INTERACCION DE LA RADIACION CON LA MATERIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERACCION DE LA RADIACION CON LA MATERIA"

Transcripción

1 Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba las reacciones nucleares, es el de las interacciones producidas por los fotones y partículas (agrupados bajo la denominación común de radiación) cuando inciden sobre la materia e interactúan con los núcleos o con los electrones atómicos, lo que se conoce como interacción de la radiación con la materia. Las radiaciones que más interesan son las constituidas por neutrones y fotones (neutros eléctricamente) y las constituidas por partículas cargadas (electrones, protones, partículas alfa, etc.). La diferenciación de ambos grupos es muy importante pues los mecanismos de interacción son completamente diferentes. Las radiaciones de neutrones y fotones, debido a la gran variedad de interacciones que producen y a su capacidad de penetración en la materia, son las de mayor interés. MECANISMOS BASICOS Las partículas neutras presentan la propiedad de interactuar con los electrones atómicos (fotones) y con los núcleos (fotones y neutrones) en un solo proceso, desapareciendo luego del haz original. Las partículas cargadas, en cambio, lo hacen básicamente vía interacción coulombiana tanto con electrones como con núcleos atómicos, en procesos de múltiples etapas. Interacción de partículas cargadas con la materia La radiación puede analizarse basándose en los efectos que produce al atravesar la materia, los que dependen del tipo de radiación y de la energía de la misma. Por ejemplo, cuando la radiación, partícula o fotón, arranca uno o más electrones orbitales de los átomos de la sustancia que atraviesa se produce la ionización de los mismos. Esta ionización, relacionada con la energía de la radiación incidente, puede medirse fácilmente expresando su intensidad mediante el número de pares iónicos, o sea de pares electrón-ión positivo, formados por unidad de recorrido del haz, lo que se conoce como ionización específica. La radiación, al atravesar la materia, interactúa con ésta perdiendo energía en cada proceso de interacción. A la mínima distancia necesaria para detener la radiación se la denomina alcance. Éste es un concepto de gran utilidad para el estudio de haces de partículas cargadas que tienen un alcance bien definido en la materia ya que pierden energía en interacciones sucesivas. El número necesario de interacciones para detener las partículas depende, en una sustancia dada, de la energía inicial. En cambio la radiación electromagnética no tiene alcance definido. Los fotones sufren choques menos frecuentes y en ellos son absorbidos o dispersados del haz. Por esta razón, en lugar de hablar de alcance para este tipo de radiación se emplea el concepto de camino libre medio, o distancia que en promedio recorre un fotón antes de interactuar.

2 Pág. 2 de 11 Tipos de interacción de partículas cargadas con la materia La interacción de partículas cargadas con la materia tiene lugar a través de colisiones elásticas o inelásticas con núcleos atómicos, con electrones orbitales o con cargas libres. Se dice que se tiene una colisión elástica cuando la energía cinética total del sistema, o sea del conjunto de partículas que intervienen, se mantiene constante. En cambio la interacción es inelástica cuando esa energía no se conserva; o sea cuando parte de la misma se transforma en algún otro tipo de energía. En términos generales las partículas cargadas interaccionan con la materia por una de las cuatro alternativas siguientes: Colisión elástica con electrones atómicos Colisión elástica con núcleos Colisión inelástica con electrones atómicos Colisión inelástica con núcleos Cuando una partícula cargada atraviesa un medio se dan, con distintas probabilidades, algunos de los cuatro procesos indicados. En todos ellos la partícula pierde energía cinética ya sea cediéndola como tal a los electrones o al núcleo con el que interacciona y transformándola en energía de excitación, o convirtiéndola en radiación electromagnética (radiación de frenado). En general el principal proceso por el cual una partícula cargada pierde energía al atravesar la materia es la interacción con los electrones atómicos. Los procesos de excitación nuclear y reacciones nucleares presuponen la eliminación de partículas del haz, contribuyendo a la absorción efectiva de las mismas. Si tales mecanismos se hacen importantes en relación a las pérdidas por ionización ya no es posible definir el alcance de una partícula en el material. En estos casos la variación de intensidad en función del espesor de material atravesado viene dado por la ley exponencial ya vista I I e x donde, el coeficiente de absorción, está relacionado con las secciones eficaces. Radiación de frenado Cuando una partícula cargada con alta energía colisiona con un núcleo atómico por interacción coulombiana se pueden producir bruscas aceleraciones de acuerdo con las leyes de la electrodinámica. Estas aceleraciones darán lugar a la emisión de radiación electromagnética de espectro continuo. Este fenómeno se conoce como radiación de frenado o Bremsstrahlung y constituye un importante mecanismo de pérdida de la radiación beta. Absorción de partículas alfa Las partículas alfa, que son núcleos de Helio 4 2 He, junto con los protones 1 1 H, los deuterones 2 1 H y los tritones 3 1 H constituyen el grupo de partículas cargadas pesadas

3 Pág. 3 de 11 más comunes. Su interacción con la materia produce principalmente ionización y excitación en los átomos del absorbente, no existiendo prácticamente Bremsstrahlung. Estas partículas, emitidas por los núcleos atómicos con energías comprendidas entre los 3 y los 9 MeV son partículas no relativistas (sus velocidades están comprendidas entre 1,1 y 2,2, x 1 9 cm/s) que se absorben fácilmente en la materia. Una hoja de papel o algunos centímetros de aire bastan para absorber totalmente partículas alfa producidas en reacciones nucleares Absorción de partículas beta Las partículas beta negativas o positivas de origen nuclear, tienen velocidades que pueden llegar hasta prácticamente la velocidad de la luz. Pese a ello sus energías son menores en general que las de las partículas alfa, ya que en su mayoría no alcanzan los 4 MeV. Estas altas velocidades obliga a tratar la radiación beta en forma relativista. Las partículas beta son mucho más penetrantes que las alfa, lo que hace necesario el empleo de métodos muy distintos para las mediciones de absorción. Para tener una idea comparativa hay que tener en cuenta que una partícula alfa, de 3 MeV, tiene un alcance de 2,8 cm en aire en condiciones patrón y produce alrededor de 4 pares iónicos por mm de recorrido, mientras que una partícula beta de igual energía tiene un alcance en aire de más de 1 cm y sólo produce 4 pares iónicos por mm. El que sean tan penetrantes permite emplear absorbentes sólidos que resultan más prácticos que el aire. Interacción de la radiación electromagnética con la materia La radiación electromagnética que nos interesa desde el punto de vista de su interacción con la materia, es básicamente la radiación gamma y los rayos X. Ambas denominaciones abarcan a fotones con longitudes de onda menores que 1 Å, aunque este límite es muy elástico La única forma de interpretar adecuadamente la interacción de la radiación electromagnética con la materia es a través de su comportamiento corpuscular. El paso de la radiación electromagnética por la materia se caracteriza, como ya se vio, por una ley de absorción exponencial I x I e x donde I es la intensidad de la radiación y es el coeficiente de absorción o atenuación lineal. Una magnitud de uso común para expresar la atenuación de un haz de radiación semiespesor, o sea, el ancho de absorbente necesario para reducir la intensidad a la mitad. es el ln I I x y haciendo I 1 I 2 queda, 693 x 1/ 2 donde x 1/2 es el semiespesor.

4 Pág. 4 de 11 De la ecuación anterior surge que el coeficiente de absorción másico es, 693 x 1 / 2 Puesto que varía muy lentamente con Z, la variación (x 1/2 ) de un elemento a otro también es lenta. O sea, cuanto mayor es la densidad de un material, menor es el espesor necesario para producir una absorción dada de la radiación. Es por ello que como absorbente suelen usarse materiales pesados, por ejemplo el plomo. Existen 3 mecanismos principales de absorción de los rayos por la materia Absorción o efecto fotoeléctrico Dispersión Compton Producción de pares Cada uno de ellos puede caracterizarse por un coeficiente de absorción o por una sección eficaz. El coeficiente de absorción total,, es la suma de los coeficientes correspondientes a los tres procesos. Cada uno de los tres mecanismos predomina, para un dado material, en determinado rango de energía de la radiación incidente. La figura 1 muestra la importancia relativa de estos procesos en función de la energía de los rayos gamma y del número atómico del absorbente. 12 Z DEL ABSORBENTE EFECTO FOTOELECTRICO DOMINANTE EFECTO COMPTON DOMINANTE PRODUCCION DE PARES DOMINANTES,1,5,1, E (MeV) Figura 1 - Importancia relativa de los tres tipos principales de interacción de la radiación con la materia

5 Pág. 5 de 11 Efecto fotoeléctrico En el proceso fotoeléctrico toda la energía del fotón incidente, h, es cedida a un electrón ligado de un átomo que resulta expulsado del mismo con una energía cinética T = h - W donde W es el potencial de ionización del electrón. Este puede así salir del absorbente o, más probablemente, ser reabsorbido casi de inmediato debido al corto alcance de los electrones en un sólido. Este mecanismo de interacción de fotones con la materia es el dominante cuando la energía de los rayos es baja, (inferior a los 5 kev para el aluminio y a los 5 kev para el plomo). La sección eficaz de absorción fotoeléctrica resulta ser proporcional en primera aproximación a Z 5, o sea es fuertemente dependiente del número atómico del absorbente. Para fotones de una dada energía, este tipo de absorción es mucho mayor en materiales pesados como el plomo, que en materiales livianos como el aluminio. En resumen el efecto fotoeléctrico es sumamente importante en la absorción de radiación baja energía por materiales pesados. de Efecto Compton A medida que la energía de la radiación incidente aumenta, su longitud de onda decrece y hay una mayor tendencia a interactuar con los electrones individuales y no con el átomo en su conjunto como en el caso del efecto fotoeléctrico. Los fotones muy energéticos ven a los electrones orbitales exteriores, débilmente ligados, prácticamente como partículas libres y la interacción puede considerarse como una colisión elástica entre un fotón y un electrón libre. Por lo explicado anteriormente, el fotón no puede absorberse totalmente existiendo por lo tanto un fotón dispersado que se mueve en dirección distinta a la del cuanto original con una energía y una cantidad de movimiento también diferentes. La conservación de estas magnitudes para el sistema en su conjunto la garantiza el electrón que dispersa el fotón retrocediendo con la velocidad y en la dirección apropiadas. Este proceso, conocido como efecto Compton, constituye el mecanismo de absorción más importante para radiación con energías entre los,5 y los 1 MeV. Una característica destacada del mismo es que la radiación difundida tiene una longitud de onda que depende del ángulo de difusión y que es mayor que la del haz incidente. La figura 2 muestra un esquema representativo de la interacción Compton.

6 m Instituto Balseiro Pág. 6 de 11 h = h + 1/2 mv 2 h h 1/2 mv 2 m c 2 ( -1) h /c a j k h /c (b) b mv La energía del fotón dispersado es Figura 2 - Interacción Compton h h h 1 1 cos 2 m c El coeficiente másico de absorción Compton resulta igual a: N Z A comp con una variación respecto a Z que resulta lenta. Para los elementos livianos aproximadamente igual a 1 2, por lo que dada de los fotones. Z A resulta prácticamente constante para una energía En un absorbente grueso, algunos fotones que han sufrido dispersión pueden ser dispersados nuevamente, produciéndose un proceso de dispersión múltiple. Este aspecto tiene importancia en el cálculo de blindajes. es Creación de pares Este tercer mecanismo de absorción de la radiación electromagnética por la materia aparece cuando la energía de los fotones incidentes alcanza al doble de la energía en reposo de los electrones, o sea cuando

7 Pág. 7 de 11 h 2, 511MeV 1, 22 MeV creciendo a partir de allí su importancia con el aumento de la energía de la radiación gamma. Consiste en la creación de un par electrón-positrón a partir de un fotón que desaparece en la interacción. Este proceso debe tener lugar en el campo eléctrico existente en la vecindad de un núcleo al que se le entrega cierta energía de retroceso y cierta cantidad de movimiento de forma tal que se cumplan los respectivos principios de conservación. La sección eficaz resulta proporcional a Z 2 lo que hace que para fotones de cierta energía la formación de pares aumenta rápidamente con el número atómico. O sea, este proceso tiene importancia a energías elevadas y con elementos pesados. Cuando E = 4,75 MeV la contribución de la formación de pares y del efecto Compton al coeficiente total de absorción se iguala. A partir de allí el primer mecanismo predomina. La creación de pares está estrechamente ligada con la aniquilación electrón-positrón. Cuando este último es creado va perdiendo velocidad por colisiones sucesivas con los átomos hasta quedar prácticamente en reposo. En ese momento puede interactuar con un electrón que se encuentra en el mismo estado desapareciendo ambas partículas y dando lugar a dos fotones, cada uno de,511 MeV, que se mueven en direcciones opuestas. Esta radiación secundaria, llamada radiación de aniquilamiento, acompaña normalmente la absorción de rayos gamma por la materia. Absorción de la radiación electromagnética Resumiendo, la radiación electromagnética es atenuada por la materia al ir eliminándose fotones del haz original en procesos únicos, principalmente por cualquiera de los tres mecanismos antes mencionados. El coeficiente de absorción total,, que da la probabilidad de que un fotón interactúe con la materia por unidad de recorrido del haz, será igual a la suma de los coeficientes de atenuación parciales que dan esa probabilidad según sea la interacción por efecto fotoeléctrico ( ), por dispersión Compton ( ) o por creación de pares (X). cm 1 La figura 3 indica cómo contribuye cada coeficiente de absorción al total del plomo en función de la energía de los fotones. Se ve que a energías bajas y en materiales de alto número atómico predomina el efecto fotoeléctrico, que para energías intermedias (algo inferiores a 1 MeV) y cualquier Z la mayor parte de la atenuación se debe al efecto Compton y que para grandes energías y elementos de alto número atómico prevalece la creación de pares.

8 Pág. 8 de 11 COEFICIENTE DE ABSORCION ( cm -1 ) 1,6 1,4 1,2 1,,8,6,4 FOTOELEC TRICO,2 TOTAL PARES COMPTON,,1 1, ENERGIA DE LOS FOTONES ( h /m c 2 ) Figura 3 - Coeficiente de absorción y contribución de cada mecanismo de absorción en Pb en función de la energía de los fotones El coeficiente másico de absorción total será igual a la suma de los coeficientes másicos parciales N A que resultan ser más importantes que los coeficientes lineales ya que son independientes de la densidad y del estado (gaseoso, líquido o sólido) del absorbente. A diferencia de las partículas alfa y beta que producen gran ionización primaria en sucesivas interacciones de las partículas con el medio, los rayos crean sólo un par iónico por colisión y únicamente en el caso de interacciones fotoeléctricas o Compton. Son los fotoelectrones, los electrones de retroceso y los electrones y positrones surgidos en la creación de pares los que producen gran ionización y excitación al ser frenados por la materia, por lo que para la radiación electromagnética, la ionización primaria resulta despreciable frente a la secundaria. Absorción de energía por la materia No toda la energía de la radiación incidente es efectivamente absorbida por el medio. En el efecto fotoeléctrico, el fotoelectrón se lleva casi toda la energía del fotón, la que es entregada al medio fundamentalmente por ionización. El remanente, equivalente a la energía de ionización del electrón arrancado es también entregada al medio. Por esto en el proceso fotoeléctrico se acepta que toda la energía del rayo es transferida al medio por ionización o excitación. En cambio en la dispersión Compton es el electrón de rechazo el que entrega su energía al medio mientras que el fotón dispersado, de menor energía que el inicial, puede no hacerlo. De ahí que sea útil en este caso separar el coeficiente de absorción en dos, como se dijo antes: un coeficiente de dispersión y uno de absorción

9 Pág. 9 de 11 = s + a Por último en la creación de pares, sólo la energía cinética del electrón y del positrón formados es transferida al medio por ionización o excitación. La otra parte de la energía original del fotón (2m c 2 ) queda como energía en reposo de ambas partículas. La aniquilación del positrón da lugar a dos fotones de,511 MeV cada uno, que se consideran radiación dispersada, similar a la del efecto Compton Interacción de neutrones con la materia La interacción de neutrones con la materia difiere fundamentalmente de la interacción que tienen las partículas cargadas y los rayos gamma. Las interacciones entre neutrones y núcleos se dividen en dos grandes grupos: interacciones de dispersión y absorción. En las primeras, el resultado de la interacción es el intercambio de energía entre las partículas que colisionan, permaneciendo libre el neutrón luego del proceso. En las reacciones de absorción el neutrón es retenido en el núcleo formándose una nueva partícula. Desde el punto de vista de los reactores nucleares las reacciones de absorción más importantes son las de captura radiactiva (con formación de un núcleo compuesto y posterior emisión radiactiva) y las de fisión. Todas las reacciones de absorción, al igual que la mayor parte de las reacciones de dispersión, se dan a través del mecanismo de formación del núcleo compuesto excitado ya explicado anteriormente. Cuando el núcleo compuesto es formado por la acción de neutrones incidentes pueden darse con posterioridad 3 alternativas: Expulsión de una partícula que puede ser un neutrón (dispersión), un protón, una partícula alfa, un electrón o un positrón, etc, emisión de un fotón gamma, y fisión del núcleo. Captura radiactiva Se denominan de este modo a las reacciones del tipo (n ). Se producen cuando el núcleo absorbe el neutrón y se forma un núcleo compuesto que queda excitado. El núcleo excitado emite el excedente de energía en forma de radiación gamma. El núcleo resultante puede ser radiactivo o no. En el primer caso lo más probable es que sea emisor beta negativo buscando la estabilidad alterada por la modificación de la relación A Z causada por el neutrón absorbido. Prácticamente todos los átomos, del Hidrógeno (H) al Uranio (U), exhiben captura radiactiva. En los materiales fisibles este proceso es competitivo con el de fisión.

10 Pág. 1 de 11 Dispersión inelástica Cuando un neutrón rápido experimenta dispersión inelástica, en una primera etapa es absorbido por el núcleo formándose el núcleo compuesto excitado. Posteriormente es emitido un neutrón de energía cinética menor, quedando el blanco en un estado excitado. O sea, parte o toda la energía de movimiento del neutrón incidente es empleada en la excitación del núcleo blanco, el que a continuación emite uno o varios fotones denominados rayos de dispersión inelástica. En estos procesos la energía cinética del sistema no se conserva y como la energía cinética del blanco es en general despreciable en comparación con la del neutrón incidente, en una interacción inelástica la energía del neutrón incidente debe ser mayor que la energía del primer nivel excitado. Para elementos de número de masa medio alto, la energía mínima de excitación es del orden de,1 MeV. Al disminuir la masa, en general tiende a aumentar la energía de excitación, por lo que se requerirán neutrones de más energía para producir este tipo de dispersión (de unos 6 MeV para el oxígeno por ejemplo). Algunos núcleos pesados (plomo, bismuto) se comportan en este sentido como elementos livianos. La probabilidad de que tenga lugar dispersión inelástica aumenta con la energía en comparación con la probabilidad de captura radiactiva u otras alternativas posteriores a la absorción del neutrón incidente. Esto ocurre porque a medida que aumenta la energía de excitación disminuye la separación entre los niveles nucleares, o sea hay más estados excitados por intervalo de energía para ser ocupados tras la expulsión de un neutrón, a lo que corresponde una mayor probabilidad de que el núcleo compuesto emita un neutrón. Dispersión elástica Los neutrones con energías menores a,1 MeV no pueden perder energía por colisiones inelásticas por lo que se vio anteriormente. Para el caso de interacciones de dispersión elástica la única condición es que satisfaga el principio de conservación de la energía cinética sin que existan limitaciones en cuanto a la forma en que se distribuye esta energía entre el neutrón y el núcleo. Hay dos alternativas para este tipo de reacción: la formación o no del núcleo compuesto. En ambos casos el núcleo bombardeado permanece en su estado fundamental y todo el proceso puede analizarse como la interacción de dos partículas clásicas donde se conserva la energía y la cantidad de movimiento. Tras un número suficiente de colisiones elásticas, la velocidad de los neutrones se reduce de tal forma que su energía cinética media se hace aproximadamente igual a la de los átomos del medio dispersante, que depende de la temperatura, y se llama energía térmica. Un neutrón en equilibrio térmico con los átomos del medio (llamado neutrón térmico) recibe y entrega energía alternativamente en colisiones con los núcleos del material pero de forma tal que la energía media de un gran número de ellos se mantiene constante. Es así que los materiales más efectivos para frenar los neutrones hasta energías térmicas son los compuestos por un gran número de átomos de bajo peso atómico, como el hidrógeno. Estos materiales se llaman moderadores y serán más efectivos cuanto menor sea su sección eficaz de

11 Pág. 11 de 11 captura para los neutrones. Además cuanto más livianos sean los átomos del moderador, mayor energía les será transferida por los neutrones por interacción y menor será el número de choques necesarios para termalizar los neutrones. Atenuación de neutrones en la materia La ecuación que describe el proceso de atenuación de un haz de neutrones por la materia es, como se vio en el capítulo de Reacciones Nucleares, I x I e x Siendo I (x) el número de neutrones que en la unidad de tiempo atraviesan la unidad de área luego de recorrer una distancia x dentro de la sustancia, e I este valor para x=. es la sección eficaz macroscópica, que, como se vio anteriormente es = N donde N es el número de átomos por cm 3 y, la sección eficaz microscópica, es la suma de las secciones eficaces microscópicas de los distintos procesos que pueden tener lugar. Para el caso de los neutrones T = S + C + f donde S, C y f son las secciones eficaces microscópicas de dispersión, captura y fisión respectivamente.

Caracterización de un contador Geiger. Absorción de radiación por materiales. 1.- Curva de respuesta del contador Geiger

Caracterización de un contador Geiger. Absorción de radiación por materiales. 1.- Curva de respuesta del contador Geiger Caracterización de un contador Geiger. Absorción de radiación por materiales Física Nuclear y de Partículas y Estructura Nuclear 1.- Curva de respuesta del contador Geiger Un contador Geiger-Müller es

Más detalles

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI)

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) Llaneza, Natalia Orso, josé A. Resumen: Se utilizan varias muestras radiactivas de Au 198 para obtener su periodo de semidesintegración

Más detalles

La radiación es el transporte o la propagación de energía en forma de partículas u

La radiación es el transporte o la propagación de energía en forma de partículas u La radiación es el transporte o la propagación de energía en forma de partículas u ondas. Si la radiación es debida a fuerzas eléctricas o magnéticas se llama radiación electromagnética. Pero la materia

Más detalles

Espectrometría de Radiación gamma

Espectrometría de Radiación gamma Espectrometría de Radiación gamma B.C. Paola Audicio Asistente de Radiofarmacia, CIN Fundamento La espectrometría gamma consiste en la obtención del espectro de las radiaciones gamma emitidas por los radionucleidos.

Más detalles

Curso Básico de Metodología de los Radisótopos - C.I.N.

Curso Básico de Metodología de los Radisótopos - C.I.N. Curso Básico de Metodología de los Radisótopos - C.I.N. Inestabilidad nuclear y Modos de decaimiento Dra. Q.F. Lourdes Mallo FUERZAS NUCLEARES Para que el núcleo sea estable debe existir una fuerza atractiva

Más detalles

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química?

Actividad: Cuál es la diferencia entre una reacción nuclear y una reacción química? Cuál es la diferencia entre una reacción nuclear y una reacción química? Nivel: 4º medio Subsector: Ciencias químicas Unidad temática: Actividad: Cuál es la diferencia entre una reacción nuclear y una

Más detalles

Interacción de neutrones con la materia. Laura C. Damonte 2014

Interacción de neutrones con la materia. Laura C. Damonte 2014 Interacción de neutrones con la materia Laura C. Damonte 2014 Interacción de neutrones con la materia La interacción de los neutrones con la materia tiene interés tanto experimental y teórico como también

Más detalles

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO 1. Un haz de luz monocromática de longitud de onda en el vacío 450 nm incide sobre un metal cuya longitud de onda umbral, para

Más detalles

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD

CONCEPTOS BASICOS SOBRE RADIACTIVIDAD Campaña Energía Marzo 2005 CONCEPTOS BASICOS SOBRE RADIACTIVIDAD 1. Radiactividad natural y artificial La radioactividad es un fenómeno natural por el cual ciertos átomos cambian su estructura. La comprensión

Más detalles

APUNTES DE PROTECCIÓN RADIOLÓGICA

APUNTES DE PROTECCIÓN RADIOLÓGICA APUNTES DE PROTECCIÓN RADIOLÓGICA PROFESOR LUIS VALLEJO DELGADO DEPARTAMENTO DE FÍSICA CENTRO REGIONAL DE ESTUDIOS Y EDUCACIÓN AMBIENTAL (CREA) UNIVERSIDAD DE ANTOFAGASTA INDICE INTRODUCCIÓN I. LA ESTRUCTURA

Más detalles

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev. MECANISMOS DE CONDUCCION ELECTRICA EN GASES Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla de vidrio, la cual está ocupada únicamente

Más detalles

DESARROLLO DE UN SISTEMA DE VERIFICACIÓN DE TRATAMIENTOS EN RADIOTERAIA CON MODULACIÓN DE INTENSIDAD

DESARROLLO DE UN SISTEMA DE VERIFICACIÓN DE TRATAMIENTOS EN RADIOTERAIA CON MODULACIÓN DE INTENSIDAD DESARROLLO DE UN SISTEMA DE VERIFICACIÓN DE TRATAMIENTOS EN RADIOTERAIA CON MODULACIÓN DE INTENSIDAD Servicio de Publicaciones de la Universidad de Navarra ISBN 84-8081-084-X ÍNDICE Capítulo 1: Introducción

Más detalles

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA.

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. CAPÍTULO 2 INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. La radiación ionizante es aquella capaz de excitar y ionizar átomos en la materia con que interactúa. Entre las radiaciones ionizantes tenemos

Más detalles

Solución de los problemas del Capítulo 1

Solución de los problemas del Capítulo 1 Nota: los valores de las constantes que puede necesitar para los cálculos están dados en la bibliografía de referencia. Complete la siguiente tabla Qué información mínima se necesita para caracterizar

Más detalles

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A

ÁREA ACADÉMICA DE QUÍMICA INTRODUCCIÓN A LA SEGURIDAD RADIOLÓGICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE QUÍMICA MONOGRAFÍA QUE PARA OBTENER EL TITULO DE LICENCIADO EN QUÍMICA P R E S E N T A JOSÉ LUIS

Más detalles

LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS APUNTES DE INTRODUCCIÓN ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA 2 - DETECTORES DE RADIACIÓN

LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS APUNTES DE INTRODUCCIÓN ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA 2 - DETECTORES DE RADIACIÓN LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA - PARTÍCULAS PESADAS CARGADAS - ELECTRONES - RAYOS GAMMA - COMPARATIVA Y NEUTRONES 2 - DETECTORES DE RADIACIÓN APUNTES

Más detalles

Física Nuclear y Reacciones Nucleares

Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares Slide 2 / 34 Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa de un neutrón

Más detalles

Las radiaciones ionizantes en aplicaciones hospitalarias

Las radiaciones ionizantes en aplicaciones hospitalarias Las radiaciones ionizantes en aplicaciones hospitalarias Las aplicaciones hospitalarias de las radiaciones ionizantes pueden dividirse en tres grandes grupos: Diagnóstico Rx, Tomografía y Med.Nuclear Laboratorio

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm)

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm) Soluciones Problemas Capítulo 3: Mecánica cuántica I ) (a) La distribución espectral viene dada por R(λ) (/4)cu(λ), donde u(λ) es la densidad de energía radiada que a su vez viene dada por la ley de Planck:

Más detalles

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO El informe sobre los objetivos y contenidos no alcanzados se ha elaborado teniendo como referencia la ORDEN de 15 de diciembre de 2008, (Artículo 7).por la que se regula la evaluación de bachillerato en

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

15/03/2010. Espectrofotometría INTRODUCCIÓN

15/03/2010. Espectrofotometría INTRODUCCIÓN Espectrofotometría Daniel Olave Tecnología Médica 2007 INTRODUCCIÓN Espectrofotometría Es la medida de la cantidad de energía radiante absorbida por las moléculas a longitudes de onda específicas. La espectrofotometría

Más detalles

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

AUTOEVALUACIÓN. Elaborada por: Prof. Yuri Posadas Velázquez

AUTOEVALUACIÓN. Elaborada por: Prof. Yuri Posadas Velázquez AUTOEVALUACIÓN Elaborada por: Prof. Yuri Posadas Velázquez Instrucciones: Después de haber estudiado la guía y resuelto las actividades de aprendizaje, procede a resolver esta sección. Sólo hasta que hayas

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA. 1. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen.

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA. 1. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen. Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA INTRODUCCIÓN RECOMENDACIONES. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen. 2. Se hará otra lista con las incógnitas.

Más detalles

TEMA 4 EL HAZ DE RADIACION

TEMA 4 EL HAZ DE RADIACION TEMA 4 EL HAZ DE RADIACION CSN- 2009 ÍNDICE 1. INTRODUCCIÓN 2. ESPECTRO DE RAYOS X 3. FACTORES QUE MODIFICAN LA FORMA DEL ESPECTRO DE RAYOS X 3.1. Intensidad de corriente y tiempo de exposición 3.2. Material

Más detalles

Magnitudes Dosimétricas

Magnitudes Dosimétricas Magnitudes Dosimétricas Septiembre - 2014 Lic. Leandro Urrutia -UNSAM- Antecedentes Descubrimiento de los rayos X por Roentgen 1895. Como consecuencia del trabajo con radiaciones ionizantes algunos operadores

Más detalles

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos.

ÁTOMOS Y MOLÉCULAS. El modelo atómico de Dalton no logra explicar los fenómenos eléctricos. ÁTOMOS Y MOLÉCULAS Un modelo científico es una representación aproximada de la realidad que es capaz de explicar todas las observaciones realizadas hasta el momento sobre un fenómeno determinado y que

Más detalles

TERMODINAMICA 1 Conceptos Basicos

TERMODINAMICA 1 Conceptos Basicos TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

ESPECTROSCOPÍA ALFA. 1. Interacción de las partículas α con la materia

ESPECTROSCOPÍA ALFA. 1. Interacción de las partículas α con la materia ESPECTROSCOPÍA ALFA El objetivo de esta práctica es adquirir y analizar el espectro energético de las partículas alfa emitidas por distintos isótopos radiactivos. Se empleará un detector de semiconductor

Más detalles

Las estructura electrónica de los átomos

Las estructura electrónica de los átomos Las estructura electrónica de los átomos Al preguntarnos por las diferencias entre las propiedades químicas y físicas de los elementos, así como, su forma de enlazarse y la forma en la cual emiten o absorben

Más detalles

Química Biológica I TP 1: ESPECTROFOTOMETRIA

Química Biológica I TP 1: ESPECTROFOTOMETRIA Química Biológica I TP 1: ESPECTROFOTOMETRIA OBJETIVOS: - Reforzar el aprendizaje del uso del espectrofotómetro. - Realizar espectro de absorción de sustancias puras: soluciones de dicromato de potasio.

Más detalles

GUÍA DETALLADA DE LA DEMOSTRACIÓN

GUÍA DETALLADA DE LA DEMOSTRACIÓN DEMO 6 Difracción de electrones GUÍA DETALLADA DE LA DEMOSTRACIÓN Introducción La naturaleza cuántica de los sistemas físicos, descritos por ondas de probabilidad, implica una relación entre su longitud

Más detalles

CAPÍTULO 4 INTERACCIÓN DE LA RADIACIÓN CON EL TEJIDO BIOLÓGICO

CAPÍTULO 4 INTERACCIÓN DE LA RADIACIÓN CON EL TEJIDO BIOLÓGICO CAPÍTULO 4 INTERACCIÓN DE LA RADIACIÓN CON EL TEJIDO BIOLÓGICO El tejido biológico está formado por células, la radiación al interaccionar con el tejido puede tener como blanco de interacción cualquiera

Más detalles

Calculo de Dosis 3.5 Monte Carlo

Calculo de Dosis 3.5 Monte Carlo Calculo de Dosis 3.5 Monte Carlo Dr. Willy H. Gerber Instituto de Fisica Universidad Austral Valdivia, Chile Objetivos: Comprender la forma como se calcula la dosis empelando el método de Monte Carlo.

Más detalles

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Tema 6: Ondas Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Propiedad del sistema velocidad de propagación Tiempo 1 Tiempo 2 Tiempo 3 Posición espacial Onda periódica: El valor

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

Horacio S. Wio Beitelmajer (a)

Horacio S. Wio Beitelmajer (a) FISICA ESTADISTICA ESTRELLAS: ENANAS BLANCAS Horacio S. Wio Beitelmajer (a) (a) Electronic address: wio@ifca.unican.es http://www.ifca.unican.es/users/wio/ Enanas Blancas No corresponde al estudio de ni

Más detalles

Introducción a la Física de la Radioterapia

Introducción a la Física de la Radioterapia Introducción a la Física de la Radioterapia En el presente texto se hace un breve repaso de los conceptos relacionados a la estructura de la materia y la interacción de la radiación ionizante con ella.

Más detalles

mediante contador Geiger-Müller.

mediante contador Geiger-Müller. Prácticas de Laboratorio: Detección de radiación mediante contador Geiger-Müller. 1. Introducción El contador Geiger-Müller es un detector de radiación que contiene un gas que se ioniza al paso de la misma

Más detalles

Tema 11: Física Cuántica

Tema 11: Física Cuántica Tema 11: Física Cuántica 11.1 Introducción. 11. Limitaciones de la Física Clásica. 11.3 Efecto fotoeléctrico. 11.4 Dualidad onda-corpúsculo; hipótesis de De Broglie 11.5 Principio de indeterminación de

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

Generadores de Radiación Ionizante Formulas & Ejercicios

Generadores de Radiación Ionizante Formulas & Ejercicios Generadores de Radiación Ionizante Formulas & Ejercicios Dr. Willy H. Gerber Instituto de Fisica Universidad Austral Valdivia, Chile Objetivos: Dominar los modelos asociados a la generación de radiación

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s):

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s): CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA Laboratorio de equilibrio y cinética Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Conocer y aplicar los fundamentos

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación

Más detalles

PAAU (LOXSE) Setembro 2002

PAAU (LOXSE) Setembro 2002 PAAU (LOXSE) Setembro 00 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica

Más detalles

SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA. Convenio IPEN UNI

SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA. Convenio IPEN UNI SEGUNDA ESPECIALIZACIÓN PROFESIONAL EN PROTECCIÓN RADIOLÓGICA Convenio IPEN UNI INTRODUCCIÓN La Universidad Nacional de Ingeniería, ofrece a través de la Facultad de Ciencias, la Segunda Especialización

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 01-013 CONVOCATORIA: JUNIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción

Más detalles

FÍSICA NUCLEAR NÚCLEO ATÓMICO. desintegración. desintegración

FÍSICA NUCLEAR NÚCLEO ATÓMICO. desintegración. desintegración FÍSIC NUCLER En esta Unidad analizaremos algunos fenómenos que tienen lugar en el núcleo de los átomos. Después de revisar las partículas que forman el núcleo atómico, se presentan las características

Más detalles

Curso de Radiactividad y Medioambiente clase 4

Curso de Radiactividad y Medioambiente clase 4 Curso de Radiactividad y Medioambiente clase 4 Departamento de Física, Facultad de Ciencias Exactas - UNLP Instituto de Física La Plata CONICET Calle 49 y 115 La Plata Interacción de la radiación con la

Más detalles

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR INTRODUCCIÓN La fluorescencia es un proceso de emisión en el cual las moléculas son excitadas por la absorción de radiación electromagnética. Las especies excitadas

Más detalles

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén 1. Movimiento ondulatorio 2. La radiación electromagnética (REM) 3. El espectro electromagnético 4. Terminología

Más detalles

CURSO DE CAPACITACIÓN PARA PERSONAL DE OPERACIÓN EN INSTALACIONES DE RADIODIAGNÓSTICO GENERAL

CURSO DE CAPACITACIÓN PARA PERSONAL DE OPERACIÓN EN INSTALACIONES DE RADIODIAGNÓSTICO GENERAL CURSO DE CAPACITACIÓN PARA PERSONAL DE OPERACIÓN EN INSTALACIONES DE RADIODIAGNÓSTICO GENERAL Autor: José Alfredo Piera Pellicer 1 ESTRUCTURA DEL ATOMO.- Los átomos están formados por dos zonas bien diferenciadas:

Más detalles

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones

Física Nuclear y Reacciones Nucleares Problemas de Práctica Multiopción 1 El núcleo atómico se compone de: A electrones Slide 1 / 58 Física Nuclear y Reacciones Nucleares Problemas de Práctica Slide 2 / 58 Multiopción 1 l núcleo atómico se compone de: Slide 3 / 58 electrones protones protones y electrones protones y neutrones

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Universidad Central de Venezuela Facultad de Ciencias Escuela de Física DISEÑO Y EVALUACIÓN DOSIMÉTRICA DE UN MANIQUÍ PARA TRATAMIENTO DE MAMA CON BRAQUITERAPIA INTERSTICIAL (HDR) Heyward N. Solarte García

Más detalles

Colisión de dos partículas

Colisión de dos partículas Capítulo 14 Colisión de dos partículas 14.1 Descripción de un proceso de colisión en el sistema centro de masa En el capítulo anterior describimos la colisión de un proyectil contra un centro de fuerza

Más detalles

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN PROBLEMAS: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones

Más detalles

ESTUDIO DE DPM PARA PLANIFICACION DE TRATAMIENTOS DE RADIOTERAPIA INTRAOPERATORIA

ESTUDIO DE DPM PARA PLANIFICACION DE TRATAMIENTOS DE RADIOTERAPIA INTRAOPERATORIA ESTUDIO DE DPM PARA PLANIFICACION DE TRATAMIENTOS DE RADIOTERAPIA INTRAOPERATORIA Con este trabajo se pretende avanzar en el conocimiento del programa DPM que nos permite realizar simulaciones de radioterapia

Más detalles

2. DESARROLLO EXPERIMENTAL

2. DESARROLLO EXPERIMENTAL otro lado, también ha crecido el interés por el desarrollo de materiales en forma de película delgada con propiedades termoluminiscentes. Las películas de carbono nitrurado depositadas por la técnica de

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

XXIV Reunión Anual de la SMSR y XVII Congreso Anual de la SNM/XXIV SMSR Annual Meeting XVII Annual SNM Congress Acapulco México, del 3 al 8 de Septiembre 2006/ Acapulco Mexico, September 3-8., 2006 Importancia

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. T4. Magnét. T3. Eléctr.

CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. T4. Magnét. T3. Eléctr. I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bachillerato. Problemas y cuestiones de Selectividad - 1 - CUESTIONES Y PROBLEMAS APARECIDOS EN LOS EXÁMENES DE SELECTIVIDAD. DISTRIBUCIÓN DE LAS

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010)

C. Trallero-Giner CINVESTAV-DF (2010) Dispersión Raman en Sólidos I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales C. Trallero-Giner CINVESTAV-DF (2010) III. Aplicaciones

Más detalles

Aplicación de Simulaciones Monte Carlo para el análisis de información CT y su uso en PET y Dosimetría.

Aplicación de Simulaciones Monte Carlo para el análisis de información CT y su uso en PET y Dosimetría. Universidad Complutense de Madrid Facultad de Ciencias Físicas Dpto. de Física Atómica, Molecular y Nuclear Aplicación de Simulaciones Monte Carlo para el análisis de información CT y su uso en PET y Dosimetría.

Más detalles

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros Bases Físicas del Ultrasonido Dr. Arturo Contreras Cisneros Introducción El ultrasonido se introdujo en la medicina a principios de 1960, como método de diagnóstico por imagen Durante la década de los

Más detalles

LABORATORIO DE NUCLEAR GUIÓN DE PRÁCTICA ALFA GUIÓN DEL LABORATORIO

LABORATORIO DE NUCLEAR GUIÓN DE PRÁCTICA ALFA GUIÓN DEL LABORATORIO GUIÓN DEL LABORATORIO 0. - ESTUDIO TEÓRICO DE LA CADENA DE DESINTEGRACIONES DEL 226 Ra Antes de iniciar el estudio experimental del espectro de emisión alfa de una muestra que contiene 226 Ra, conviene

Más detalles

Tema 4 Difusión en estado sólido

Tema 4 Difusión en estado sólido Tema 4 Difusión en estado sólido Sabemos que los materiales están formados por átomos. Se ha modelado el agrupamiento de los átomos como un conjunto de esferas sólidas ordenadas siguiendo un patrón definido.

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 2. La energía 1 ÍNDICE 1. Introducción 2. Tipos de Interacciones 3. Fuerzas 4. Tipos de Energía 5. Formas

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN 1. OBJETIVOS. Conocer y aplicar la ley de Lambert - Beer Determinar la concentración de una solución por espectrofotometría.

Más detalles

CURSO DE RADIOPROTECCION. Msc. Gerardo Lázaro Moreyra 2008. Instituto Peruano de Energía Nuclear. IPEN : Trabajando en las fronteras de la ciencia

CURSO DE RADIOPROTECCION. Msc. Gerardo Lázaro Moreyra 2008. Instituto Peruano de Energía Nuclear. IPEN : Trabajando en las fronteras de la ciencia Instituto Peruano de Energía Nuclear CURSO DE RADIOPROTECCION Msc. Gerardo Lázaro Moreyra 2008 Diapositiva 1 IPEN, Noviembre 2003 De donde viene las radiaciones? Las propiedades químicas de un átomo son

Más detalles

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 CA3 Actividades Cuál es tu temperatura favorita? Si alguien te preguntase a qué temperatura te gustaría vivir, seguramente elegirías

Más detalles

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina INTRODUCCIÓN En este trabajo se muestra la manera de obtener las fórmulas de

Más detalles

Interacción Radiación-Materia Conceptos Básicos

Interacción Radiación-Materia Conceptos Básicos Conceptos Básicos Técnicas Experimentales Avanzadas 5 febrero 2013 Índice Qué es la radiación ionizante Fuentes de la radiación ionizante Mecanismos de interacción de: - partículas cargadas pesadas - partículas

Más detalles

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN Implementación de un sistema básico para Espectroscopia de gases atómicos Heriberto Peña Pedraza Facultad de Ciencias Básicas. Departamento de Física Universidad de Pamplona Grupo de Investigaciones Ópticas

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

1. Energía y momentum

1. Energía y momentum Teoría de la Relatividad Especial. Segunda parte. Víctor Muñoz, noviembre 2006 1. Energía y momentum 1.1. Introducción Hasta el momento, hemos estudiado la Relatividad Especial a través de los gráficos

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS Departamento de Física Aplicada

UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS Departamento de Física Aplicada UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS Departamento de Física Aplicada ESTUDIO Y DESARROLLO DE UN NUEVO DISEÑO DE ESPECTRÓMETRO MULTIDETECTOR BASADO EN DOSÍMETROS DE TERMOLUMINISCENCIA PARA

Más detalles

SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO. Alba Cortés Coego Iria Míguez González. Aulas Tecnópole 4º E.S.O.

SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO. Alba Cortés Coego Iria Míguez González. Aulas Tecnópole 4º E.S.O. 2012 SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO ENTORNO Aulas Tecnópole Alba Cortés Coego Iria Míguez González 4º E.S.O. SISTEMA DE DETECCIÓN Y ESTUDIO DEL NIVEL DE RADIACIÓN DE NUESTRO

Más detalles

SEGURIDAD E HIGIENE INDUSTRIAL SESION 4 SEGURIDAD DE LAS OPERACIONES

SEGURIDAD E HIGIENE INDUSTRIAL SESION 4 SEGURIDAD DE LAS OPERACIONES SEGURIDAD E HIGIENE INDUSTRIAL SESION 4 SEGURIDAD DE LAS OPERACIONES OBJETIVO: Identificar la importancia de los conceptos del Riesgo en el manejo de materiales y sustancias radioactivas. También el reconocer

Más detalles

Descripción de los pórticos de detección para la vigilancia radiológica de los cargamentos de materiales metálicos

Descripción de los pórticos de detección para la vigilancia radiológica de los cargamentos de materiales metálicos 1 Descripción de los pórticos de detección para la vigilancia radiológica de los cargamentos de materiales metálicos JORNADA SOBRE LOS RIESGOS RADIOLÓGICOS EN LAS INDUSTRIAS DE CHATARRAS METÁLICAS (28

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

Microscopio Electrónico de Barrido (SEM)

Microscopio Electrónico de Barrido (SEM) Microscopio Electrónico de Barrido (SEM) El microscopio electrónico de barrido - SEM- es el mejor método adaptado al estudio de la morfología de las superficies. A diferencia de un microscopio óptico que

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 3: MAGNITUDES Y UNIDADES RADIOLÓGICAS EMA 3: MAGNIUDES Y UNIDADES RADIOLÓGICAS CSN-2014 ABLA DE CONENIDOS 1.- INRODUCCIÓN... 3 2.- CLASIFICACIÓN DE LAS MAGNIUDES RADIOLÓGICAS... 4 2.1 Magnitudes físicas fundamentales... 4 2.2 Magnitudes de

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias

DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias básicas de la actividad científica, tales como: el

Más detalles

Espectroscopia de absorción visible-ultravioleta

Espectroscopia de absorción visible-ultravioleta Práctica 6 Espectroscopia de absorción visible-ultravioleta Objetivo Parte A.- Comprobación de la Ley de Beer-Lambert y determinación del coeficiente de absorción molar para disoluciones acuosas de NiSO

Más detalles

Práctica 1: Introducción experimental a la Óptica

Práctica 1: Introducción experimental a la Óptica Óptica: Introducción experimental 1 Práctica 1: Introducción experimental a la Óptica 1.- Introducción 2.- El láser 3.- Óptica geométrica 4.- Óptica ondulatoria 1.- Introducción Destaca en la historia

Más detalles

PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA

PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA OBJETIVOS En esta práctica se tratarán aspectos de interés relacionados con la instrumentación básica utilizada en química, haciendo especial hincapié en la

Más detalles

Introducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e Infrarrojo Cercano

Introducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e Infrarrojo Cercano ntroducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e nfrarrojo Cercano ng. Carlos Brunatti Lic. Ana María Martín ntroducción Desde hace muchos años se ha usado el color como ayuda

Más detalles

En el caso particular de una transición mezcla MI + E2 ó El + M2

En el caso particular de una transición mezcla MI + E2 ó El + M2 445 INIS-mf 10017 DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN POLARIMETRO PARA RADIACIÓN GAMMA * A.O.Macchiavelli, G.Martí, C.Giménez, J.Laffranchi y M.Behar Departamento de Física, Comisión Nacional de Energía

Más detalles