Te daremos la guía básica para que puedas dibujar y medir ángulos. Al entrar al programa GEOGEBRA, aparece la siguiente pantalla en tu computadora:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Te daremos la guía básica para que puedas dibujar y medir ángulos. Al entrar al programa GEOGEBRA, aparece la siguiente pantalla en tu computadora:"

Transcripción

1 Colegio Nacional Rafael Hernandez - UNLP Matemática 2º año Trabajo Práctico nº 3: ángulos En este trabajo práctico vamos a usar el software Geogebra. Te daremos la guía básica para que puedas dibujar y medir ángulos. Al entrar al programa GEOGEBRA, aparece la siguiente pantalla en tu computadora: Por el momento no usaremos los ejes cartesianos, así que los podemos borrar. Cliqueando en el botón derecho se despliega un menú, la primera opción es la que pone y quita los ejes. Cómo dibujar un ángulo - Marcar tres puntos: para eso se utiliza el segundo botón del menú

2 Te quedará algo así: Trazà los segmentos AB y BC con el siguiente botón del menú la opción que dice segmento entre dos puntos - Con el botón de ángulo, primera opción, elegí los puntos en este orden: A,B,C y tendrás el ángulo α

3 Utilizando el primer botón del menú, en la opción elige y mueve podrás mover por ejemplo el punto C. Qué observás? Para guardar los trabajos que vas haciendo tenés dos opciones: 1) Guardarlos en un documento de Word siguiendo los pasos: - Edita - Copia la vista gráfica al portapapeles - Pegar en el documento Así guardado ya no se puede modificar 2) Guardarlos como documento de geogebra - Archivo - Guardar como - Colocar el nombre Así guardado sí se podrá modificar luego si lo necesitás Manos a la obra! Para comenzar abrí un documento de Word para guardar todo el trabajo, habrá que guardar los dibujos que vayan haciendo y las definiciones y/o las propiedades que vayan buscando 1. a) Buscá las definiciones de ángulo cóncavo y ángulo convexo. Anotalas en el documento. 1. b) Dibujá con geogebra un ángulo cóncavo y un ángulo convexo. Guarda el ejercicio como ángulos1. 2 Dibuja en una misma pantalla: - Un ángulo llano - Un ángulo agudo - Un ángulo recto - Un ángulo obtuso Guarda el ejercicio como ángulos2

4 1) a) Qué clase de ángulo forman la primera y la última varilla de este abanico? b) Dos varillas consecutivas, es decir, una varilla y la que le sigue inmediatamente, qué clase de ángulo forman?, cuánto miden? 2) Considera los ángulos A= 65º y B= 32º y calcula a) El doble del ángulo A b) La tercera parte del ángulo B c) El triple de la suma de los ángulos A y B d) La mitad de la suma de los ángulos A y B 3) a) Investiga cuándo dos ángulos son complementarios y cuándo son suplementarios. Te ofrecemos como guía las páginas: Anotalas en el documento b) Dibujá con geogebra dos ángulos que sean complementario y dos que sean suplementarios. Guarda el ejercicio como angulos3. 4) a) Averiguá cuándo dos ángulos son consecutivos. Anotalo en el documento. b) Dibuja con geogebra dos ángulos que sean consecutivos y dos que no lo sean. Guarda el ejercicio como angulos4 5) a) Buscá la definición de ángulos adyacentes. Podés hacerlo en la página: Anotá la definición en tu documento.

5 b) Dibujá con geogebra dos ángulos que sean adyacentes y comprobá que son suplementarios. Guarda el ejercicio como angulos5. 6) a) Averiguá cuándo dos ángulos son opuestos por el vértice. Anotalo en tu documento. b) Dibujá con geogebra dos ángulos que sean opuestos por vértice. Observa sus medidas, qué puedes decir de ellos? Guarda el ejercicio como angulos6. 7) Paula dibujó un ángulo de 37º y otro adyacente; trazó la bisectriz de este último y así lo dividió en dos partes iguales, que llamó A y B. Luego trazó las bisectrices de los ángulos A y B, cuánto miden cada una de las partes en que quedaron divididos los ángulos A y B? Realiza el gráfico en una hoja lisa y luego con geogebra. Guardalo como angulos7 8) Buscá objetos en los cuales puedas reconocer ángulos de las clases que vimos, saca fotos y marca en ellas los ángulos con su clasificación Guardalas en tu netbook para poder mostralas a tus compañeros.

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Llamamos ángulo a la región comprendida entre dos semirrectas que tienen el mismo origen.

Llamamos ángulo a la región comprendida entre dos semirrectas que tienen el mismo origen. LOS ÁNGULOS Llamamos ángulo a la región comprendida entre dos semirrectas que tienen el mismo origen. Ángulo p r Semirrecta o Semirrecta Vértice Para nombrar un ángulo, generalmente, se utilizan las letras

Más detalles

Actiludis.com Rincón del Maestro:www.rinconmaestro.es

Actiludis.com Rincón del Maestro:www.rinconmaestro.es Actiludis.com Rincón del Maestro:www.rinconmaestro.es SOLUCIÓN Actiludis.com Rincón del Maestro:www.rinconmaestro.es LOS ÁNGULOS Cuando dos rectas se cortan, forman 4 regiones llamadas ángulos. Cada ángulo

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IX: RECTAS Y ÁNGULOS Puntos, rectas, semirrectas y segmentos en el plano. Posiciones relativas de rectas en el plano. Mediatriz de un segmento. Ángulos. Elementos. Clasificación

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Traslaciones en el Plano

Traslaciones en el Plano COLEGIO RAIMAPU Departamento de Matemática Guía Práctica Nº 1 Traslaciones en el Plano Nombre Alumno(a): Al resolver esta guía aprenderás a crear una traslación con el programa GeoGebra. Abrir el programa

Más detalles

C. ÁNGULOS: Geometría plana. Trazados geométricos fundamentales

C. ÁNGULOS: Geometría plana. Trazados geométricos fundamentales C. ÁNGULOS: DEFINICIÓN. Si sobre un plano se consideran dos semirrectas de origen común, el plano queda dividido en dos regiones denominadas ángulos. Ángulo es por tanto la parte del plano comprendida

Más detalles

IES ALDEBARÁN DEPARTAMENTO DE MATEMÁTICAS Mónika Sánchez GEOMETRÍA

IES ALDEBARÁN DEPARTAMENTO DE MATEMÁTICAS Mónika Sánchez GEOMETRÍA GEOMETRÍA Geometría significa medida de la Tierra. La Geometría estudia las formas de los cuerpos y cómo representarlos. La Geometría se debe, en su mayor parte, a los griegos. Entre ellos podemos destacar

Más detalles

Rectas y ángulos en el plano

Rectas y ángulos en el plano Rectas y ángulos en el plano Contenidos 1. Rectas. Paralelas y perpendiculares. El plano. Puntos y rectas. Recta, semirrecta y segmento. Propiedades de la recta. Posiciones relativas. Paralelismo. Perpendicularidad

Más detalles

TEMA: 8 RECTAS Y ÁNGULOS EJERCICIOS + SOLUCIONARIO

TEMA: 8 RECTAS Y ÁNGULOS EJERCICIOS + SOLUCIONARIO I.E SAN VICENTE SEDE CENTRAL AREA CIENCIAS NATURALES Palmira Valle FECHA: ENTREGA: YAMILE CORTES DOCENTE SEDE CENTRAL GEOMETRÍA TEMA: 8 RECTAS Y ÁNGULOS EJERCICIOS + SOLUCIONARIO LA LÍNEA RECTAS 1 Escribe

Más detalles

TIPS SOBRE ANGULOS. Dos puntos diferentes determinan una y solo una recta que pasa por ellos.

TIPS SOBRE ANGULOS. Dos puntos diferentes determinan una y solo una recta que pasa por ellos. TIPS SOBRE ANGULOS Simbólicamente vamos a representar la gráfica de la recta así: y se puede nombrar por dos de sus puntos sobre ella, por ejemplo: recta AB, o con el símbolo encima así ó una letra minúscula;

Más detalles

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos.

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos. 0 Los ángulos La medida de los ángulos Completa las siguientes oraciones. La unidad de medida de la amplitud de los ángulos es el grado. Su símbolo es. Además del grado, para medir la amplitud de los ángulos

Más detalles

1. Indica si son correctas las siguientes afirmaciones.

1. Indica si son correctas las siguientes afirmaciones. Nombre Fecha 1. Indica si son correctas las siguientes afirmaciones. a) Un ángulo completo es cuatro veces mayor que un ángulo recto. b) Un grado sexagesimal es la ciento ochentava parte de un ángulo llano.

Más detalles

NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS

NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS 8.3.1 8.3.4 Un cuadrilátero es cualquier polígono de cuatro lados. Hay seis casos especiales de cuadriláteros con la que los estudiantes deben estar familiarizados.

Más detalles

11º lección TEMA 11.- LOS ÁNGULOS Y SU MEDIDA

11º lección TEMA 11.- LOS ÁNGULOS Y SU MEDIDA -. Señala de qué tipo son los ángulos siguientes. Compruébalo con un transportador. Indica su valor -. Un ángulo está formado por dos lados. -. Un vértice. -. La amplitud del ángulo -.Dibujar un ángulo

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común

Más detalles

Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas. Colegio Divino Maestro

Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas. Colegio Divino Maestro Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas Colegio Divino Maestro TAREA 1: TRANSFORMACIÓN DE MEDIDAS Teoría: Una magnitud es cualquier

Más detalles

Introducción. Objetivos de aprendizaje. Actividad 1

Introducción. Objetivos de aprendizaje. Actividad 1 EL TRIÁNGULO: UN POLÍGONO CON PROPIEDADES ESPECIALES Caracterización de ángulo en su entorno Introducción Sabías que las manecillas del reloj en su trayectoria describen diferentes ángulos? Después de

Más detalles

GEOMETRÍA. Las rectas se representan con letras en imprenta minúsculas, y son líneas que no se doblan.

GEOMETRÍA. Las rectas se representan con letras en imprenta minúsculas, y son líneas que no se doblan. GEOMETRÍA INTRODUCCIÓN Durante todo este capítulo, veremos los elementos más fundamentales del plano. A este nivel del conocimiento nos centraremos sólo en la geometría de Euclides o euclidiana que es

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá

Más detalles

ÁNGULOS: (triángulos - cuadriláteros)

ÁNGULOS: (triángulos - cuadriláteros) 1 ÁNGULOS: (triángulos - cuadriláteros) 1. - Transforma en grados, minutos y segundos: a) 15.910" b) 27.673" c) 78.385" d) 38.890" e) 21.930" f) 35.627" g) 50.420" h) 43.692" i) 22.475" j) 95.486" k) 9.999"

Más detalles

Prácticas de Geometría con GeoGebra. 1º ESO

Prácticas de Geometría con GeoGebra. 1º ESO INTRODUCCIÓN Al abrir el programa se despliega una ventana en la que se localizan varias partes a las que se hará referencia en el guión de trabajo. Estas partes son las que se indican en color rojo en

Más detalles

CONCEPTOS BÁSICOS TRIGONOMETRÍA DEFINICIÓN FIGURA OBSERVACIONES

CONCEPTOS BÁSICOS TRIGONOMETRÍA DEFINICIÓN FIGURA OBSERVACIONES Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Profesora: Tamara Grandón Valdés.

Profesora: Tamara Grandón Valdés. GUIA MATEMATICA 7 BASICO UNIDAD 5: GEOMETRIA. CONTENIDOS : Identificar ángulos, calculo de ángulos entre paralelas, calculo de ángulos en el triangulo, tipos de triángulos, elementos del triangulo. NOMBRE:

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones

Más detalles

Un juego de ángulos SGUICTG001TG31-A16V1

Un juego de ángulos SGUICTG001TG31-A16V1 Un juego de ángulos SGUICTG001TG31-A16V1 SECCIÓN: EXPERIMENTANDO Actividad 1 1. Porque la dirección que adquiere el movimiento de las bolas en el billar depende del ángulo con que la bola blanca se golpea.

Más detalles

Matemática. Conociendo las Formas de 2 dimensiones (2D) Cuaderno de Trabajo. Básico

Matemática. Conociendo las Formas de 2 dimensiones (2D) Cuaderno de Trabajo. Básico Cuaderno de Trabajo 6 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Conociendo las Formas de 2 dimensiones (2D) Cuaderno de trabajo Módulo didáctico para la

Más detalles

TALLER SOBRE ANGULOS

TALLER SOBRE ANGULOS TALLER SOBRE ANGULOS EJEMPLO 1 1. Expresar en radianes un ángulo de 90º. 2. Expresar 45º en minutos 3. Convertir 43,63º a grados, minutos y segundos. 4. Convertir 47º 32 42 en grados. EJEMPLO 2. Hallemos

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras

Más detalles

MATERIA: TALLER DE CÓMPUTO MATERIAL DE APOYO

MATERIA: TALLER DE CÓMPUTO MATERIAL DE APOYO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES MATERIA: TALLER DE CÓMPUTO MATERIAL DE APOYO NOMENCLATURA : NOMBRE: M U VI-4 Práctica Trazo de un triángulo isósceles

Más detalles

Cada uno de los botones que estás viendo (en la llamada Barra de Herramientas) permite desplegar un menú diferente.

Cada uno de los botones que estás viendo (en la llamada Barra de Herramientas) permite desplegar un menú diferente. ELEMENTOS EN EL PLANO Para hacer geometría es importante ver las figuras objeto de nuestro estudio y manipularlas. Antes de la invención del papel, los antiguos geómetras dibujaban sobre la arena u otros

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos

Más detalles

Un ángulo mide y otro Cuánto mide la suma de estos ángulos?

Un ángulo mide y otro Cuánto mide la suma de estos ángulos? Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

FICHA DE TRABAJO Nº 15

FICHA DE TRABAJO Nº 15 Nombre FICHA DE TRABAJO Nº 15 Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema ANGULOS ELEMENTOS FUNDAMENTALES DE LA GEOMETRÍA ÁNGULO Un ángulo es la región

Más detalles

GeoGebra. Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa

GeoGebra. Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa GeoGebra Agustín Carrillo de Albornoz Torres Universidad de

Más detalles

INSTITUTO SALAMANCA Matematicas III Julio-Agosto 2009 APLI CACIONES DE LOS ÁNGULOS

INSTITUTO SALAMANCA Matematicas III Julio-Agosto 2009 APLI CACIONES DE LOS ÁNGULOS APLI CACIONES DE LOS ÁNGULOS Ángulo: es la unión de dos rayos que tienen un punto en común llamado vértice Elementos de un ángulo : -lados -Vértice y -bisectriz Un ángulo divide al plano en dos subconjuntos

Más detalles

Club GeoGebra Iberoamericano 5 CUADRILÁTEROS

Club GeoGebra Iberoamericano 5 CUADRILÁTEROS 5 CUADRILÁTEROS CUADRILÁTEROS 1. INTRODUCCIÓN En esta unidad te proponemos un viaje lleno de retos por el mundo de los cuadriláteros. Algunos miembros de esta familia ya te resultarán familiares: el cuadrado,

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo TEMA 9. RECTAS Y ÁNGULOS RECTAS EN EL PLANO ÁNGULOS Rectas Segmento Semirrectas Mediatriz de un segmento Ángulos según su abertura: Recto, agudo, obtuso, llano, completo, cóncavo, Ángulos según su posición:

Más detalles

2. Algunos conceptos básicos

2. Algunos conceptos básicos 2. Algunos conceptos básicos Punto, línea y plano son conceptos primitivos (es decir, no definidos) en geometría. Intuitivamente, la idea de punto nos sugiere la marca que deja sobre el papel un lápiz

Más detalles

Unidad didáctica 9 Geometría plana

Unidad didáctica 9 Geometría plana Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice

Más detalles

1. GeoGebra aplicado a Geometría sintética GeoGebra

1. GeoGebra aplicado a Geometría sintética GeoGebra 1. GeoGebra aplicado a Geometría sintética GeoGebra Experimenta: Paso a paso En el Escritorio crea una carpeta que se llame Mate y dentro la carpeta 1GG, dentro introduce todas las figuras de GeoGebra

Más detalles

UNIDAD: GEOMETRÍA ÁNGULOS Y TRIÁNGULOS

UNIDAD: GEOMETRÍA ÁNGULOS Y TRIÁNGULOS u r s o : Matemática Material N 11 PRÁTI GUÍ TEÓRIO Nº 9 UNI: GEOMETRÍ ÁNGULOS Y TRIÁNGULOS LSIFIIÓN E LOS ÁNGULOS E UERO SU MEI Ángulo nulo : Es aquel que mide 0. Ángulo agudo : Es aquel que mide más

Más detalles

Operaciones con ángulos. 1. Suma y resta. 2. Multiplicación por un entero. 3. División entre un entero

Operaciones con ángulos. 1. Suma y resta. 2. Multiplicación por un entero. 3. División entre un entero Los ángulos se clasifican de acuerdo a diferentes criterios. Además, se pueden realizar algunas operaciones matemáticas con ellos y entre ellos. Para ver cada tema haga Click en la opción correspondiente:

Más detalles

LOS ÁNGULOS Y SU MEDIDA

LOS ÁNGULOS Y SU MEDIDA LOS ÁNGULOS Y SU MEDIDA LOS ÁNGULOS Y SUS ELEMENTOS Ángulo es la región del plano comprendida entre dos semirrectas (lados) que tienen el mismo origen (vértice). Notación: â o bien Los ángulos se miden

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres y Triángulos Integrantes: Felipe Lara Cristopher Oyarzún Mauricio Vásquez mmm... ojalá te sirva este módulo Asignatura: Álgebra Profesor: Orlando Torres Para aprender sobre los ángulos primero tenemos

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

ACTIVIDADES: DESCUBRIENDO Y ENUNCIANDO EL TEOREMA DE PITÁGORAS

ACTIVIDADES: DESCUBRIENDO Y ENUNCIANDO EL TEOREMA DE PITÁGORAS ACTIVIDADES: DESCUBRIENDO Y ENUNCIANDO EL TEOREMA DE PITÁGORAS Quién fue Pitágoras? Fue un matemático y filósofo griego, nacido en la isla de Samos, que vivió entre los años c. 582 - c. 500 a.c. Aproximadamente

Más detalles

3º E.S.O. EDUCACIÓN PLÁSTICA Y VISUAL

3º E.S.O. EDUCACIÓN PLÁSTICA Y VISUAL Dpto. de dibujo y Artes Plásticas / a.m.mateos pag. 1 3º E.S.O. EDUCACIÓN PLÁSTICA Y VISUAL ÍNDICE DE TEMAS: vc 1.- TRAZADOS Y CONCEPTOS BÁSICOS 2.- TRAZADO GEOM. DE FORMAS POLIGONALES 3.- TRAZADO GEOM.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

SIMCE Nº 2 Educación Matemática Octavo Básico Geometría.

SIMCE Nº 2 Educación Matemática Octavo Básico Geometría. SIMCE Nº 2 Educación Matemática Octavo Básico Geometría A b r i l, 2 0 0 6 Instrucciones para el profesor SIMCE 8º BASICO EDUCACIÓN MATEMÁTICA Nº 2 / Abril 2006 Objetivo: 1. En situaciones problema utilizan

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

14327,, = 238, 47,, 14327,, = 238, 47,, = 3º 58, 47,,

14327,, = 238, 47,, 14327,, = 238, 47,, = 3º 58, 47,, MEDID DE LS ÁNGULS Y SU CLSIFICCIÓN. El ángulo es la abertura formada por dos semirrectas con un mismo origen llamado vértice. Las semirrectas reciben el nombre de lados. Los ángulos se pueden designar

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano. GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo.

GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo. GEOMETRÍA Contenidos previos: Recta. Segmento. Semirrecta. Ángulos. Clasificación. Ángulos opuestos por el vértice. Ángulos adyacentes. Clasificación de triángulos. Propiedades elementales. Contenidos

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Educación Plástica y Visual 4.1 INSTRUMENTOS PARA EL DIBUJO TÉCNICO:

Educación Plástica y Visual 4.1 INSTRUMENTOS PARA EL DIBUJO TÉCNICO: 4 FORMAS GEOMÉTRICAS Normalmente, un dibujo se puede realizar de dos maneras. La primera es a mano alzada, es decir, sin utilizar ningún instrumento que sirva de guía o de apoyo para el trazado de formas.

Más detalles

1.3.-Trazados geométricos básicos.

1.3.-Trazados geométricos básicos. 1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del

Más detalles

XXI OLIMPIADA NACIONAL DE MATEMÁTICA

XXI OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 22 DE AGOSTO DE 2009 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:........... Sección:..........

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

TIPO DE LINEA REPRESENTACION APLICACION

TIPO DE LINEA REPRESENTACION APLICACION LECTURA DE REFLEXION: En la vida hay que aprender a darle importancia a lo que tiene importancia Ana Botella. TEMA N 1 TIPOS DE LÍNEAS EN DIBUJO TÉCNICO En dibujo técnico se utiliza diferentes tipos y

Más detalles

EL PLANO. 1.- Representa los siguientes puntos: A(8,4), B(-10,2), C(7,-2), D(0,3), E(9,0), F(-12,-3), G(-6, -9)

EL PLANO. 1.- Representa los siguientes puntos: A(8,4), B(-10,2), C(7,-2), D(0,3), E(9,0), F(-12,-3), G(-6, -9) EL PLANO 1.- Representa los siguientes puntos: A(8,4), B(-10,2), C(7,-2), D(0,3), E(9,0), F(-12,-3), G(-6, -9) 2.- Representa los siguientes puntos: A(3 5,4), B(-1 5,2 1), C(4,-2 1), D(4,8,-2 1), E(0 5,-3)

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas Para comprender las nociones básicas de Geo Gebra construiremos distintos cuadriláteros. 1) Cuadrilátero a) Seleccionar

Más detalles

Matemáticas. Encontrando Ángulos por medio de Grados. Respuestas. Nombre:

Matemáticas. Encontrando Ángulos por medio de Grados. Respuestas. Nombre: 1) 153 obtuso 2) 15 agudo 3) 16 agudo 4) 50 agudo 5) 67 agudo 6) 90 derecho 7) 90 derecho 8) 123 obtuso 9) 76 agudo 10) 180 recto 11) 140 obtuso 12) 150 obtuso 13) 180 recto 14) 129 obtuso 15) 165 obtuso

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

UNIDAD: GEOMETRÍA ÁNGULOS Y TRIÁNGULOS

UNIDAD: GEOMETRÍA ÁNGULOS Y TRIÁNGULOS u r s o : Matemática Material N 11 GUÍ TÓRIO PRÁTI Nº 9 UNI: GOMTRÍ ÁNGULOS Y TRIÁNGULOS LSIFIIÓN LOS ÁNGULOS URO SU MI Ángulo nulo : s aquel que mide 0. Ángulo agudo : s aquel que mide más de 0 y menos

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

Trabajo Práctico N 2: Geometría del triángulo

Trabajo Práctico N 2: Geometría del triángulo Trabajo Práctico N 2: Geometría del triángulo Problema 1: a. Qué puedes decir sobre los ángulos interiores de un triángulo rectángulo? Cuánto miden? b. Qué puedes decir sobre los ángulos interiores de

Más detalles

Á GULOS 7) En la figura, L 1 // L 2 // L 3 y L 4 // L 5 // L 6. Si β = 2α, cuál de las siguientes relaciones es falsa? L 4 L 5

Á GULOS 7) En la figura, L 1 // L 2 // L 3 y L 4 // L 5 // L 6. Si β = 2α, cuál de las siguientes relaciones es falsa? L 4 L 5 TTI 1) Se tiene a + 40º = 180º y b + 140º = 180º, entonces: a + b =? ) 120º ) 140º ) 180º ) 200º ) 360º 2), y son rectas tales que:, =? Á GUS 7) n la figura, // // y 4 // 5 // 6. Si = 2, cuál de las siguientes

Más detalles

1. Si en una recta señalas un punto en cuántas partes queda dividida la recta? cómo se llaman cada una de las partes?

1. Si en una recta señalas un punto en cuántas partes queda dividida la recta? cómo se llaman cada una de las partes? Guía de trabajo 1. Si en una recta señalas un punto en cuántas partes queda dividida la recta? cómo se llaman cada una de las partes? Respuesta: a) En dos partes b) semirrectas. 2. En el ejercicio anterior

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista

Más detalles

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA GUÍA DE CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 16 de enero de 2017 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando

Más detalles

GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría,

GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría, Documento de Ayuda de GeoGebra 1 Qué es GeoGebra? GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría, álgebra y cálculo. Lo ha elaborado Markus Hohenwarter junto a un equipo

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo 1 GEOGEBRA Ejercicio 1 Localización del baricentro de un triángulo En un triángulo, una mediana es el segmento que une un vértice con el punto medio del lado opuesto. Las tres medianas de un triángulo

Más detalles

SECUENCIA DIDÁCTICA GEOMETRÍA RAZONES TRIGONOMÉTRICAS

SECUENCIA DIDÁCTICA GEOMETRÍA RAZONES TRIGONOMÉTRICAS 1 Matemática. Dirección de Nivel Secundario. Ministerio de Educación, Cultura, Ciencia y Tecnología del Chaco. Destinatarios: Estudiantes de 2do y 3er año de la Escuela Secundaria. Eje: En relación con

Más detalles

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 1 / 174 Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 2 / 174 Nueva Jersey, Centro de Enseñanza y Aprendizaj Matemáticas Iniciativa Progresista Este material está

Más detalles

1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción:

1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción: TEMA 8. PROPORCIONALIDAD NUMERICA 1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción: 4 5 8 7 12 15 16 14 8 10 80 70 2. Indica qué proporciones son ciertas: 4 10 8 20

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

BLOQUE Entra a internet a la dirección para entrar al sitio donde diste de alta tu página.

BLOQUE Entra a internet a la dirección  para entrar al sitio donde diste de alta tu página. Algoritmo 1 BLOQUE 5 1. Entra a internet a la dirección www.actiweb.es/index.html, para entrar al sitio donde diste de alta tu página. 2. Estando en actiweb.es escribe el nombre de tu usuario y contraseña,

Más detalles

Recta s. D Semirrecta de origen D

Recta s. D Semirrecta de origen D 58 CAPÍTULO 12: FIGURAS PLANAS. POLÍGONOS, CÍRCULO Y CIRCUNFERENCIA. TEORÍA. Matemáticas 1º y 2º de ESO 1. ELEMENTOS DEL PLANO 1.1. Puntos, rectas, semirrectas, segmentos. Imagina que cada uno de los límites

Más detalles

Siendo α, x, c los valores que se desean transformar.

Siendo α, x, c los valores que se desean transformar. 7.1. ÁNGULOS CAPÍTULO VII GEOMETRÍA 7.1.1. DEFINICIÓN Se llama ángulo al conjunto de puntos formados por la unión de dos rayos no colineales que tienen el mismo punto de origen. A los dos rayos se les

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10 UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso 2013-14 NIVEL: 3º DE PRIMARIA TEMAS: 5-10 OBJETIVOS DIDÁCTICOS CONTENIDOS Reconocer líneas rectas, líneas curvas abiertas y cerradas,

Más detalles

GOOGLE DRIVE: HOJA DE CÁLCULO

GOOGLE DRIVE: HOJA DE CÁLCULO GOOGLE DRIVE: HOJA DE CÁLCULO Hola! Soy Ximena y te mostraré cómo elaborar una presentación utilizando el editor de presentaciones de Google Drive, que encuentras en Internet. Primero entra a la página

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

RECTAS Y ÁNGULOS. Una recta divide a un plano en dos partes llamadas semiplanos. Un punto divide a una recta en dos partes llamadas semirrectas.

RECTAS Y ÁNGULOS. Una recta divide a un plano en dos partes llamadas semiplanos. Un punto divide a una recta en dos partes llamadas semirrectas. RECTAS Y ÁNGULOS Una recta divide a un plano en dos partes llamadas semiplanos. Un punto divide a una recta en dos partes llamadas semirrectas. Segmento es la parte de recta comprendida entre dos puntos.

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles