Física Examen Final 20/05/05

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física Examen Final 20/05/05"

Transcripción

1 Física Examen Final 20/05/05 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre [6 Ptos.] 1. Una partícula de 500 g describe un M.A.S. con una frecuencia de 1,59 Hz. Las energías iniciales son: cinética: E c0 = 0,200 J y potencial: E P0 = 0,800 J. Calcula la/s posición/es en que ambas energías son iguales. Como la fuerza elástica es una fuerza conservativa, la energía mecánica se conserva: E m = E c + E p = 0,200 [J] + 0,800 [J] = 1,000 J Cuando ambas energías sean iguales, E c = E p E m = E c + E p = 2 E p E p = ½ E m = 0,500 J La energía potencial de un M.A.S. viene dada por la expresión: E p = ½ k x 2 en la que k es la constante elástica y x es la elongación o separación de la posición de equilibrio. Para calcular la constante elástica, k, se toma la fuerza elástica como la fuerza resultante: Ley de Hooke: F = -k x 2ª ley de Newton: F = m a En un M.A.S. la aceleración es proporcional y de sentido contrario a la elongación: a = -ω 2 x F = -k x = m a = m (-ω 2 x) k = m ω 2 La pulsación ω está relacionado con el período T y la frecuencia ν por: ω = 2 π / T = 2 π ν Por lo que: Energía ω = 2 π ν = 2 π 1,59 [Hz] = 9,99 rad/s 1 k = m ω 2 = 0,500 [kg] (9,99 [rad/s]) 2 = 49,9 N/m De la expresión de la energía potencial: E p = ½ k x 2 0,500 [J] = ½ 49,9 [N/m] x 2 que tiene dos soluciones: x = ±0,142 m Análisis: deben existir dos soluciones, ya que la oscilación alrededor de la posición de equilibrio es simétrica. Un vistazo a la gráfica de energías permite ver que la posición no es la mitad de la amplitud. E 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 E P -0,2-0,15-0,1-0,05 0 0,05 0,1 0,15 0,2 x E C + E P E C 2. Si la masa de la Luna es 81 veces más pequeña que la terrestre y su radio es km, cuánto valdrá en la Luna la velocidad de escape?

2 La velocidad de escape de un astro es la velocidad mínima que debe tener un objeto en la superficie del astro para poder alejarse a una distancia infinita del mismo. Como la fuerza gravitatoria es una fuerza central, es conservativa (el trabajo de la fuerza es independiente del camino) y la energía mecánica (suma de cinética y potencial) se conserva. (E C + E P) suelo = (E C + E P) La energía potencial gravitatoria de un objeto de masa m que se encuentra sometido a la atracción de otro de masa M, situado a un distancia r de us centro (supuestas ambas masas puntuales o esféricas) viene dada por: E P = -G M m / R en la que G es la constante de la gravitación universal. El origen de energías potenciales está en el infinito: E P = 0. La energía cinética de una masa m que se mueve con una celeridad v, viene dada por: E C = ½ m v 2. Como la velocidad de escape es la velocidad mínima, es la que corresponde a una velocidad nula en el infinito. -G M m / R + ½ m v 2 minima suelo = 0 + ½ m v 2 = = 0 v escape = v minima suelo = (2 G M / R) 1/2 Para la Luna: v el = (2 G M L / R L) 1/2. Para cualquier objeto que se encuentre en la superficie de la Tierra, su peso es igual a al atracción gravitatoria: m g T = G M T m / R T 2 G M T = g T R T 2 = 9,81 [m/s 2 ] (6, [m]) 2 = 3, m 3 /s 2 Para la Luna: G M L = G M T / 81 = 4, m 3 /s 2 v el =(2 G M L / R L) 1/2 = (2 4, [m 3 /s 2 ] / 1, [m]) 1/2 = 2, m/s = 2,4 km/s Análisis: La velocidad de escape de la Luna es inferior a la de la Tierra, que es de 11,2 km/s, puesto que la Luna es más pequeña que la Tierra. 3. Tres cargas puntuales de -18, 50 y -32 nc están situadas en los vértices A, B, y C de un rectángulo de base AB = 24 cm y altura BC = 18 cm. Calcula el vector intensidad de campo eléctrico en el vértice D. a) La intensidad de campo eléctrico en un punto debido a una distribución de cargas puntuales se calcula por el principio de superposición. E = E i E B La intensidad de campo eléctrico en un punto a una distancia r de una carga puntual Q viene dado por la expresión: E C E = K Q / r 2 u r D C Se dibuja el vector intensidad de campo eléctrico en el 32 nc punto D debido a cada una de las cargas y el vector E D intensidad de campo eléctrico resultante. Se calculan primero las distancias entre los puntos: E A r BD = 0,24[m] 2 0,18[m] 2 = 0,0900[m 2 ]=0,30 m Se calcula la intensidad de campo eléctrico en el punto D debido a cada una de las cargas: 18 nc A B +50 nc E A D =K Q A u 2 r =9, [ N m 2 C 2 ] [C] j= 5, j N C 1 r AD 0,18[m] 2

3 E B D =K Q B r BD u 2 r =9, [ N m 2 C 2 ] [C] 0,30[m] 2 0,24 i 0,18 j = 4, i 3, j N C 1 0,30 E C D =K Q A u 2 r =9, [N m 2 C 2 ] [C] j=5, i N C 1 r CD 0,24[m] 2 El campo resultante en el punto D vale: E D = E A D + E B D + E C D = 1, i 2, j N C -1 En general, el vector intensidad de campo eléctrico será un vector de módulo: E = 1, , =2, N C 1 y que forma un ángulo de -63º con el lado CD, dirigido hacia el interior del rectángulo. 4. El trabajo de extracción del platino es de 6,30 ev. Halla el potencial de frenado de los electrones extraídos cuando una superficie de platino es iluminada por un haz de luz láser que emite con longitud de onda 167 nm. a) La ecuación de Einstein del efecto fotoeléctrico es: E FOTÓN = W EXTRACCIÓN + E C ELECTRÓN., La energía cinética de los electrones puede medirse aplicando un potencial eléctrico en sentido opuesto, llamado potencial de frenado V, hasta impedir que los electrones lleguen al ánodo. El trabajo eléctrico del potencial de frenado será igual a la variación de energía cinética de los electrones. q e ΔV = ΔE c = 0 E c q e V = E c La energía de un fotón de frecuencia ν viene dada por la ecuación de Planck E FOTON = hν en la que h es la constante de Planck. La frecuencia ν de una onda está relacionada con su longitud de onda λ por: ν = c /λ en la que c es la velocidad de propagación de la onda. En el caso de la luz, ν laser = c / λ laser = 3, [m s -1 ] / 1, [m] = 1, Hz W extracción = 6,30 ev 1, J/eV = 1, J Los fotones del láser empleado tienen una energía, E fotón laser = hν laser = 6, [J s] 1, [Hz] = 1, J por lo que la energía cinética máxima de los electrones emitidos es E C electrón = E fotón W extracción = 1, [J] 1, [J] = 1, J y el potencial de frenado V = E c / q e = 1, [J] / 1, [C] = 1,1 V DATOS: g = 9,81 m/s 2 R T = km c = 3, ms -1 e = 1, C K = 1 / 4π ε 0 = 9, Nm 2 C -2 h = 6, Js Cuestiones [4 Ptos.] 1. Cuál de las expresiones propuestas representa una onda que se propaga en sentido positivo del eje X con una velocidad de 5 m s -1? A) y = cos 2π(10 t 5 x) B) y = cos 2π(10 t + 5 x) C) y = cos 4π(5 t x) c)

4 La ecuación de una onda unidimensional armónica que se desplaza en sentido positivo del eje X se puede escribir: y = A cos 2π(t / T x / λ), poniendo que las partículas del medio oscilan en el eje Y, perpendicularmente a la dirección de propagación. (Si se desplazase en sentido negativo, el signo sería +) A es la amplitud y vale: 1 m. T es el período que es el inverso de la frecuencia ν: T = 1 / ν = 1 / 10 = 0,1 s λ es la longitud de onda, que está relacionada con la frecuencia por: c = λ ν. λ = c / ν = 5 / 10 = 1 / 2 m Sustituyendo da: y = cos 2 π(10 t 2 x) que corresponde a la tercera opción, sacando factor común La rotación de la Tierra provoca que la aceleración de la gravedad medida en un punto de latitud λ A) aumente con la latitud B) disminuya con la latitud C) disminuya con la altura A La gravedad aparente en un punto de la Tierra, medida con un dinamómetro, es inferior al campo gravitatorio debido a la rotación terrestre. g a = g a N = g ω 2 r en el que ω es la velocidad angular terrestre alrededor de su eje y r es el radio de giro. En el ecuador terrestre g a = g a N = g ω 2 R T = 9,78 m/s 2 En un punto de latitud λ, el radio de giro es menor r = R T cos λ y la proyección de la aceleración centrípeta sobre la vertical (dirección radial) es a N cos λ por lo que la gravedad aparente es g a = g a N cos λ = g ω 2 R T cos 2 λ A mayor latitud λ, menor es el cos λ, por lo que la gravedad aparente será mayor. Por ejemplo en los polos (λ = 90º), cos λ = 0 y g a = g = 9,83 m/s 2 3. Un protón penetra en el interior de un campo magnético uniforme perpendicularmente a las líneas de campo magnético. Posteriormente entra por el mismo punto y con la misma velocidad un electrón. Haz un dibujo de las trayectorias de ambos. Tanto el protón como el electrón se mueven en trayectrorias semicirculares, porque la fuerza que ejerce el campo magnético sobre una carga en movimiento viene dada por la ley de Lorentz F = q (v B) y es perpendicular a la velocidad en cada punto, por lo que provoca una aceleración normal que es constante, ya que el módulo de la velocidad no varía, por no existir componente tangencial de la aceleración. - El sentido de la fuerza es distinto, ya que depende del signo de la carga. - También es distinto el radio de la trayectoria, puesto que depende de la masa de la partícula. F = m a N = m v 2 / R q v B sen 90 = m v 2 / R R = m v / q B e v F p B p + Como el campo magnético, la velocidad y el valor de la carga es el mismo, el radio es proporcional a la

5 masa. Como la masa del electrón es mucho menor que la del protón, el radio de la trayectoria del electrón será mucho menor que la del protón. (En el dibujo no están a escala, pues siendo la masa del electrón unas veces menor que la del protón, el la trayectoria del electrón no podría verse) 4. El alambre CD se desliza sobre una horquilla metálica en forma de U, situado sobre un campo magnético constante B dirigido hacia el techo, como se ve en la figura. Cuando el alambre se desliza hacia la derecha, se produce una f.e.m. inducida que provoca una corriente I inducida en el alambre. Esta corriente I sufre una fuerza magnética F debida al campo magnético B, que es perpendicular al alambre y está dirigida hacia: A) el suelo. B) la derecha. C) la izquierda. C B D Por la ley de Faraday Lenz, la fuerza electromotriz inducida en el tramo cerrado viene dada por la expresión ε = dφ / dt y el sentido de la corriente es el de las agujas del reloj. Cuando el alambre CD se mueve hacia la derecha, aumenta el flujo magnético saliente. Por la ley de Lenz, se induce una corriente que se opone a este aumento, de forma que circula en sentido de las agujas del reloj para producir un flujo magnético entrante que se opone al aumento de flujo saliente. Y+ Por la ley de Laplace, F = I (l B) el campo magnético B ejerce una fuerza F sobre la corriente I cuyo sentido se puede determinar suponiendo un sistema de referencia como el de la figura. F = I (l (-j) B (+k)) = I l B ( i) es decir, hacia la izquierda. Z+ X+ Otra forma de verlo es aplicando el principio de conservación de la energía. Para mover el alambre CD con velocidad constante hacia la derecha hay que ejercer una fuerza hacia la derecha que debe valer lo mismo pero ser de sentido contrario a la que hace el campo magnético sobre la corriente del alambre. Por tanto la fuerza que piden es hacia la izquierda. 5. Una nave espacial se mueve a una velocidad 0,8 c. En cada uno de sus extremos existe un detector que levanta una bandera cuando una señal luminosa llega a él. Desde el centro exacto se emiten dos señales luminosas hacia los extremos de la nave, justo cuando pasa por delante de una estación espacial en reposo. Desde la estación espacial se observa que el banderín de la parte anterior de la nave se levanta A) Antes que el de la posterior. B) Después que el de la posterior. C) Simultáneamente. C B F D La velocidad de la luz es la misma medida desde cualquier sistema de referencia inercial que se mueva con respecto a otro. Aunque para un observador ligado a la nave espacial las dos señales luminosas llegan a los extremos simultáneamente, para un observador ligado a la estación espacial en reposo, la luz viaja con la misma velocidad en ambos sentidos, y alcanza antes la parte posterior de la nave que se desplaza hacia la fuente de luz que la parte anterior de la nave que se desplaza alejándose de la fuente. I

6 6. Si un núcleo atómico emite una partícula α, una partícula β y un fotón γ, su número atómico disminuye: A Tres unidades, B Dos unidades. C Una unidad. C 4 Una partícula α es un núcleo de helio: 2He, una partícula β 0 es un electrón 1e y un fotón γ es 0 radiación electromagnética de alta energía 0. Por las leyes de conservación del número atómico (carga) y número bariónico (masa) A A 4 4 A 4 0 A 4 0 ZX Z 2Y 2He Z 1Z 1e Z 1Z 0 Laboratorio 7. En la determinación de g mediante un péndulo simple, se miden tiempos de una serie de oscilaciones para péndulos de diversas longitudes. Indica qué magnitudes hay que representar gráficamente para obtener una recta a partir de los datos experimentales, y relaciona el valor de g con la pendiente de la gráfica. De la ecuación del período para el péndulo simple T =2 l g se ve que la representación de los períodos T frente a las longitudes l no da una recta. Elevando al cuadrado T 2 = 4 2 g l tomando T 2 como variable dependiente y l como variable independiente, queda la ecuación de una recta que pasa por el origen y cuya pendiente vale pendiente= T 2 l = 4 2 g 8. Haz un esquema de la práctica para determinar la posición del foco imagen de una lente convergente. Cuál es la función de la lente próxima a la fuente de iluminación? La lente próxima a la fuente de iluminación se coloca de forma que la fuente esté situado en el foco, para que los rayos salgan paralelos.

7 Objeto Foco luminoso Lente convergente Lente Pantalla

8

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

Física 2º Bach. Ondas 10/12/04

Física 2º Bach. Ondas 10/12/04 Física º Bach. Ondas 10/1/04 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [6 PTOS.] 1. Una partícula de 600 g oscila con M.A.S. Se toma como origen de tiempos el instante en que pasa por el origen

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 67 70 11 1 Junio 006 Dos cargas puntuales q1 = + 0 nc y q = 1 0 nc están fijas y separadas una distancia de 8 cm. Calcular: a) El campo eléctrico en el punto T situado en el punto medio entre las cargas

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017 Juan P. Campillo Nicolás 2 de julio de 207 . Gravitación.. Un satélite de 900 kg describe una órbita circular de radio 3R Tierra. a) Calcula la aceleración del satélite en su órbita. b) Deduce y calcula

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

Examen de septiembre El examen consiste en seis bloques. Debes responder sólo a una pregunta de cada bloque.

Examen de septiembre El examen consiste en seis bloques. Debes responder sólo a una pregunta de cada bloque. Física º Bach. Examen de septiembre 4-9-06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: El examen consiste en seis bloques. Debes responder sólo a una pregunta de cada bloque. Bloque 1 [3 PUNTOS] 1.1 El trabajo

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

Física Examen de setiembre 02/09/11 OPCIÓN A

Física Examen de setiembre 02/09/11 OPCIÓN A Física Examen de setiembre 0/09/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas [6 Ptos.] Nombre OPCIÓN A 1. Un objeto de 6,00 cm de altura, está situado a 0,0 cm de una lente delgada divergente

Más detalles

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Más detalles

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2 PAU MADRID JUNIO 2004 Cuestión 1.- a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017 Juan P. Campillo Nicolás 3 de agosto de 07 . Gravitación.. Un satélite meteorológico de masa m = 680 kg describe una órbita circular a una altura h = 750 km sobre la superficie terrestre. a) Calcula el

Más detalles

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO] Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo

Más detalles

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestiones 4 puntos ( cada cuestión, teórica o práctica). Problemas 6 puntos ( cada apartado). No se valorará la simple anotación de un ítem cómo solución

Más detalles

Perí odo orbital de la tierra = 365'25 dí as

Perí odo orbital de la tierra = 365'25 dí as PAU MADRID SEPTIEMBRE 2004 Cuestión 1.- La luz solar tarda 8'31 minutos e llegar a la Tierra y 6'01 minutos en llegar a Venus. Suponiendo que las órbitas de los planetas son circulares, determine el perí

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de julio de 2017 Juan P. Campillo Nicolás 13 de julio de 2017 1 1. Gravitación. 1. La Luna es aproximadamente esférica, con radio R L = 1,74 10 6 m y masa M L = 7,3 10 22 kg. Desde su superficie se lanza verticalmente

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

Relación Problemas Tema 7: Electromagnetismo

Relación Problemas Tema 7: Electromagnetismo Relación Problemas Tema 7: Electromagnetismo Problemas 1.- Un electrón que se mueve en el sentido positivo del eje OX con una velocidad de 5 10 4 m/s penetra en una región donde existe un campo de 0,05

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

XXVII Olimpiada Española de Física

XXVII Olimpiada Española de Física XXVII Olimpiada Española de Física FASE LOCAL-UNIVERSIDADES DE GALICIA- 26 de febrero de 2016 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de que la respuesta a alguna de las cuestiones planteadas

Más detalles

PAAU (LOXSE) Setembro 2008

PAAU (LOXSE) Setembro 2008 PAAU (LOXSE) Setembro 008 Código: FÍSICA Elegir y desarrollar un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas 6 puntos (

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

vidrio = =1,66. sen30 = 0,829 0,5 = 1,8$108 (m/s)

vidrio = =1,66. sen30 = 0,829 0,5 = 1,8$108 (m/s) Opción A. Ejercicio 1 [a] Explica los fenómenos de reflexión y de refracción de una onda y enuncia las leyes que los rigen. Cuándo se produce el fenómeno de reflexión total? [b] Un rayo de luz monocromática,

Más detalles

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica o práctica)

Más detalles

Examen Final 13/04/07 DEPARTAMENTO DE FÍSICA E QUÍMICA

Examen Final 13/04/07 DEPARTAMENTO DE FÍSICA E QUÍMICA Física º Bach. Examen Final 13/04/07 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. Campo electrostático: 3 Puntos (1 punto cada apartado) 1.A. Se colocan

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Junio 009 En dos de los vértices de un triángulo equilátero de 3 m de lado se sitúan dos cargas puntuales iguales, q1=q= +3 μc como se indica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2012-2013 CONVOCATORIA: JULIO MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar una opción

Más detalles

Examen Final 11/04/08 DEPARTAMENTO DE FÍSICA E QUÍMICA

Examen Final 11/04/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Examen Final /04/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige y desarrolla un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

FÍSICA 2º BACHILLERATO EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013

FÍSICA 2º BACHILLERATO EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013 EXAMEN FINAL RECUPERACIÓN 1ª,2ª Y 3ª EVALUACIÓN 28/05/2013 ALUMNO/A: CUESTIONES: CALIFICACIÓN: 1. a) Establecer la diferencia entre ondas longitudinales y transversales. Cita un ejemplo de una onda real

Más detalles

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo.

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. PAU MADRID SEPTIEMBRE 2003 Cuestión 1.- a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. b) Cómo son las superficies equipotenciales del campo eléctrico creado por una carga

Más detalles

PAAU (LOXSE) Xuño 2008

PAAU (LOXSE) Xuño 2008 PAAU (LOXSE) Xuño 2008 Código: 22 FÍSICA Elegir y desarrollar un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas 6 puntos (1

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA SEPTIEMRE 009 SOLUCIÓN DE LA PRUEA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) La energía mecánica es constante en todos los puntos de

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Un electrón penetra por la izquierda con una velocidad de 5.000 m/s, paralelamente al plano del papel. Perpendicular a su dirección y hacia dentro del papel existe un campo magnético constante

Más detalles

CAMPO ELECTROMAGNÉTICO

CAMPO ELECTROMAGNÉTICO CAMPO ELECTROMAGNÉTICO 1. Qué diferencia de potencial se crea entre los extremos de las alas de un avión que vuela horizontalmente a una velocidad de 900 km/h en un lugar donde la componente vertical del

Más detalles

PAAU (LOXSE) Xuño 2007

PAAU (LOXSE) Xuño 2007 PAAU (LOXSE) Xuño 2007 Código: 22 FÍSICA Elegir y desarrollar un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas 6 puntos (1

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1

FÍSICA. 2º BACHILLERATO. BLOQUE III: ELECTROMAGNETISMO Examen 1 Examen 1 1. Diga si es CIERTO o FALSO y razone la respuesta: " Siempre que se produce una variación de la intensidad que circula por un circuito aparece una fuerza electromotriz inducida en ese circuito."

Más detalles

5. En una región del espacio existe un campo magnético uniforme cuyo módulo varía con el tiempo de acuerdo

5. En una región del espacio existe un campo magnético uniforme cuyo módulo varía con el tiempo de acuerdo Examen final / Tercera Evaluación. APELLIDOS: Valios 1. Carbono 14 a. Teoría: Estabilidad de los núcleos. Energía de enlace. (1 b. El es un isótopo radiactivo del carbono utilizado para determinar la antigüedad

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

CAMPO MAGNÉTICO. SOL: a) F=1,28*10-19 N; b) F=1,28*10-19 N; c) F=0N.

CAMPO MAGNÉTICO. SOL: a) F=1,28*10-19 N; b) F=1,28*10-19 N; c) F=0N. CAMPO MAGNÉTICO 1. Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 10 5 m/s, se encuentra a 50 cm del conductor. Calcule

Más detalles

SOLUCIONES HOJA EJERCICIOS NAVIDAD

SOLUCIONES HOJA EJERCICIOS NAVIDAD SOLUCIONES HOJA EJERCICIOS NAVIDAD 1 - Un cuerpo realiza un movimiento vibratorio armónico simple. Escriba la ecuación del movimiento si la aceleración máxima es, el período de las oscilaciones 2 s y la

Más detalles

Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p

Solución: a) Las fuerzas gravitatorias son centrales, por tanto, el momento angular es constante: sen 90 º. v p A Opción A A.1 Pregunta El planeta Marte, en su movimiento alrededor del Sol, describe una órbita elíptica. El punto de la órbita más cercano al Sol, perihelio, se encuentra a 06.7 10 6 km, mientras que

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

XIX OLIMPIADA NACIONAL DE FÍSICA

XIX OLIMPIADA NACIONAL DE FÍSICA XIX OLIMPIADA NACIONAL D FÍSICA FAS LOCAL-UNIVRSIDADS D GALICIA- 15 de febrero de 2008 APLLIDOS...NOMBR... CNTRO... 1- Para un objeto de forma cilíndrica, de longitud L y sección recta S, la relación entre

Más detalles

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta. 1 a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? 2 Un electrón, un protón y un átomo de helio

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma Opción A. Ejercicio Una partícula de masa m = 0 g oscila armónicamente a lo largo del eje OX en la forma x A sen t, con A = 0,2 m y 0 (rad s ). [a] Determine y represente gráficamente la fuerza que actúa

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID MATERIA: FÍSICA UNIVERSIDAD COMPUTENSE DE MADRID PRUEBA DE ACCESO A A UNIVERSIDAD PARA OS MAYORES DE 25 AÑOS AÑO 2018 Modelo INSTRUCCIONES GENERAES Y VAORACIÓN a prueba consta de dos opciones, A y B, cada

Más detalles

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones 1 punto cada una. Se podrá utilizar una calculadora y una regla. OPCIÓN A

Más detalles

2. Obtener la posicion x desde la que se ha emitido la señal Resp : :::::::::::::

2. Obtener la posicion x desde la que se ha emitido la señal Resp : ::::::::::::: EXAMEN 2 o PARCIAL DE MECANICA Y ONDAS (Teoria) 6 Julio de 2005 _ Apellidos: Nombre: Grupo: _ Instrucciones : Cada cuestión se puntuará con 10=14 puntos, si la respuesta es completamente correcta. Y entre

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. NIVESIDADES PÚBLICAS DE LA COMNIDAD DE MADID PEBA DE ACCESO A LAS ENSEÑANZAS NIVESITAIAS OFICIALES DE GADO MATEIA: FÍSICA Curso 015-016 MODELO INSTCCIONES Y CITEIOS GENEALES DE CALIFICACIÓN Después de

Más detalles

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 0 Código: 5 FÍSICA Puntuación máxima: Cuestiones 4 puntos ( cada cuestión, teórica o práctica). Problemas 6 puntos ( cada apartado). No se valorará la simple anotación de un ítem cómo solución

Más detalles

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO.

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. 1) Halla el radio de la órbita que describe un electrón que entra en un campo magnético de 10 T, con una velocidad de 10 4 m/s, de modo que forma un

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Enuncie la ley de inducción electromagnética y explique las características del fenómeno. Comente la veracidad o falsedad de la siguiente afirmación: un transformador eléctrico no realiza

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

PAAU (LOXSE) Xuño 2004

PAAU (LOXSE) Xuño 2004 PAAU (LOXSE) Xuño 004 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica o práctica)

Más detalles

Física 2º Bach. Repaso y ondas 12/11/08

Física 2º Bach. Repaso y ondas 12/11/08 Física 2º Bach. Repaso y ondas 12/11/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Una partícula de 1,54 g inicia un movimiento armónico simple en el punto de máxima elongación, que se encuentra

Más detalles

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A 1 PAU Física, modelo 2012/2013 OPCIÓN A Pregunta 1.- Un cierto planeta esférico tiene una masa M = 1,25 10 23 kg y un radio R = 1,5 10 6 m. Desde su superficie se lanza verticalmente hacia arriba un objeto,

Más detalles

Resuelva el problema P1 y responda a las cuestiones C1 y C2.

Resuelva el problema P1 y responda a las cuestiones C1 y C2. Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curso 2005-2006 Física serie 1 Resuelva el problema P1 y responda a las cuestiones C1

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 13 de julio de 2018

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 13 de julio de 2018 Juan P. Campillo Nicolás 13 de julio de 2018 1 1. Gravitación. 1. La Luna es aproximadamente esférica, con radio R L = 1,74 10 6 m y masa M L = 7,35 10 22 kg. Desde su superficie se lanza verticalmente

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

EXAMEN DE FÍSICA E32A_1516 OPCIÓN A

EXAMEN DE FÍSICA E32A_1516 OPCIÓN A EXAMEN DE FÍSICA E32A_1516 OPCIÓN A 04.05.2016 ORIENTACIONES: Comente sus planteamientos de tal modo que demuestre que entiende lo que hace. Tenga en cuenta que la extensión de sus respuestas está limitada

Más detalles

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 5 de octubre de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás. 5 de octubre de 2017 Juan P. Campillo Nicolás 5 de octubre de 017 1 1. Gravitación. 1. La órbita de Plutón en torno al Sol es elíptica. La relación de distancia entre su afelio y su perihelio es 5/3. Calcule la relación (cociente)

Más detalles

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS CUESTIONES (40 puntos). Se marcará con una cruz la casilla que se considere acertada (sólo hay una) en la hoja de respuestas (no en el cuestionario).

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. a) Un protón se mueve con una velocidad v paralela a la dirección de un campo magnético. Qué fuerza experimenta este protón? b) Un protón y un positrón se mueven en el mismo campo magnético y describen

Más detalles

Selección de Problemas de Física Curso 2008/2009. Problemas relacionados con los criterios PAU

Selección de Problemas de Física Curso 2008/2009. Problemas relacionados con los criterios PAU Problemas relacionados con los criterios PAU Interacción Gravitatoria 1. Galileo descubrió hacia el 1600 los cuatro satélites mayores de Júpiter mirando a través de su anteojo. Hoy día se sabe que uno

Más detalles

T M. , que se puede escribir: M. $T T periodo de la Tierra en su movimiento alrededor del Sol es de 1 año, la duración del año.

T M. , que se puede escribir: M. $T T periodo de la Tierra en su movimiento alrededor del Sol es de 1 año, la duración del año. Física de º Bachillerato Junio de 11 Opción A. Ejercicio 1 [a] Un satélite artificial describe una órbita elíptica con el centro de la Tierra en uno de sus focos. Se conserva la energía cinética del satélite?

Más detalles

Examen de la 2ª Evaluación 27/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Examen de la 2ª Evaluación 27/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Física º Bach. Examen de la ª Evaluación 7/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige y desarrolla una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1 cada apartado)

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS FÍSICA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS CURSO 2º BCT I.E.S. Santiago Hernández Zaragoza 2 FÍSICA 2º BCT CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS Contenidos mínimos: Se consideran como contenidos

Más detalles

UNIBERTSITATERA SARTZEKO EBALUAZIOA 2017ko UZTAILA. Azterketa honek bi aukera ditu. Haietako bati erantzun behar diozu.

UNIBERTSITATERA SARTZEKO EBALUAZIOA 2017ko UZTAILA. Azterketa honek bi aukera ditu. Haietako bati erantzun behar diozu. ko UZTAILA Azterketa honek bi aukera ditu. Haietako bati erantzun behar diozu. Ez ahaztu azterketako orrialde bakoitzean kodea jartzea. Aukera bakoitzak 2 ariketa eta 2 galdera ditu. Ariketa bakoitzak

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Departamento de Física y Química. Departamento de Física y Química

Departamento de Física y Química. Departamento de Física y Química 1. Un astronauta se aproxima a un planeta desconocido que posee un satélite. El astronauta lleva a cabo rápidamente las siguientes mediciones: i) radio del planeta; ii) radio de la órbita circular del

Más detalles

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elegir y desarrollar un problema y/o cuestión de cada uno de los bloques. El bloque de prácticas solo tiene una opción. Puntuación máxima: Problemas 6 puntos

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

GALICIA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO GICI / SPIMBR. OGS / ÍSIC / XMN COMPO XMN COMPO l examen de física de las P...U. presenta dos opciones de semejante nivel de dificultad. Cada opción consta de tres partes diferentes (problemas, cuestiones

Más detalles