2018 Contenidos a evaluar por fase de aplicación Festival Académico Nacional 2018 Contenidos a evaluar por fase de aplicación Asignatura Tema Tópico Identificador 1ra Fase (opción múltiple) 2da Fase (Tipo casos) Algebra Notación Expresión algebraica,

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

Algebra I Enero 2015

Algebra I Enero 2015 Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones siguientes usando el método de factorización. 1) 5) 2) 6) 3) 7) II.- Resolver las ecuaciones siguientes usando el método completando

Más detalles

Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL

Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA Nombre Del Proceso PLANIFICACIÓN Fecha: 1-09-2008 Código: C01-2.1-02-00-00-P01 Versión:1.0 Página: 1 de 13 UNIDAD DIDACTICA No. 1

Más detalles

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia Módulo 4-Diapositiva 25 Trigonometría en Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos Módulo de un número complejo Forma polar de un número complejo Producto y cociente de

Más detalles

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales

ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales ÍNDICE Capítulo 1 Relaciones y funciones 1.1 LÓGICA... 7 1.2 CONJUNTOS... 19 1.2.1 Conceptos básicos... 19 1.2.2 Operaciones entre conjuntos... 25 1.3 RELACIONES... 32 1.3.1 Conceptos básicos... 32 1.3.2

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores

Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS

UNIVERSIDAD JOSE CARLOS MARIATEGUI LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS LECCIÓN Nº 06 EXPRESIONES COMPLEJAS PARA LA CORRIENTE Y EL VOLTAJE 1. ELEMENTOS PASIVOS 61 2. FASORES Es necesario conocer las entidades de Euler y números complejos para entender favores. Sean a y b dos

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO NOTA IMPORTANTE: Estos ejercicios se entregarán en el mes de septiembre el mismo día del examen de recuperación de matemáticas. La entrega de los mismos será condición

Más detalles

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

MÓDULO 7: TRIGONOMETRÍA PLANA

MÓDULO 7: TRIGONOMETRÍA PLANA MÓDULO 7: TRIGONOMETRÍA PLANA Física Los ángulos y sus medidas. Funciones trigonométricas. Cuadrantes. Teorema de Pitágoras. Áreas. Volúmenes. UTN Facultad Regional Trenque Lauquen 29/01/2015 MÓDULO 7:

Más detalles

Propedéutico de Matemáticas

Propedéutico de Matemáticas Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de

Más detalles

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg MATEMÁTICAS º BACH. CC. N. Y S. 0 de octubre de 008 Trigonometría Atención: Los resultados serán válidos sólo cuando los razonamientos empleados se incluyan. Todos los problemas valen puntos. ) Sabiendo

Más detalles

Si la longitud s del arco MN coincide con la longitud de r, entonces el ángulo subtendido desde el centro O corresponde a 1 radian.

Si la longitud s del arco MN coincide con la longitud de r, entonces el ángulo subtendido desde el centro O corresponde a 1 radian. 1 ÁNGULOS EN RADIANES El radián es la unidad de ángulo plano en el Sistema Internacional de Unidades. Representa el ángulo central en una circunferencia y abarca un arco cuya longitud es igual a la del

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 3

CONCEPTOS CLAVE DE LA UNIDAD 3 CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto

Más detalles

Orden Operaciones básicas, adición, sustracción, ecuaciones multiplicación, división y problemas. OPERACIONES CON NUMEROS NATURALES

Orden Operaciones básicas, adición, sustracción, ecuaciones multiplicación, división y problemas. OPERACIONES CON NUMEROS NATURALES AREA MATEMATICAS 2016 TEMAS PROMOCIÓN ANTICIPADA GRADO SEXTO LOGICA Y CONJUNTOS Proposiciones simples y compuestas. Conjuntos Operaciones SISTEMAS DE NUMERACION Romano Binario NUMEROS NATURALES. Orden

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Pre-Cálculo 12 mo grado

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Pre-Cálculo 12 mo grado Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Pre-Cálculo 12 mo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Pre-Cálculo 12 mo grado periodo contenido

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Capítulo VI. Álgebra vectorial Objetivo: El alumno aplicará el álgebra vectorial en la resolución de problemas geométricos. Contenido: 6.1. Cantidades escalares y cantidades vectoriales. Definición de

Más detalles

Razones trigonométricas

Razones trigonométricas RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una

Más detalles

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos. Si z 3 + i y z 4 + 7 i, calcule: a) z + z b) z z c) z z d) z /z e indique la opción con su resultado dentro de la siguiente

Más detalles

Matemáticas I. Curso Exámenes

Matemáticas I. Curso Exámenes Matemáticas I. Curso 010-011. Exámenes 1. Logaritmos y radicales Ejercicio 1. Racionalizar los denominadores: 5 45 4 7 7 8 7 5 5 + 5 5 5 = = 45 9 5 5 = 1 4 7 = 4 + 7) 4 7)4 + 7) = 4 + 7) = 4 + 7) = 4 +

Más detalles

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales.

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales. Números complejos. Necesidad de ampliar el conjunto de los números reales. En ocasiones cuando resolvemos ecuaciones como la siguiente x 1=0 Nos encontramos, si despejamos la incógnita x, con que x=± 1

Más detalles

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( ) 1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA Programa de estudios Unidad 2. Modelado angular, lineal, de superficie y espacial. Propósito de la unidad. Calculará dimensiones, angulares, lineales, superficiales y espaciales de figuras geométricas

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ CONTENIDOS DEL AREA PERIODO: 01 MATEMATICAS Y ESTADISTICA DOCENTE: ADRIANA ZULAY VILLA URIBE GRADO 10 MATEMATICAS Propósito Conocer y Comprender las razones y funciones

Más detalles

GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA

GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA No. INDICADOR TEMATICO 1 Conjuntos, sistemas numéricos y operaciones CONTENIDOS DECLARATIVOS Conjunto de números Naturales: definición y operaciones,

Más detalles

PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS

PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS En las pruebas extraordinarias se propondrán actividades y problemas sobre los contenidos mínimos. Las pruebas escritas tendrán

Más detalles

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de

Más detalles

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

CONTENIDOS MÍNIMOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA

CONTENIDOS MÍNIMOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA DEPARTAMENTO DE MATEMÁTICAS Área: MATEMÁTICAS I Curso: 1º Bach Tecnológico CONTENIDOS MÍNIMOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA Unidad 1. Números reales CONTENIDOS

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Instituto Tecnológico de Saltillo

Instituto Tecnológico de Saltillo Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades: Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico

Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional

Más detalles