ESTADÍSTICA INFERENCIAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA INFERENCIAL"

Transcripción

1 ESTADÍSTICA INFERENCIAL

2 ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros, por lo que generalmente se aplican en procesos probabilísticos de conteo. Por su parte, las variables aleatorias continuas no se restringen a valores enteros, sino que pueden asumir, además de éstos, valores decimales comprendidos entre valores enteros, es decir, pueden tomar cualquier valor de manera continua que se encuentre entre valores discretos. En términos matemáticos, los valores discretos se denominan numerables, mientras que a los valores continuos se les conoce como no numerables.

3 ESTADÍSTICA INFERENCIAL 2 Introducción al Tema En esta sesión se estudiarán distribuciones de probabilidad de variables aleatorias continuas, específicamente la distribución normal, así como su aproximación a la distribución binomial, dando el conocimiento del uso de sus formulas y las diferencias que caracterizas a cada una de estas, sabiendo como y donde se pueden aplicar para tener un resultado mas preciso. Al conocer estos elementos también podrás apreciar la forma en que se grafican éstas y los atributos con los que cuenta cada una de estas representaciones, es importante tener nociones de bases matemáticas para determinar un conocimiento completo sobre la estadística y la forma en que se explotan los datos que encontramos presentes.

4 ESTADÍSTICA INFERENCIAL 3 Explicación Variables aleatorias continuas. Definición de variable aleatoria continua Sea ε un experimento y Ώ su respectivo espacio muestral asociado. A la función (o relación) X, que asigna un número real X(ω) a cada elemento ω (letra griega omega, en minúscula) que pertenece a Ώ, se le denomina variable aleatoria continua si X(ω) puede tomar valores continuos, es decir, valores decimales que se encuentran entre valores discretos o enteros a, b. En este sentido, el conjunto {a X b} es un suceso o evento de Ώ. Si la distribución de probabilidad de la variable aleatoria se rige por una función f, 1 entonces la probabilidad de que la variable aleatoria X tome un valor entre los números a y b se denota como P(a X b) y equivale al área bajo la curva de f entre x = a y x = b. Área que puede obtenerse mediante el cálculo de la siguiente integral: P(a X b)= Este concepto se explicará más adelante en esta misma sesión, sin embargo, cabe aclarar que no es necesario tener conocimientos de cálculo integral para su manejo pues existen tablas que permiten realizar cálculos de probabilidad sin tener que desarrollar una integral. Al igual que las variables aleatorias discretas, las continuas cumplen con dos características fundamentales: (x) 0 La probabilidad de ocurrencia de un evento en particular es mayor o igual que cero. x)dx=1 La suma de las probabilidades de ocurrencia de todos los posibles eventos del espacio muestral es igual a la unidad o al cien por ciento.

5 ESTADÍSTICA INFERENCIAL 4 Distribución normal de probabilidad Al estudiar alguna característica particular de diversos fenómenos naturales y sociales, se dice que asumen un comportamiento normal aquellos que concentran la mayoría de las observaciones cercanas a un valor promedio y la minoría en valores extremos. Por ejemplo: Al medir la estatura de un grupo de personas de la misma edad, la mayoría de ellas tiene una estatura muy cercana a un cierto valor promedio. Al pesar a un grupo de personas de la misma edad, la mayoría de ellas tienen un peso muy cercano a un cierto valor promedio. Si se mide el coeficiente intelectual de un grupo de personas de la misma edad, la mayoría de ellas tienen un coeficiente muy cercano a un cierto valor promedio. La distribución normal tiene una representación gráfica en forma de campana, frecuentemente denominada campana de Gauss en honor al célebre matemático alemán Karl F. Gauss, quien realizó importantes aportaciones al estudio de la distribución normal. Esta representación gráfica se caracteriza por ser una curva simétrica respecto al eje y. En la gráfica se observa que los valores de una distribución normal tienden a acumularse en el centro y a disminuir en los extremos. La función de distribución de probabilidad normal está dada por:

6 ESTADÍSTICA INFERENCIAL 5 Definición de distribución normal Sea X una variable aleatoria. La expresión: Significa que X se distribuye como una normal, con parámetros μ (letra griega mu) y σ (letra griega sigma), donde: X=Variable aleatoria. μ=media poblacional. σ=desviación estándar poblacional. Una vez que se sabe que un fenómeno tiene una distribución normal y se conoce la media y la desviación estándar poblacionales, puede entonces calcularse la probabilidad de ocurrencia de ciertos eventos; por ejemplo, la probabilidad de que al seleccionar a una persona de un grupo de individuos de la misma edad: Su estatura sea menor que un valor dado. Su estatura sea mayor que un valor dado. Su estatura se encuentre entre dos valores determinados. Área bajo la curva de una distribución normal Como ya se mencionó, el cálculo de probabilidad de ocurrencia de eventos asociados a una variable aleatoria con distribución normal equivale a calcular el área bajo la curva normal delimitada por ciertos valores. Por ejemplo, la Secretaría de la Defensa Nacional lleva un registro de todos los jóvenes que prestan su servicio militar. Considerando que sus edades son muy similares, puede resultar de interés que al seleccionar a uno de ellos: Su estatura sea menor que un valor x1, lo que se denota como P( X x 1 ) Su estatura sea mayor que un valor x2, lo que se denota como P( X x 2 )

7 ESTADÍSTICA INFERENCIAL 6 Su estatura se encuentre entre los valores x 1 y x 2, lo que se denota como P(x 1 X x 2 ). Esto significaría calcular el área bajo la curva mediante las siguientes integrales: Por la complejidad de estos cálculos, se ha optado por desarrollar tablas de distribución normal de las cuales podrían tomarse directamente los valores de estas integrales.

8 ESTADÍSTICA INFERENCIAL 7 Conclusión Con la representación grafica se puede conocer de una forma mas precisa el actuar de los elementos que se estudian, es decir, con las áreas sombreadas dentro de una grafica se puede conocer lo que abarca o lo que no, dando la oportunidad de conocer los elementos que se buscan o a los que se desea dar una presencia mas amplia. Para lograr graficar se tiene que conocer la forma de resolver integrales y los elementos que pueden determinarse con estas operaciones. Se requiere del conocimiento de la prioridad de elementos para que los resultados no se alteren, es decir, saber si primero se multiplica, se suma, se resta o multiplica, y tener los conocimientos necesarios en los despejes de ecuaciones para facilitar la resolución y graficación de los mismos.

9 ESTADÍSTICA INFERENCIAL 8 Normalización y cálculo de probabilidad Para calcular probabilidades de ocurrencia de eventos asociados a una distribución normal es importante considerar dos propiedades fundamentales: El área total bajo la curva normal es igual a uno. La curva es simétrica respecto a la media, por lo que el área de cada mitad corresponde al cincuenta por ciento. Para realizar el cálculo de probabilidades con una distribución normal es necesario trasladar los datos originales del fenómeno objeto de estudio a una escala común o estándar. Una variable aleatoria estandarizada se denota con la literal z y se obtiene mediante la siguiente operación de estandarización o normalización: Donde: z = Variable aleatoria estandarizada. x = Valor de la variable aleatoria a estandarizar. μ = Media poblacional. σ = Desviación estándar poblacional. El valor de z obtenido en el paso anterior se distribuye como una normal con media μ=0 y σ=1, es decir, X =N(0,1), con lo que ya es posible utilizar las tablas de distribución normal para calcular la probabilidad de ocurrencia de eventos que pueden manifestarse de la siguiente forma:

10 ESTADÍSTICA INFERENCIAL 9 Que corresponden siguientes expresiones: Probabilidad de que un valor a sea menor o igual que le valor z. Donde a, z, z 1 y z 2 son variables estandarizadas. Asimismo, por simetría, se tienen las siguientes equivalencias:

11 ESTADÍSTICA INFERENCIAL 10 Que corresponden a las siguientes expresiones: Donde a, z, z 1 y z 2 son variables estandarizadas. Ejemplos El coeficiente intelectual (IQ) es un valor obtenido a partir de una prueba que mide las habilidades cognitivas o inteligencia de una persona en relación a su grupo de edad, el cual se expresa en una escala estándar para que el valor promedio de un grupo sea igual a 100. Esto significa que una persona con un IQ de 115 puntos está por encima del promedio de las personas de su edad, mientras que otra con un IQ de 65 está por debajo del promedio. Dado que el IQ se distribuye como una normal, pueden calcularse algunas probabilidades de interés. Supóngase que X es una variable aleatoria asociada al iq de alumnos de una universidad. Si X se distribuye como una normal con media μ=100 y desviación estándar σ= 16, es decir, XN(100,16),, calcular mediante tablas de distribución normal las siguientes probabilidades: 1. Probabilidad de que el iq de un alumno sea mayor a 80 puntos, es decir, P(80 x).

12 ESTADÍSTICA INFERENCIAL Probabilidad de que el iq de un alumno sea mayor a 105 puntos, es decir, P(105 x). 3. Probabilidad de que el iq de un alumno sea menor que 80 puntos, es decir, P(x 80). 4. Probabilidad de que el iq de un alumno sea menor que 105 puntos, es decir, P(x 105). Soluciones 1. De acuerdo a los datos del problema, se tiene que μ=100, σ=16 y x=80. Entonces se procede a normalizar el valor de x: Este valor transforma la expresión P(80 x) a su equivalente normalizada P(z a),en donde z= 1.25.Esto significa que se debe calcular P( 1.25 a). Entonces:

13 ESTADÍSTICA INFERENCIAL Normalizando los datos tenemos que: Que puede redondearse a Este valor transforma la expresión P (105 x) a su equivalente normalizada: P(z r, se debe calcular P(0.31 a). Entonces, P(0.31 a)=0.5 P(0 a 0.31). Utilizando las tablas de distribución normal se obtiene que P(0 a 0.31)=0.1217,por lo que P(0.3 1a)= = que equivale a 37.83% de probabilidad. 3. Normalizando datos se tiene que:

14 ESTADÍSTICA INFERENCIAL 13 Este valor se transforma en la expresión P(x 80) a su equivalente normalizada P(a z), donde z= 1.25, es decir, se procede a calcular P(a 1.25). En consecuencia, P(a 1.25)=0.5 P(0 a 1.25). A través de las tablas de distribución normal se obtiene que P(a =0.1056,entonces P(a 1.25)=0.5 P(0 a 1.25) que equivale a 10.56% de probabilidad. 4. Al normalizar los datos obtenemos que: Que puede redondearse a Este valor permite transformar la expresión P(x 105) a su equivalente normalizada P(a z), donde Z= Esto significa que se debe calcular P(a 0.31). Consecuentemente, P(a 0.31)=0.5+P(0 a 0.31). Utilizando las tablas de distribución normal, se tiene que P(0 a 0.31)=0.1217, por lo que P(a 0.31)= = que equivale a 62.17% de probabilidad. Aproximación normal de probabilidades binomiales La distribución binomial P(X= k)= b(k;n,p) puede acercarse notablemente a la distribución normal cuando n es grande y ni p ni q tienen valores cercanos a cero, donde: n=número de ensayos o repeticiones del experimento. k = Número de éxitos. p= Probabilidad de éxito.

15 ESTADÍSTICA INFERENCIAL 14 q= Probabilidad de fracaso. Para calcular probabilidades aproximando la distribución normal a la binomial se tiene que: µ = np Por ejemplo, si se lanza una moneda 14 veces, calcular la probabilidad P de que el número de águilas que aparezcan se encuentre entre tres y seis. De los datos del ejemplo tenemos que: Si X representa el número de águilas, se debe calcular P (3 X 6). Dado que la distribución normal se define sobre variables aleatorias continuas, debemos expresar los valores discretos, esto es, enteros, en una forma continua o decimal, con lo que la expresión discreta P(3 X 6) puede transformarse en la expresión continua P(2.5 X 6.5). Entonces, se procede a estandarizar los valores 2.5 y 6.5: En consecuencia, P(2.5 x 6.5) se transforma en su equivalente normalizada P( 2.41 a 0.27)= = ó 59.84%.

16 ESTADÍSTICA INFERENCIAL 15 Actividad de Aprendizaje Instrucciones: en base a lo visto anteriormente, resuelve los siguientes elementos. Supóngase que X es una variable aleatoria asociada al IQ de alumnos de una universidad. Si X se distribuye como una normal con media µ= 100 y desviación estándar =10, es decir, X N(100,10), calcula mediante tablas de distribución normal las siguientes probabilidades: 1. Probabilidad de que el IQ de un alumno sea mayor a 80 puntos, es decir, P(80 x). 2. Probabilidad de que el IQ de un alumno sea mayor a 105 puntos, es decir, P(105 x). 3. Probabilidad de que el IQ de un alumno sea menor a 80 puntos, es decir, P(x 80). 4. Probabilidad de que el IQ de un alumno sea menor a 105 puntos, es decir, P(x 105). 5. Probabilidad de que el IQ de un alumno se encuentre entre 105 y 110 puntos, es decir, P(105 x 110).

17 ESTADÍSTICA INFERENCIAL 16 Bibliografía García, M. (2005). Introducción a la teoría de la probabilidad. México: Fondo de Cultura Económica. Hernández, A. y O. Hernández (2003). Elementos de probabilidad y estadística. México: Sociedad Matemática Mexicana. Meyer, P. (1986). Probabilidad y aplicaciones estadísticas. E.U.: Addison-Wesley Iberoamericana. Ulloa, V. y V. Quijada (2006). Estadística aplicada a la comunicación. México: UNAM. (2007). Estadística básica con Excel. México: UNAM. Lipschutz, S. (1988). Probabilidad. México: McGraw-Hill.

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?

CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE? TEOREMA DE BAYES Explica como considerar matemáticamente la nueva información en la toma de decisiones. P( AΙB) = P( A B) P( B) = P( A) P( BΙA) P( B) PROBLEMA: En cierto lugar llueve el 40% de los días

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Al igual que la distribución binomial, la distribución

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

DISTRIBUCIÓN NORMAL ESTÁNDAR

DISTRIBUCIÓN NORMAL ESTÁNDAR DISTRIBUCIÓN NORMAL ESTÁNDAR INTRODUCCIÓN Las distribuciones de probabilidad están relacionadas con la distribución de frecuencias. De hecho, podemos pensar en la distribución de probabilidad como una

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

Condiciones para una distribución binomial

Condiciones para una distribución binomial ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 5 Nombre: Distribuciones de probabilidad para variables Contextualización Ya se han estudiado los conceptos variable aleatoria y distribución

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Maestría en Administración Universidad Nacional Autónoma de México DISTRIBUCIONES DE PROBABILIDAD Introducción Una distribución de probabilidad indica toda la gama de valores

Más detalles

Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez

Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez PROBABILIDAD Y ESTADÍSTICA Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez INTRODUCCIÓN TEMA V VARIABLES ALEATORIAS CONJUNTAS En los capítulos anteriores se estudiaron variables aleatorias

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL Sesión No. 1 Nombre: Probabilidad Contextualización ESTADÍSTICA INFERENCIAL 1 La teoría de la probabilidad se desarrolló en 1654 a partir de la correspondencia entre Antoine Chevalier de Méré y Blaise

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA I. DATOS INFORMATIVOS 1.1 Asignatura : Estadística para el Comunicador Social 1.2 Código : 1001-1023 1.3 Pre-requisito

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD V ESTADÍSTICA Y PROBABILIDAD Página 9 Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,92;

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

COMBINACIONES, VARIACIONES Y PERMUTACIONES. Material preparado por la Profesora María Fátima Dos Santos Escuela de Psicología - UCV

COMBINACIONES, VARIACIONES Y PERMUTACIONES. Material preparado por la Profesora María Fátima Dos Santos Escuela de Psicología - UCV OMBINAIONE, VARIAIONE Y PERMUTAIONE Material preparado por la Profesora María Fátima Dos antos Escuela de Psicología - UV Qué son combinaciones y permutaciones? upongamos que tengo 5 elementos en el espacio

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DESCRIPTIVA DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N 1: CONCEPTOS BASICOS DEFINICIÓN DE ESTADÍSTICA La Estadística trata del recuento, ordenación y clasificación

Más detalles

2. Calcula las raíces o soluciones para cada ecuación cuadrática.

2. Calcula las raíces o soluciones para cada ecuación cuadrática. Matemáticas 3 Bloque I Instrucciones. Lee y contesta correctamente lo que se te pide. 1. Cuánto tiempo tardará en llegar al suelo un objeto que se deja caer verticalmente desde la azotea de un edificio

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones. PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado

Más detalles

TRATAMIENTO DE PUNTAJES

TRATAMIENTO DE PUNTAJES TRATAMIENTO DE PUNTAJES Andrés Antivilo B. Paola Contreras O. Jorge Hernández M. UNIDAD DE ESTUDIOS E INVESTIGACIÓN Santiago, 2015 [Escriba texto] TABLA DE CONTENIDO TRATAMIENTO DE LOS PUNTAJES... 4 1.1.

Más detalles

Distribuciones de Probabilidad Normal [Gaussiana]

Distribuciones de Probabilidad Normal [Gaussiana] Distribuciones de Probabilidad Normal [Gaussiana] Distribución Normal o Gaussiana Una variable aleatoria X es llamada variable aleatoria normal (guassiana) si su pdf está dado por, 1 2 2 x / 2 f X x e

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Probabilidad 3/1/2010. EVSC 5020: Bioestadística. Qué es probabilidad? Prof. Rafael R. Canales-Pastrana. EVSC 5020: Bioestadística

Probabilidad 3/1/2010. EVSC 5020: Bioestadística. Qué es probabilidad? Prof. Rafael R. Canales-Pastrana. EVSC 5020: Bioestadística Probabilidad Prof. Rafael R. Canales-Pastrana 2 Qué es probabilidad? 3 1 Definiciones de Probabilidad La medida del grado de confianza que uno tiene, en que ocurra el acontecimiento. Método axiomático:

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas

Más detalles

Probabilidades y la curva normal

Probabilidades y la curva normal Probabilidades y la curva normal Las distribuciones reales y las distribuciones teóricas Por Tevni Grajales Guerra Tal cual estudiamos en nuestro tercer tema. Cuando registramos los valores de una variable

Más detalles

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez TEMA III ESTIMACIÓN DE PARÁMETROS POR INTERVALOS DE CONFIANZA La estimación puntual es útil pues proporciona

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles