En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:"

Transcripción

1 TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo, o bie puede costar mucho tiempo, o mucho diero, el aalizar cada uidad poblacioal. E estos casos, la úica salida es hacer uso de la iferecia estadística, basádoos e la iformació coteida e u muestreo aleatorio simple. Así, si supoemos ua població defiida por ua variable aleatoria X, co fució de desidad f(x,), siedo u parámetro poblacioal descoocido, el objeto de la teoría de la estimació cosiste e tratar de determiar el parámetro poblacioal descoocido, a partir de ua muestra aleatoria simple de tamaño. 6.1 Al fializar el tema el alumo debe coocer... Importacia de la estimació putual. Coceptos fudametales de la iferecia estadística como: Població, muestra, parámetro poblacioal, estadístico muestral, estimació. Las características fudametales de los dos métodos que vamos a utilizar e la iferecia estadística para obteer el valor del parámetro poblacioal: estimació y cotrastació de hipótesis. Objetivo y características fudametales de la estimació putual. Propiedades de los estimadores putuales. La utilizació de los métodos de obteció de estimadores. El método de los mometos. El método de la máxima verosimilitud. 6. Importacia de la estimació putual. E el tema aterior se estudió que muchas decisioes se toma a partir de resultados muestrales. Por ejemplo: - Para estimar el gasto medio mesual de las familias de la Comuidad de Madrid co u ivel de reta fijado se extrae ua muestra aleatoria. - U Ayutamieto seleccioa a ua muestra de vecios para comprobar el - 1 -

2 grado medio de aceptació de u determiado programa de bieestar. - Ua caja de ahorros española, para estimar la proporció de empleados que se ivolucraría a la hora de desarrollar sistemas tecológicos e sus oficias, seleccioa ua muestra aleatoria. Cualquier iferecia que se haga sobre la població tedrá que basarse e estadísticos muestrales, la elecció de estos estadísticos depederá del parámetro a estudiar de la població. El verdadero parámetro será descoocido, y muestro objetivo será estimar su valor basádoos e la iformació coteida e ua muestra aleatoria seleccioada de esa població. Así, se puede proceder mediate estas dos alterativas: 1. Estimació. Los tipos fudametales de estimació so: Estimació putual Estimació por itervalo. Verificació de hipótesis. Mediate ambos, el objetivo fial es llegar a ua coclusió o iferecia sobre el parámetro poblacioal que es descoocido. De lo expuesto hasta ahora, se deduce que e la práctica o es ecesario calcular todas las posibles uestras de tamaño de ua població, sio que se utiliza directamete lo que la Teoría Estadística ha demostrado. Se extrae ua muestra aleatoria simple de la població y se observa e sus elemetos el valor de la variable de iterés. Vemos por tato que existe diferecia etre estimador y estimació. Utilizamos el térmio estimador cuado os referimos a ua variable aleatoria que depede de la iformació de la muestra y cuyas realizacioes proporcioa ua aproximació al valor descoocido del parámetro poblacioal. Los valores que toma la fució estimador, para las diferetes realizacioes o muestras cocretas, será las estimacioes. Se llama estimació a u valor específico del estimador. - -

3 6.3 Las características fudametales de los dos métodos que vamos a utilizar e la iferecia estadística para obteer el valor del parámetro poblacioal: estimació y cotrastació de hipótesis Estimació putual. E ua estimació putual se utiliza u solo úmero o valor para determiar ua estimació del parámetro poblacioal descoocido. E la estimació putual se asume que el estadístico es u bue estimador del parámetro descoocido. Obviamete cualquier estadístico o sirve, es ecesario que satisfaga ciertas propiedades: Estimació por itervalos de cofiaza. E u itervalo de cofiaza se idica u rago o recorrido, detro del cual se podría ecotrar el parámetro poblacioal descoocido, y el ivel de cofiaza de que el itervalo cotega este parámetro poblacioal. Cotrastació de hipótesis. Ua hipótesis estadística es ua cojetura relativa a algua característica de la població, que puede ser cierta o o. Las hipótesis estadísticas se puede cotrastar co la iformació extraída de las muestras, y tato si se acepta como si se rechaza se puede cometer u error. La hipótesis formulada co iteció de rechazarla se llama hipótesis ula y se represeta por H 0. Rechazar H 0 implica aceptar ua hipótesis alterativa (H 1 ). E este caso los pasos a seguir so los siguietes, platear las hipótesis, escoger u estadístico cocreto, coocer la distribució de este estadístico y decidir, co los datos de la muestra, si estamos caracterizado a la població. 6.4 Objetivo y características fudametales de la estimació putual. E ua estimació putual se utiliza u solo úmero o valor para determiar ua estimació del parámetro poblacioal descoocido. E la estimació putual se asume que el estadístico es u bue estimador del parámetro. Obviamete cualquier estadístico o sirve, es ecesario que satisfaga ciertas propiedades, que se aalizará e el próximo apartado

4 Parámetros poblacioales Estadísticos putual muestrales-estimació Media Variaza i 1 i1 x i x i x S i 1 i1 x i 1 x x i Proporció p úmero de éxitos e pruebas pˆ x úmero de éxitos e pruebas 6.5 Propiedades de los estimadores putuales. 1. Estimador isesgado o cetrado y de variaza míima. Cota de Cramer-Rao. Se dice que u estimador es isesgado o cetrado si la media de la distribució muestral del estadístico muestral coicide co el parámetro a estimar. Es decir, si repetimos el proceso de muestreo muchas vedes e promedio el valor que se obtiee de u estimador isesgado será igual al parámetro poblacioal. U estimador es isesgado cuado o existe sesgo etre la esperaza del estimador y el parámetro poblacioal, o sea, la esperaza del estimador es el propio parámetro. E( ˆ ) Sesgo ˆ E ˆ 0 Para obteer u estimador isesgado de variaza míima, hay que determiar las variazas de todos los estimadores isesgados de θ y seleccioar el que posea la variaza más pequeña. La cota de Cramer Rao permite obteer ua cota iferior de la variaza. C. C. R 1 Lf ( x, ) E Siedo f(x,θ) la fució de verosimilitud. La media, la variaza y las proporcioes muestrales so estimadores isesgados de los - 4 -

5 correspodietes parámetros poblacioales. Parámetro Poblacioal Estimador isesgado X p S pˆ X o debemos olvidar que la variaza muestral la hemos defiido S i1 X i 1 X, para que podamos obteer u estimador isesgado. -Defiició de Error Cuadrático Medio. Para realizar comparacioes de eficiecia de u estimador respecto a u parámetro poblacioal lo hacemos a través del Error Cuadrático Medio (E.C.M): E. C. M ˆ E ˆ Si desarrollamos el cuadrado obteemos: ˆ ˆ ˆ E. C. M Var sesgo Por lo que vemos que está compuesto de dos catidades o egativas. El E.C.M. ivolucra las dos propiedades más importates de u estimador, la variaza debe ser los más pequeña posible y la distribució del muestreo debe cocetrarse alrededor del parámetro. Estimador eficiete. U estimador es eficiete si se cumple que: E ˆ Es isesgado Posee variaza míima. Para calcular si el valor adquirido por la variaza es míimo, usamos la cota de Cramer-Rao. Si se tiee dos estimadores isesgados, que sigue las mismas distribucioes, para u - 5 -

6 mismo tamaño muestral, se dice que uo es más eficiete que el otro cuado su variaza es meor. estimador 1 Var estimador Var El estimador 1 será más eficiete que el estimador. Al ser estimadores isesgados ambas distribucioes muestrales tiee la misma media, luego será más homogéea la distribució que posee meor variaza. 3. Estimador cosistete. La cosistecia de u estimador está relacioada co el comportamieto del estimador cuado el tamaño de la muestra aumeta. Es decir, a medida que el tamaño de la muestra aumeta la iformació que os proporcioa sobre la població será mayor. Se dice que u estimador es cosistete cuado al aumetar el tamaño de la muestra, el valor medio de la distribució muestral del estadístico muestral tiede al parámetro a estimar. lim E estadístico parámetro a estimar Así cuado el tamaño de la muestra aumeta la iformació es más completa y la variaza del estimador suele ser meor, por tato la distribució muestral de ese estimador tederá a ecotrarse más cocetrada alrededor del parámetro que pretedemos estimar. 4. Estimador suficiete. Este cocepto de suficiecia fue itroducido por Fisher e 19, y puede decirse que: Diremos que u estadístico suficiete para u parámetro poblacioal descoocido cuado recoge toda la iformació que la muestra cotiee sobre el parámetro. Dicho de otra forma: Ua vez que sabemos el valor que ha tomado el estadístico, la muestra x x,, ya o puede proporcioaros mas iformació sobre dicho parámetro. Esto 1-6 -

7 equivale a decir que, si el estadístico es suficiete, la distribució de probabilidad de la muestra codicioada a que coocemos el valor del estadístico, ha de ser idepediete del parámetro. 6.6 Estimador ivariate. U estimador es ivariate si se verifica que el estimador de ua fució del parámetro es igual a la fució del estimador del parámetro. fˆ f ˆ Por ejemplo si la variaza muestral es estimador de la variaza poblacioal, si el método de estimació es ivariate, la desviació típica muestral será estimador de la desviació típica poblacioal. Existe estimadores ivariates a cambios de orige, cambios de escala, o cambios de orige y escala. Estimadores C. orige C. escala x o ivariate o ivariate s Ivariate o ivariate s Ivariate o ivariate correlació Coeficiete Ivariate Ivariate 6.7 Estimador robusto. U estimador es robusto cuado pequeños cambios e las hipótesis de partida del procedimieto de estimació cosiderado, o produce variacioes sigificativas e los resultados obteidos. Para estimacioes de la media poblacioal, o coociedo la desviació típica muestral, utilizamos el estadística T- Studet co ( 1) grados de libertad, y co u tamaño de muestra relativamete grade: - 7 -

8 x t s 1 Ate pequeñas variacioes e la distribució sustaciales e los procedimietos basados e este estadístico. (, ), o se produce cambios Si realizamos pequeñas variacioes e la distribució, sí se produce cambios sustaciales para procedimietos que se realice sobre la variaza poblacioal, basados e el estadístico Métodos de obteció de estimadores. Los pricipales métodos de estimació de parámetros de u modelo probabilístico o de coeficietes de u modelos matemático so los siguietes Método de los mometos Método de máxima verosimilitud Míimos cuadrados Para la estimació de parámetros de distribucioes de probabilidad, los métodos empleados so los dos primeros, mietras que el segudo se usa pricipalmete e los estudios de regresió Método de los mometos. Es el método más secillo y atiguo. Se suele utilizar para obteer ua primera aproximació de los estimadores. Se iguala tatos mometos muestrales, como parámetros se tega que estimar. Propiedades de los estimadores obteidos por el método de los mometos: - Si los parámetros descoocidos so mometos poblacioales, etoces los estimadores obteidos será isesgados y asitóticamete ormales - Bajo codicioes bastates geerales, los estimadores obteidos será cosistetes

9 6.8..Método de la máxima verosimilitud. E esecia el método cosiste e seleccioar como estimador del parámetro, de u modelo probabilístico, a aquél valor que tiee la propiedad de maximizar el valor de la probabilidad de la muestra observada. Es decir, ecotrar el valor del parámetro que maximiza la fució de verosimilitud. Propiedades de los estimadores obteidos por el método de máxima verosimilitud: - Los estimadores de máxima verosimilitud so cosistetes. - E geeral o so isesgados, pero si o so isesgados so asitóticamete isesgados (el estimador ˆ coverge al parámetro θ, y e el límite coicide co su valor medio, que es el parámetro θ). - Todo estimador de máxima verosimilitud o es eficiete, pero sí so asitóticamete eficietes. - So asitóticamete ormales. - So suficietes

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

Muestreo Estratificado.

Muestreo Estratificado. Muestreo Estratificado. 1.- Itroducció: Para aplicar este diseño, se precisa que la població esté dividida e subpoblacioes, estratos, que o se solape. Se seleccioa ua muestra probabilística e cada estrato

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Capítulo II Estimación de parámetros

Capítulo II Estimación de parámetros Capítulo II Estimació de parámetros Estimació putual de parámetros Explicaremos el tópico de la estimació putual de parámetros, usado el siguiete ejemplo. La Tabla Nº. cotiee iformació de los salarios

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1)

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1) Estadística I Exame Liceciatura e Matemáticas Febrero 2011 1. Sea X 1,..., X ua muestra aleatoria de ua variable X co distribució Beta de parámetros 2 y θ > 0. Esto último sigifica que la fució de desidad

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I Tema 9. Itroducció a la Iferecia Estadística Presetació y Objetivos. La iferecia utiliza el leguaje de la probabilidad para sacar coclusioes de los datos y acompañar esas coclusioes por ua declaració formal

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ESTIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRASTES DE HIPÓTESIS TEMA 8: Cotrastes

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013 Probabilidad y Estadística Itroducció a la Iferecia Estadística Raúl D. Katz 013 Ídice 1. Itroducció 3. Muestreo 3.1. Muestras aleatorias simples.................................... 4 3. Iferecia estadística

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Estadístico. Parámetro

Estadístico. Parámetro La iferecia estadística comprede el establecer ciertos juicios co respecto a algo después de examiar solamete ua parte o muestra de ello. Así, se ofrece ua muestra gratis de u uevo producto alimeticio

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA)

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA) I N F R N C I A S T A D Í S T I C A I (INTRVALOS D CONFIANZA) Sea Ω ua població y sobre ella ua variable aleatoria X que sigue ua ley ormal N(µ; ), co media µ descoocida y desviació típica coocida. Co

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

Muestreo Aleatorio Simple

Muestreo Aleatorio Simple Capítulo 1 Muestreo Aleatorio Simple Este método de muestreo proporcioa u puto de partida para ua exposició de los métodos de muestreo probabilístico o porque sea uo de los métodos de muestreo más utilizados

Más detalles

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO El muestreo estratificado cosiste e dividir la població e subcojutos o estratos, y de cada uo de ellos seleccioar ua muestra probabilística; de maera idepediete de u estrato a otro. Existe tres razoes

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

LAS MUESTRAS ESTADÍSTICAS

LAS MUESTRAS ESTADÍSTICAS 11 LAS MUESTRAS ESTADÍSTICAS Págia 266 1. Ua gaadería tiee 3 000 vacas. Se quiere extraer ua muestra de 120. Explica cómo se obtiee la muestra: a) Mediate muestreo aleatorio simple. b) Mediate muestreo

Más detalles

OPCIÓN A EJERCICIO 1_A 1 0 2

OPCIÓN A EJERCICIO 1_A 1 0 2 IES Fco Ayala de Graada Sobrates de 007 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 0 - Sea las matrices A, B - 1 0 5 (1 5 putos) Calcule B.B t - A.A t (1 5 putos) Halle la matriz

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Muestreo estratificado

Muestreo estratificado Capítulo 1 Muestreo estratificado El objetivo del diseño de ecuestas por muestreo es maximizar la catidad de iformació para u coste dado. El muestreo aleatorio simple suele sumiistrar bueas estimacioes

Más detalles

ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN POR INTERVALOS DE CONFIANZA Estimació por itervalos de cofiaza. I.E.. A uqueira I pag. Coceptos ETIMACIÓN POR INTERVALO DE CONFIANZA E este tema vamos a estudiar como estimar, es decir proosticar, u parámetro de la població, geeralmete

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA

INTRODUCCIÓN A LA ESTADÍSTICA INTRODUCCIÓN A LA ESTADÍSTICA DIRECCIÓN DE LA PRODUCCIÓN Por: LUIS ARENCIBIA SÁNCHEZ www.laformacio.com - www.libroelectroico.et 1 Ídice. 1. Cotrol estadístico de calidad.. Datos..1. Presetació de datos...

Más detalles

2. MODELOS PROBABILISTICOS

2. MODELOS PROBABILISTICOS . MODELOS PROBABILISTICOS. Fucioes de Probabilidad.. Variable Discreta U modelo probabilístico de u experimeto requiere asociar u valor de probabilidad a cada puto del espacio muestral. E el caso de las

Más detalles

TEST DE HIPÓTESIS. 5.1. Introducción. 5.2. Hipótesis estadísticas

TEST DE HIPÓTESIS. 5.1. Introducción. 5.2. Hipótesis estadísticas Capítulo 5 TEST DE HIPÓTESIS 5.1. Itroducció E este tema trataremos el importate aspecto de la toma de decisioes, referida a decidir si u valor obteido a partir de la muestra es probable que perteezca

Más detalles

Cátedra I Estadística II Autor I Hebe Goldenhersch MUESTREO Y MODELOS DE MUESTREO

Cátedra I Estadística II Autor I Hebe Goldenhersch MUESTREO Y MODELOS DE MUESTREO MUESTREO Y MODELOS DE MUESTREO I Objetivos Se espera que al fializar el estudio de este capítulo, el estudiate sea capaz de: Compreder los requisitos ecesarios para que ua muestra sea probabilística. Coocer

Más detalles