PRINCIPALES DISTRIBUCIONES DISCRETAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRINCIPALES DISTRIBUCIONES DISCRETAS"

Transcripción

1 PRINCIPALES DISTRIBUCIONES DISCRETAS Objetivos generales del tema En este tema definiremos y discutiremos diversas e imortantes distribuciones discretas, es decir, funciones masa de robabilidad o funciones de distribución corresondientes a variables aleatorias discretas. Veremos las roiedades más imortantes. Distribución de Bernoulli. Distribución Binomial. Distribución Binomial Negativa. Distribución Hiergeométrica. Distribución de Poisson. Princiales contenidos 1

2 1 Introducción Recordemos que una variable aleatoria X tiene una distribución de robabilidad discreta (o simlemente una distribución discreta) si: P (X = x i )= ½ i si x = x i (i =1, 2,...) 2 Distribución de Bernoulli con i 0 y P i i =1 La distribución de Bernoulli es una distribución que toma dos valores (1 y0) con robabilidad y 1. Habitualmente esta distribución aarece en exerimentos donde se identifica el suceso 1=EXITO y 0=FRACASO. Definición 1 Una v.a. X tiene una distribución de Bernoulli si (ara algún con 0 1) P (X =1) = P (X =0) = 1 Ejemlo 2 La v.a. que define el exerimento lanzamiento de una moneda sigue una distribución de Bernoulli de arámetro. Donde es la robabilidad del suceso de interés, cara o cruz. PROPIEDADES Distribución de Bernoulli de arámetro Media µ E (X) = Varianza σ 2 Var(X) = (1 ) Desviación Tíica σ (1 ) 3 Distribución Binomial La distribución Binomial de arámetro n y (Bi(n, )) surge como una secuencia n intentos del tio de Bernoulli que verifica: Losintentossonindeendientes. Cada resultado del intento uede tomar únicamente dos resultados mutuamente excluyentes, que denotaremos or EXITO (E) o FRACASO (F). La robabilidad de éxito (y or lo tanto la de fracaso) es constante en cada intento. Así cada intento, definiendo = P (EXITO) y asignando el valor 0 cuando ocurre F y el valor 1 cuando ocurre E, se uede describir como una distribución de Bernoulli de arámetro. 2

3 Definición 3 Una v.a. X tiene una distribución Binomial si (ara algún entero ositivo n yalgún con 0 1) mide X = "n o de éxitos de un total de n si la robabilidad de éxito es " µ n P (X = k) = k (1 ) n k si k =1, 2,...,n k Distribución Binomial n =25, =0.25. La forma de la distribución binomial va aumentando hasta m =(n +1) y desués comienza a bajar. Una v.a. binomial uede ser considerada como una suma de n variables aleatorias de Bernoulli de arámetro, es decir, como la variable indicadora del número de éxitos en n ruebas de Bernoulli, es decir, si denotamos or X i el i-ésimo intento de Bernoulli, entonces, X = P n i=1 X i. Observación 4 La distribución de Bernoulli es un caso articular de la distribución Binomial con n =1. Proosición 5 Si X tiene la distribución Binomial con n (número de intentos) y (robabilidad de éxito que denotaremos or X Bi(n, )) entoncesla variable Y = n X, que reresenta el número de fracasos, es una variable de Binomial con n (número de intentos) y robabilidad de éxito 1. PROPIEDADES X Bi(n, ) Y = n X Bi(n, 1 ) Distribución Binomial de arámetros n y Media µ E (X) =n Varianza σ 2 Var(X) =n (1 ) Desviación Tíica σ n (1 ) 3

4 Ejemlo 6 En una fábrica hay 12 máquinas. Cada una de ellas está averiada un día de cada 10. Cuál es la robabilidad de que un determinado día haya más de 3 máquinas averiadas? Sea la variable X ="n o de máquinas averiadas de un total de 12 si P (avería) = 0, 1" Bi(n =12,=0.1). P (X >3) µ = 1 P (X 3) = 1 [P µ (X =0)+P (X =1)+P (X =2)+P (X =3)]= 12 = (1 0.1) (1 0.1) µ 0 µ (1 0.1) (1 0.1) = = La v.a. binomial está tabulada ara valores equeños de n. Hay tablas que dan la función de masa de robabilidad P (X = k) o bien la función de distribución P (X k), aunque sólo vienen ara valores Distribución Binomial Negativa La distribución Binomial Negativa de arámetro r y (BN (r, )) surge como una secuencia infinita de intentos del tio de Bernoulli que verifican: La secuencia de intentos es indeendiente. Cada resultado del intento uede tomar únicamente dos resultados mutuamente excluyentes, que denotaremos or EXITO (E) o FRACASO (F). La robabilidad de éxito (y or lo tanto la de fracaso) es constante en cada intento. Los intentos continúan (se ejecutan) hasta que un total de r éxitos se hayan observado. Así cada intento, definiendo = P (EXITO) y asignando el valor 0 cuando ocurre F y el valor 1 cuando ocurre E, se uede describir como una distribución de Bernoulli de arámetro. Definición 7 Una v.a. X tiene una distribución Binomial Negativa si (ara algún entero ositivo r y algún con 0 1) X = "n o de fracasos hasta el r ésimo éxito si = P (EXITO) " µ r + k 1 P (X = k) = r (1 ) k si k =0, 1, 2,... k 4

5 Proosición 8 Si X tiene la distribución Binomial Negativa con r (número de éxitos) y (robabilidad de éxito) que denotaremos or X BN (r, ) entonces la variable Y = X + r, que reresenta el número de ruebas ara del éxito r-ésimo, tiene una distribución relacionada con X or: µ k 1 P (Y = k) =P (X = k r) = r (1 ) k r si k = r, r +1,r+2,... k r Observación 9 La distribución Binomial Negativa con r =1es conocida en la literatura or distribución geométrica de arámetro y mide el número de fracasos antes del rimer éxito. PROPIEDADES Distribución Binomial Negativa de arámetros r y (1 ) Media µ E (X) =r Varianza σ 2 (1 ) Var(X) =r 2 r (1 ) Desviación Tíica σ 5 Distribución Hiergeométrica La distribución Hiergeométrica de arámetros k, n y N (HG(k, n, N)) surge en situaciones en donde el modelo aroximado de robabilidad se corresonde con muestreo sin reemlazamiento de una oblación dicotómica (Exito y Fracaso) finita. Concretamente, las suosiciones que llevan a considerar esta distribución son: La oblación o conjunto donde deba hacerse el muestreo consta de N individuos o elementos a seleccionar. Cada individuo uede ser caracterizado como un éxito (E) o fracaso (F). Se selecciona una muestra de n individuos de entre los k individuos marcados como éxito y los N k restantes marcados como fracaso. Hay selección equirobable en cada aso. Definición 10 Una v.a. X tiene una distribución Hiergeométrica si (ara algunos enteros ositivos k, n y N) X = "n o de individuos de un total de n con cierta característica (éxito) si en N hay un total de k" 5

6 P (X = x) = µ µ k N k x n k µ si max {0,n (n k)} x min (n, k) N n Proosición 11 Podemos aroximar la distribución Hiergeométrica a la distribución Binomial, uesto que cuando N es grande (N > 10n) odemos suoner que X Bi(n, ) con = k N. PROPIEDADES Distribución Hiergeométrica de arámetros k, n y N Media µ E (X) =n Varianza σ 2 Var(X) =nq N n Desviación Tíica σ r nq N n N 1 N 1 Ejemlo 12 De cada tornillos fabricados or una determinada máquina hay 2 defectuosos. Para realizar el control de calidad se observan 150 tornillos y se rechaza el lote si el número de defectuosos es mayor que 1. Calcular la robabilidad de que el lote sea rechazado. Sea X ="n o de defectuosos de un total de n =150si en N =2.000 hay un total de k =2" HG(k =2,n= 150,N =2.000) Se ide P (X >1) = 1 [P (X =0)+P (X =1)]= µ µ µ µ = µ + µ Como los cálculos son comlicados, se va a aroximar la v.a. X or una binomial Bi n = 150,= =0.001 P (X µ >1) = 1 [P (X =0)+P (X =1)]= µ 150 = ( ) ( ) Distribución de Poisson Consideremos sucesos ("éxitos") que ocurren aleatoriamente a lo largo del tiemodysealav.a. X ="n o de sucesos en el intervalo de tiemo (0,t)". La distribución de Poisson de arámetro λ surge en los llamados rocesos de Poisson que se resenta en relación con el acontecimiento de éxitos de un tio articular 6

7 durante un intervalo continuo de tiemo. Las suosiciones de un roceso de Poisson, durante un intervalo de tiemo que emieza en t =0son: Existe un arámetro λ tal que ara cualquier intervalo corto de tiemo 4t, la robabilidad de que ocurra exactamente un éxito es λ4t. La robabilidad de que se roduzca más de un éxito en el intervalo 4t es o (4t) 1. El número de éxitos ocurrido en un intervalo 4t es indeendiente del número ocurrido antes de este intervalo de tiemo. Definición 14 Una v.a. X tiene una distribución de Poisson si (ara algún λ con λ 0) X = n o de éxitos en un intervalo de tiemo si el n o medio es λ λ λk P (X = k) = e si k =0, 1, 2,... k! Proosición 15 Sea X Poisson(λ 1 ), Y P oisson (λ 2 ) indeendientes, entonces la variable X + Y Poisson(λ 1 + λ 2 ) Proosición 16 Se uede considerar que una v.a. Poisson(λ) es límite de una binomial Bi(n, ) si <0.1 y n < 5 Proosición 17 La distribución de Poisson resenta su máximo en los untos x = λ y x = λ 1. 1 Definición 13 o (4t) si o(4t) lim =0 t 4t 7

8 PROPIEDADES Distribución de Poisson de arámetros λ Media µ E (X) =λ Varianza σ 2 Var(X) =λ Desviación Tíica σ λ Ejemlo 18 En un taller se averían una media de 2 máquinas a la semana. Calcula la robabilidad de que no haya ninguna avería en una semana. Y de que haya menos de 6 en un mes? Sea X ="n o de averías en una semana si de media hay λ =2" Poisson(λ =2). Entonces 2 20 P (X =0)=e 0! =0.14 Sienunasemanahay2averíasdemedia,entoncesenunmeshay2 4 =8 averías de media. Sea entonces Y ="n o de averías en un mes si de media hay λ =8" Poisson(λ =8) P (Y 5) = P (Y =0)+ + P (Y =5)=e + + e 2 0! 5! =

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. Estadística alicada a la emresa I Prof. D. Juan José Pérez Castejón 1 CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. En este tema se ersigue introducir el conceto

Más detalles

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por:

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por: Distribución Bernoulli Una rueba o exerimento Bernoulli tiene uno de dos resultados mutuamente excluyentes, que generalmente se denotan S (éxito) y F (fracaso). Por ejemlo, al seleccionar un objeto ara

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD

7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD 7. DISTRIBUCIOES DISCRETAS DE PROBABILIDAD La Distribución Binomial Esta distribución fue elaborada or Jacobo Bernoulli y es alicable a un gran número de roblemas de carácter económico y en numerosas alicaciones

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos loque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos 5.1-1 Se lanzan al aire tres monedas iguales, describe todos los sucesos del esacio muestral. Sean los sucesos A = sacar al

Más detalles

Tema 4. Experimentos aleatorios. Cálculo de probabilidades.

Tema 4. Experimentos aleatorios. Cálculo de probabilidades. Tema 4. Exerimentos aleatorios. Cálculo de robabilidades. Indice 1. Tios de sucesos. Sucesos robabilísticos.... 2 2. Álgebra de oole... 2 2.1. efiniciones... 2 2.2. Oeraciones. Tios de sucesos... 3 2.3.

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

REDES AUTOORGANIZATIVAS

REDES AUTOORGANIZATIVAS Tema 5: Redes Autoorganizativas Sistemas Conexionistas 1 REDES AUTOORGANIZATIVAS 1. Introducción a la Autoorganización. 2. Arendizaje Cometitivo. 3.1. Carácterísticas. 3.2. Ventajas y Limitaciones. 3.

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

CAPÍTULO 4: FIJACIÓN DE LAS PRIMAS Y ANÁLISIS DE LA VARIABLE BORROSO ALEATORIA

CAPÍTULO 4: FIJACIÓN DE LAS PRIMAS Y ANÁLISIS DE LA VARIABLE BORROSO ALEATORIA arte III: Análisis de la determinación de las rimas en los seguros de vida y de la solvencia dinámica del asegurador cuando los tios de interés de valoración vienen estimados a través de números borrosos

Más detalles

Tema 2 - Introducción

Tema 2 - Introducción Tema 2 - Introducción 1 Tema 1. Introducción a la inferencia estadística Planteamientos y objetivos. Revisión de distribuciones multivariantes. Esperanza y varianza de sumas de v.a. independientes. Tema

Más detalles

6. Métodos para resolver la ecuación completa.

6. Métodos para resolver la ecuación completa. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 6. Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y +

Más detalles

RENDIMIENTO de TRANSFORMADORES

RENDIMIENTO de TRANSFORMADORES ENDMENTO de TANSFOMADOES Norberto A. Lemozy NTODCCÓN El conocimiento del rendimiento de cualquier máquina, disositivo o sistema tiene una gran imortancia or el valor económico que ello reorta, tanto desde

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Regresión Logística. Introducción

Regresión Logística. Introducción Introducción En este tema estudiaremos cómo construir y analizar un modelo de regresión que retende reresentar la deendencia lineal de una variable resuesta con dos categorías (dicotómica) resecto a otras

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos Caítulo 4 Control de Fase 4.1 Concetos Teóricos En este caítulo se resentará el método de control de fase ara convertidores AC/DC conmutados or línea, comúnmente conocidos como rectificadores controlados.

Más detalles

sección página desplazamiento

sección página desplazamiento 1 1.- PROBLEMA (30%) Un sistema de gestion de memoria soorta esacios de direcciones logicas de 32 bits y un modelo de memoria aginado con tama~nos de agina de 4K bytes. Con estos datos, la tabla de aginas

Más detalles

9. Lección 9: Cambios de Fase

9. Lección 9: Cambios de Fase 9. Lección 9: Cambios de Fase Cuando un sistema consiste de más de una fase, cada fase uede ser considerada como un sistema searado del todo. Los arámetros termodinámicos del sistema entero ueden ser construidos

Más detalles

Capítulo 3. Congruencias. 3.1. Clases residuales

Capítulo 3. Congruencias. 3.1. Clases residuales Caítulo 3 Congruencias 3.1. Clases residuales En su obra Disquisitiones Arithmeticae, ublicada en el año 1801, Gauss introdujo el conceto de congruencia. Suongamos que a, b y m > 0 son números enteros.

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Cálculo del poder estadístico de un estudio

Cálculo del poder estadístico de un estudio Investigación: Cálculo del oder estadístico de un estudio /7 Cálculo del oder estadístico de un estudio Pértegas Día, S. sertega@canalejo.org, Pita Fernánde, S. sita@canalejo.org Unidad de Eidemiología

Más detalles

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia

Semestre Económico ISSN: 0120-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Semestre Económico ISSN: 00-6346 semestreeconomico@udem.edu.co Universidad de Medellín Colombia Cárcamo C., Ulises LOS FUNDAMENTOS MATEMÁTICOS DE LA TEORÍA DE LAS FINANZAS (II): INCLUYENDO INCERTIDUMBRE

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

Ejercicios Riesgo y Retorno Resueltos

Ejercicios Riesgo y Retorno Resueltos Ejercicios Riesgo y Retorno Resueltos Comentes:. ara lograr el efecto diversificación en un ortafolio debemos necesariamente invertir en activos que no se correlacionen o que tienen correlación negativa.

Más detalles

CORRELACIONES EN FINANZAS

CORRELACIONES EN FINANZAS CORRELACIONES EN FINANZAS Juan Carlos García Césedes E-mail jcgarcia@gruobbva.com SEMINARIO E MATEMATICAS FINANCIERAS Instituto MEFF - UAM Enero.00 OBJETIVOS! iscutir el conceto de correlación! Exoner

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Introducción a los. Árboles de Decisión

Introducción a los. Árboles de Decisión ntroducción a los Árboles de Decisión ntroducción: Un árbol de decisión es una forma gráfica y analítica de reresentar todos los eventos (sucesos) que ueden surgir a artir de una decisión asumida en cierto

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Capítulo 4. Diseño de filtros digitales 1

Capítulo 4. Diseño de filtros digitales 1 53 Caítulo 4 Diseño de filtros digitales 1 Diseñar un filtro consiste en encontrar su función de transferencia (realizable y estable) ara su osterior realización mediante una estructura adecuada. En la

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Ejercicios rouestos 1. Los datos originales a menudo necesitan ser codificados (transformados) ara facilitar el cálculo. Qué consecuencias tienen en el cálculo de la media

Más detalles

11. CAMBIOS DE FASE. Transiciones de fase de primer orden en sistemas de un componente. 11. Cambios de fase

11. CAMBIOS DE FASE. Transiciones de fase de primer orden en sistemas de un componente. 11. Cambios de fase 11. CAMBIOS DE FASE Discutiremos en este Caítulo las transiciones de fase y el equilibrio de fases, o sea el estudio de las condiciones bajo las cuales ueden coexistir dos o más fases. Entre los temas

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

El Cáncer al Pulmón en el Ecuador

El Cáncer al Pulmón en el Ecuador "Detección y análisis estadístico de los rinciales factores que inciden en el cáncer al ulmón" Por: Juan Javier Laínez Bolaños. Coautor: Mat. John Ramírez. Ingeniero en Estadística Informática. Director

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Maximización n de la Utilidad

Maximización n de la Utilidad aimización n de la Utilidad icroeconomía Eco. Douglas Ramírez Los elementos básicos Hemos descrito hasta el momento los elementos básicos del roblema de decisión del consumidor Su conjunto de elección

Más detalles

Atractores en dominios tipo dumbbell

Atractores en dominios tipo dumbbell XX Congreso de Ecuaciones Diferenciales y Alicaciones X Congreso de Matemática Alicada Sevilla, 24-28 setiembre 27 (. 1 8) Atractores en dominios tio dumbbell José M. Arrieta 1, Alexandre N. Carvalho 2,

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

Tema nº 10. Acciones Básicas de Control. Vicente Gómez Garay Dpto. de Ingeniería de Sistemas y Automática

Tema nº 10. Acciones Básicas de Control. Vicente Gómez Garay Dpto. de Ingeniería de Sistemas y Automática Tema nº 10 Acciones Básicas de Control Vicente Gómez Garay Dto. de Ingeniería de Sistemas y Automática Este tema forma arte de los auntes de teoría de la asignatura Automatización de Procesos Industriales,

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS 1. Estados de equilibrio de un sistema. ariables de estado. Transformaciones 1 2. Ecuación de estado ara comortamiento ideal de un gas 2 3. olumen molar

Más detalles

PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN

PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN 1. DEFINICIONES Puesta a tierra: Conjunto constituido or una o más tomas de tierra interconectadas y sus conductores de tierra corresondientes, conectados al

Más detalles

ESTUDIO DE LA MÁQUINA DE C.C.

ESTUDIO DE LA MÁQUINA DE C.C. ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº 3: Sistemas Eléctricos ESTUDIO DE LA MÁQUINA DE C.C. Sistemas Eléctricos 2009-2010. La Máquina de Corriente Continua

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

Apuntes de Microeconomía II

Apuntes de Microeconomía II . Facultad de Economía Auntes de Microeconomía II.......... Teoría del Consumidor, Teoría del Productor, Teoría de Juegos y Cometencia Imerfecta Por: Juan Carlos Mendieta Lóez jmendiet@uniandes.edu.co

Más detalles

Prof. Daniel Villar Escuela Técnica del Buceo 2009

Prof. Daniel Villar Escuela Técnica del Buceo 2009 Matemática: Teórico 009 Seguramente el lector ya conoce estructuras numéricas, naturales, enteros, racionales. Sus diferencias y carencias. Qué hizo necesario la creación de una estructura aún más amlia

Más detalles

ESTADÍSTICA. Tablas de Distribuciones de Probabilidad. En este documento aparecen tabuladas las siguientes distribuciones de probabilidad 1 :

ESTADÍSTICA. Tablas de Distribuciones de Probabilidad. En este documento aparecen tabuladas las siguientes distribuciones de probabilidad 1 : ESTADÍSTICA, CURSO 2008 2009 1 ESTADÍSTICA Tablas de Distribuciones de Probabilidad En este documento aarecen tabuladas las siguientes distribuciones de robabilidad 1 : Tabla I: robabilidades binomiales

Más detalles

5.2. Selección Adversa

5.2. Selección Adversa 5.2. Selección Adversa Matilde P. Machado matilde.machado@uc3m.es 5.2. Selección Adversa Asimetría de información se da siemre que una de las artes en una transacción tiene más información que otra. Ejemlos:

Más detalles

Reporte de práctica. Materia: Procesos Estócasticos. Facilitador: Ing. Pedro Martín García Vite. Integrantes: Armendáriz Flores Adrián

Reporte de práctica. Materia: Procesos Estócasticos. Facilitador: Ing. Pedro Martín García Vite. Integrantes: Armendáriz Flores Adrián Reporte de práctica Materia: Procesos Estócasticos Facilitador: Ing. Pedro Martín García Vite Integrantes: Armendáriz Flores Adrián Cruz Hernández Emmanuel González Manuel Ana Silvia Tema: Gráficas de

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6 " FILTROS ACTIVOS "

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6  FILTROS ACTIVOS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6 " FILTROS ACTIVOS " OBJETIVOS - Conocer algunas toologías ara el diseño de

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

SERIES DE FOURIER, NOCIONES BÁSICAS

SERIES DE FOURIER, NOCIONES BÁSICAS SERIES DE FOURIER, NOCIONES BÁSICAS E. SÁEZ Recordemos que una función f, definida en el intervalo cerrado y centrado [,], > es seccionalmente continua si y sólo si tiene las dos roiedades siguientes:

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

Cálculo de probabilidades

Cálculo de probabilidades Cálculo de probabilidades 1. Sean A y B dos sucesos de un espacio muestral, con probabilidades P(A)=0.3, P(B)=0.7. Indica si son verdaderas o falsas las siguientes afirmaciones: a) Los sucesos A y B son

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Generación de valores de las variables aleatorias

Generación de valores de las variables aleatorias Generación de valores de las variables aleatorias Juan F. Olivares-Pacheco * 14 de junio de 007 Resumen En todo modelo de simulación estocástico, existen una o varias variables aleatorias interactuando.

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Programación en R para Estadística. Simulación

Programación en R para Estadística. Simulación Programación en R para Estadística 1 de 2 Programación en R para Estadística Simulación J. Elías Rodríguez M. Facultad de Matemáticas Universidad de Guanajuato XXIII Foro Nacional de Estadística 11 de

Más detalles

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10).

En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). MODELOS DE PROBABILIDAD En una plantación de manzanos, el peso en kg de la fruta producida anualmente por cada manzano sigue una distribución normal N(50; 10). (a) Si tomamos dos manzanos al azar, cuál

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Práctica 1: Transformada de Fourier virtual a distancia finita

Práctica 1: Transformada de Fourier virtual a distancia finita Práctica 1: Transformada de Fourier virtual a distancia finita 1.1 Objetivo El objetivo de esta ráctica es la observación y estudio de la transformada de Fourier de diversas redes de difracción y, en articular,

Más detalles

VENTAJAS DE USAR SUBREDES EN UNA RED AD-HOC CON NODOS MOVILES

VENTAJAS DE USAR SUBREDES EN UNA RED AD-HOC CON NODOS MOVILES VETAJAS DE USAR SUBREDES E UA RED AD-HC C DS MVIES Johann óez, José M. Barceló, Jorge García-Vidal Deartamento de Arquitectura de Comutadores, Universidad Politécnica de Cataluña (UPC) C/Jordi Girona 1-3,

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama MECANICA DE FLUIDOS I Juan Chamorro González Deartamento de Metalurgia Universidad de Atacama PRESIÓN Y MANOMETRÍA La Presión El término resión se usa ara indicar la fuerza normal or unidad de área en

Más detalles

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD www.siresistemas.com/clases Ing. Oscar Restrepo DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 1. Debido a las elevadas tasas de interés, una empresa reporta que el 30% de sus cuentas por cobrar de otras empresas

Más detalles

TEMA 7 TEMA 7. SERIES TEMPORALES. Carmen Arriero Villacorta 1. DEFINICIÓN. Serie temporal de aeronaves Aeropuerto de Ibiza

TEMA 7 TEMA 7. SERIES TEMPORALES. Carmen Arriero Villacorta 1. DEFINICIÓN. Serie temporal de aeronaves Aeropuerto de Ibiza TEMA 7 SERIES TEMPORALES Carmen Arriero Villacorta CURSO 212 213 1 Nº Aeronaves 1. DEFINICIÓN Una serie temoral es una serie estadística cuyos valores deenden del tiemo. D(t, Y t ) Y 1, Y 2,,, Y t,, Y

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

Polinomios cuadráticos en F p

Polinomios cuadráticos en F p Polinomios cuadráticos en F Mario Pineda Ruelas Deartamento de Matemáticas, Universidad Autónoma Metroolitana-Iztaalaa correo electrónico: mr@xanum.uam.mx Gabriel D. Villa Salvador Deartamento de Control

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles