Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo"

Transcripción

1 Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1

2 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos de u país La dea es resumr toda la formacó que hay e la poblacó e uos pocos úmeros (parámetros). Estadístco: Es ua catdad umérca calculada sobre ua muestra La altura meda de los que estamos e este aula. S u estadístco se usa para aproxmar u parámetro també se le suele llamar estmador.. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral

3 Meddas Descrptvas. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 3

4 U brevísmo resume sobre estadístcos Cetralzacó Poscó Idca valores co respecto a los que los datos parece agruparse. Meda, medaa y moda Dvde u cojuto ordeado de datos e grupos co la msma catdad de dvduos. Cuatles, percetles, cuartles, decles,... Dspersó Forma Idca la mayor o meor cocetracó de los datos co respecto a las meddas de cetralzacó. Desvacó típca, coefcete de varacó, rago, varaza Asmetría Aputameto o curtoss. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 4

5 Estadístcos de Cetralzacó So meddas que busca poscoes (valores) co respecto a los cuales los datos muestra tedeca a agruparse. Meda Artmétca: es el promedo de los valores de ua varable. Suma de los valores dvddo por el úmero de valores volucrados. Medaa: es u valor que dvde a las observacoes e dos grupos co el msmo úmero de dvduos. Moda: es el o los valores dode la dstrbucó de frecueca alcaza u máxmo. Es el valor mas repetdo etre los valores estudados. Meda Geométrca: es la raz -ésma del producto de u cojuto de valores. Meda Armóca: es el recíproco de la meda artmétca de los recíprocos de u cojuto de valores. Es decr, es el úmero de valores dvddo por la sumatora de los recíprocos de estos valores. Meda Cuadrátca: es la raz cuadrada del promedo de los cuadrados de los valores estudados. E uestro curso vamos a trabajar solo co las tres prmeras, por ser estas las de uso mas comú.. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 5

6 Meda Artmétca Puto de balace o cetro de masa de los datos. Catdad obteda al dvdr el total e partes guales etre cada ua de las observacoes. S se tee ua poblacó de N valores de ua varable x y ua muestra de tamaño de estos valores; las medas poblacoales y muestrales se defe como: Meda Poblacoal : µ N 1 N x Meda Muestral : x 1 x. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 6

7 Meda Artmétca S los valores de la varable x e la muestra (o N s es la poblacó) está orgazados e ua tabla de frecuecas absolutas (f ); la meda artmétca se calcula: x 1 x 1 f f 1 x f La suma algebraca de las desvacoes de u cojuto de valores de x respecto de su meda artmétca es cero. 1 ( x x) 0. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 7

8 Medaa La medaa de u cojuto de valores de ua varable x ordeados e forma crecete, es el valor cetral del ordeameto; es decr, es el valor de x para el cual la mtad de todos los valores de x so meores que el y la otra mtad es mayor que el. S el úmero de valores de la varable x es mpar; la medaa es el valor que se ecuetra a la mtad del grupo de valores: Md + 1 S el úmero de valores de la varable x es par; se cosdera la medaa como el promedo artmétco de los dos valores que se ecuetra a la mtad del grupo de valores: Md ( ) + +. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 8

9 Medaa S los valores de la varable x e la muestra está orgazados e ua tabla de frecuecas absolutas (f ); la medaa se calcula: Md L + f F 1 Ic Dode: L Límte feror de la clase, dode está la medaa. La clase es aquella dode se ecuetra el valor medo del grupo de datos. úmero total de valores de x volucrados. f frecueca absoluta de la clase ; es decr, de la clase dode se ecuetra la medaa. F 1 frecueca absoluta acumulada de la clase preva a la clase ; es decr, frecueca acumulada de todas las clases prevas a la clase dode se ecuetra la medaa. Ic tervalo de clase. (logtud del tervalo que abarca la clase). Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 9

10 Moda Es el o los valores mas comues etre u grupo de valores estudados. Es el o los valores dode la dstrbucó de frecuecas alcaza u máxmo. La moda puede ser mas de u valor. S todos los valores tee la msma frecueca, la moda o exste. S ua dstrbucó tee ua sola moda, se dce que es umodal, s tee dos modas, se dce que es bmodal; e geeral ua dstrbucó co varas modas se le cooce como multmodal. S la gráfca de la dstrbucó umodal es smétrca, la meda, la medaa y la moda cocde.. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 10

11 Moda S los valores de la varable x e la muestra está orgazados e ua tabla de frecuecas absolutas (f); la moda se calcula: Mo L Ic L + ( f f ) 1 ( f f ) + ( f f ) Ic Dode: L Límte feror de la clase, dode está la moda. La clase es aquella co la frecueca absoluta mayor del grupo de datos. f frecueca absoluta de la clase ; es decr, de la clase dode se ecuetra la moda. f 1 frecueca absoluta de la clase preva a la clase ; es decr, frecueca absoluta de la clase preva a la clase dode se ecuetra la moda. f + 1 frecueca absoluta de la clase sguete a la clase ; es decr, frecueca absoluta de la clase sguete a la clase dode se ecuetra la moda. Ic tervalo de clase. (logtud del tervalo que abarca la clase). Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 11

12 Muestra de 5 edfcos Ua muestra de cco edfcos señala que éstos tee 1, 1, 4, 8 y 9 apartametos. Exste algú valor que represete estos datos? Crteros de represetacó: Valor más comú 1, 1, 4, 8, 9 : Moda 1 Valor tal que la mtad de los datos so mayores o guales y la otra mtad meores o guales 1, 1, 4, 8, 9: Medaa 4 Valor alrededor del cual se agrupa los datos 1, 1, 4, 8, 9: Meda ( ) 5 4,6. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1

13 Meddas de tedeca cetral Dstrbucó delúm ero de apartam etos e cco edfcos Número de edfcos M ore Número de apartam etos Moda Medaa Meda. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 13

14 Ejemplo co datos o agrupados De acuerdo co la revsta Iformes al Cosumdor e su úmero de febrero de 1980, las cuotas auales de 40 compañías para u seguro de $ 5000 para hombres de 35 años de edad so la sguetes: (e $) (Caavos, p 5) Hallar la meda artmétca, la medaa y la moda Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 14

15 Cálculo de la meda artmétca La meda artmétca se calcula dvdedo la suma de las cuotas auales etre el úmero total de cuotas; es decr, etre 40. x 1 x , El valor 97,9 $ represeta la catdad alrededor de la cual se agrupa los datos, es el puto de balace o cetro de masa de los datos. Comprobemos esto calculado las desvacoes de cada valor co respecto a la meda y sumádolas. Esta suma debe ser ula. 1 1 ( x x) ( 8 97,) + ( 85 97,) ( 11 97,) ( x x) 15, 1, , Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 15

16 Cálculo de la medaa Ya que el úmero de valores es par, 40, la medaa es el promedo artmétco de los dos valores que se ecuetra a la mtad del grupo de valores Md Md ( ) ( 40 ) Md 98,5. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 16

17 Cálculo de la moda Es el o los valores mas comues etre u grupo de valores estudados El valor que aparece e mayor úmero de oportudades es el:, hay 5 cotzacoes de $ ; por lo tato la moda es gual a.. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 17

18 Ejemplo co datos agrupados Para el ejemplo de los salaros semaales de los empleados de la empresa P&R (clase pasada), hallar la meda artmétca, la medaa y la moda de los datos, agrupádolos e ua tabla de dstrbucó de frecuecas Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 18

19 Ejemplo co datos agrupados R 319, ,5 70 As, podemoscostrur ua tabla co 7clases y u Ic 10. E cada clase vamos a cosderar cludos los límtes ferores; y por ede, excludos los límtes superores. Ic x f h F H % 8 1 % % 18 7 % % 34 5 % % % % % % % % %. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 19

20 Cálculo de la meda artmétca La meda artmétca se calcula dvdedo la suma de los productos de cada frecueca absoluta de clase por el cetro de clase etre la frecueca acumulada de la últma clase; es decr, etre 65. x 1 x f ( 55)( 8) + ( 65)( 10) ( 315)( ) 65 79,77. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 0

21 Cálculo de la medaa Md Ic E prmer lugar hallamos el dato cetral, que e este caso esta etre el 3 y el 33; es decr, el úmero 79. Este úmero correspode a la tercera clase. Esta es la clase de la medaa, a su límte feror le sumamos el resultado de multplcar el tervalo de clase por la dvsó de la dfereca etre el dato cetral (3,5) y la frecueca acumulada de la clase preva (clase co frecueca acumulada gual a 10) etre la frecueca absoluta de la clase de la medaa (16) Md L + f ( 10) 79, 06 F 1. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1

22 Cálculo de la moda Mo L Ic L + ( f f ) 1 ( f f ) + ( f f ) Ic E prmer lugar hallamos la clase de la moda; es decr, aquella clase co la mayor frecueca absoluta, e este caso 16. Este úmero correspode a la tercera clase. Esta es la clase de la moda, a su límte feror le sumamos el resultado de multplcar el tervalo de clase por la dvsó de la dfereca etre la frecueca absoluta de la clase modal (16) y la frecueca absoluta de la clase preva (clase co frecueca absoluta gual a 10) etre la suma de la dfereca ateror y la dfereca etre la frecueca absoluta de la clase modal (16) y la frecueca absoluta de la clase sguete (clase 4 co frecueca absoluta gual a 14). ( 16 10) ( ) ( ) ( 10) , 5 Mo Estadístca. UNITEC Tema : Meddas de Tedeca Cetral

23 Meddas de Tedeca Cetral y el Polígoo de Frecuecas Frecueca Absoluta Medaa (79,06) Moda Salaro Semaal ($) (77,50) Meda (79,77). Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 3

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva. Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

n 2 fi donde: n es el número de individuos

n 2 fi donde: n es el número de individuos ESTADÍSTICA. INTRODUCCIÓN La ecesdad de poseer datos cfrados sobre la poblacó y sus codcoes materales de exsteca ha debdo hacerse setr desde que se establecero socedades humaas orgazadas. Desde los comezos

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

PARÁMETROS ESTADÍSTICOS

PARÁMETROS ESTADÍSTICOS www.matesroda.et José Atoo Jméez eto PARÁMETROS ESTADÍSTICOS. PARÁMETROS DE CETRALIZACIÓ La formacó recogda e ua tabla o gráfca estadístca suele resumrse e uos pocos valores que os forma del comportameto

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

1. Conceptos fundamentales de la estadística. Estadística descriptiva.

1. Conceptos fundamentales de la estadística. Estadística descriptiva. BLOQUE. VALORACÓ MOBLARA. SSTEMAS DE LA FORMACÓ. GESTÓ PATRMOAL. T E M A 9 Estadístca y valoracó urbaa (): Coceptos fudametales de la Estadístca. La Estadístca descrptva. Represetacoes gráfcas. Meddas

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA TRATA DE DESCRIBIR CONJUNTOS DE DATOS RESUMIENDO LA INFORMACIÓN QUE ESTOS PROPORCIONAN, UTILIZANDO: TABLAS DE FRECUENCIAS GRÁFICAS MEDIDAS NUMÉRICAS REPRESENTATIVAS (POSICIÓN, DISPERSIÓN

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Estadistica Descriptiva

Estadistica Descriptiva Estadstca Descrptva Marques de Catú, María José (990). Probabldad y Estdístca para Cecas Químco-Bológcas, Méxco, D. F.: Mc. Graw Hll. pp. 74-7. ORGANIZACIÓN Y REPORTE DE DATOS: TABLAS Y GRÁFICAS Los datos

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población ESTADÍSTICA U poco de hstora El orge de la estadístca se ecuetra e el térmo Estado, pues uero los goberates los que prmero se preocuparo de elaborar y clascar las termables lstas de los recursos humaos

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

ESTADÍSTICA. Es una variable cualitativa, con cuatro modalidades distintas.

ESTADÍSTICA. Es una variable cualitativa, con cuatro modalidades distintas. ESTADÍSTICA La Estadístca es la parte de las Mateátcas que estuda étodos para terpretar datos obtedos de vestgacoes o experetos aleatoros (aquellos e los que o se puede predecr el resultado auque se realce

Más detalles

TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA

TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA ANÁLISIS DESCRIPTIVO TEMA DE VARIABLES CUANTITATIVAS 4..Itroduccó 4..Propedades estadístcas de las varables cuattatvas 4.3. Descrpcó de muestras pequeñas 4.3.. Herrametas para el aálss gráfco 4.3.. Herrametas

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

CAPITULO 7 MEDIDAS DE FORMA

CAPITULO 7 MEDIDAS DE FORMA CAPITULO 7 MEDIDAS DE FORMA Las meddas de orma permte comprobar s ua dstrbucó de recueca tee característcas especales como smetría, asmetría, vel de cocetracó de datos y vel de aputameto que la clasque

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

2 Representación gráfica de las series de frecuencias.

2 Representación gráfica de las series de frecuencias. Estadístca Tema. Geeracó de valores de ua varable aleatora. Pág. Represetacó gráfca de las seres de frecuecas.. Represetacó gráfca de caracteres cualtatvos... Dagramas dferecales... Dagramas tegrales..

Más detalles

PROBABILIDAD Y ESTADÍSTICA APLICADA

PROBABILIDAD Y ESTADÍSTICA APLICADA UNIVERSIDAD ORT Uruguay Facultad de Igeería Berard Wad - Polak PROBABILIDAD Y ESTADÍSTICA APLICADA NOTAS DE CLASE DEL CURSO DE LA Lcecatura e Sstemas FASCÍCULO Prof. Orual Ada Cátedra de Matemátcas Año

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez

ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA La ceca descrbe, explca y predce. Stephe Hawg, e Hstora del tempo. Objetvo de la udad: E el desarrollo de la presete Udad de Apredzaje (UA), el estudate stetzará u cojutos de datos,

Más detalles

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011 Problemas de Polímeros Químca Físca Avazada Iñak Tuñó / POL.-U polímero moodsperso de masa molecular. gmol - está cotamado e u % e peso co ua mpureza de peso molecular. gmol -. Calcular z,, Co los datos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Tecnológico de Estudios Superiores de Cuautitlán Izcalli DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Tecnológico de Estudios Superiores de Cuautitlán Izcalli DIVISIÓN DE INGENIERÍA ELECTRÓNICA Tecológco de Estudos Superores de Cuauttlá Izcall DIVISIÓN DE INGENIERÍA ELECTRÓNICA CUADERNILLO DE PROBABILIDAD Y ESTADÍSTICA ELABORO REVISO M. e C. FELIX ANTONIO SAUCEDO ESQUIVEL Vo. Bo. ING. MARIA DEL

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos Feómeos determístcos TEMA I. ESTADÍSTICA DESCRIPTIVA Llamados també causales,

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz ISBN: xxxxxxxxx Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo VI: Capítulo VII: Hstora

Más detalles

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística.

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística. Pága del Colego de Matemátcas de la ENP-UNAM Estadístca descrptva Autor: Dr. José Mauel Becerra Esposa ESTADÍSTICA DESCRIPTIVA UNIDAD I I. DEFINICIÓN Y CLASIFICACIÓN DE VARIABLES La estadístca descrptva

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA Se llama varable aleatora a toda fucó defda e el espaco muestral de u epermeto aleatoro que asoca a cada elemeto del espaco u úmero real X : E R El cocepto de varable aleatora surge

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles