En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:"

Transcripción

1 TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo, o bie puede costar mucho tiempo, o mucho diero, el aalizar cada uidad poblacioal. E estos casos, la úica salida es hacer uso de la iferecia estadística, basádoos e la iformació coteida e u muestreo aleatorio simple. Así, si supoemos ua població defiida por ua variable aleatoria X, co fució de desidad f(x,), siedo u parámetro poblacioal descoocido, el objeto de la teoría de la estimació cosiste e tratar de determiar el parámetro poblacioal descoocido, a partir de ua muestra aleatoria simple de tamaño. 6.1 Al fializar el tema el alumo debe coocer... Importacia de la estimació putual. Coceptos fudametales de la iferecia estadística como: Població, muestra, parámetro poblacioal, estadístico muestral, estimació. Las características fudametales de los dos métodos que vamos a utilizar e la iferecia estadística para obteer el valor del parámetro poblacioal: estimació y cotrastació de hipótesis. Objetivo y características fudametales de la estimació putual. Propiedades de los estimadores putuales. La utilizació de los métodos de obteció de estimadores. El método de los mometos. El método de la máxima verosimilitud. 6. Importacia de la estimació putual. E el tema aterior se estudió que muchas decisioes se toma a partir de resultados muestrales. Por ejemplo: - Para estimar el gasto medio mesual de las familias de la Comuidad de Madrid co u ivel de reta fijado se extrae ua muestra aleatoria. - U Ayutamieto seleccioa a ua muestra de vecios para comprobar el - 1 -

2 grado medio de aceptació de u determiado programa de bieestar. - Ua caja de ahorros española, para estimar la proporció de empleados que se ivolucraría a la hora de desarrollar sistemas tecológicos e sus oficias, seleccioa ua muestra aleatoria. Cualquier iferecia que se haga sobre la població tedrá que basarse e estadísticos muestrales, la elecció de estos estadísticos depederá del parámetro a estudiar de la població. El verdadero parámetro será descoocido, y muestro objetivo será estimar su valor basádoos e la iformació coteida e ua muestra aleatoria seleccioada de esa població. Así, se puede proceder mediate estas dos alterativas: 1. Estimació. Los tipos fudametales de estimació so: Estimació putual Estimació por itervalo. Verificació de hipótesis. Mediate ambos, el objetivo fial es llegar a ua coclusió o iferecia sobre el parámetro poblacioal que es descoocido. De lo expuesto hasta ahora, se deduce que e la práctica o es ecesario calcular todas las posibles uestras de tamaño de ua població, sio que se utiliza directamete lo que la Teoría Estadística ha demostrado. Se extrae ua muestra aleatoria simple de la població y se observa e sus elemetos el valor de la variable de iterés. Vemos por tato que existe diferecia etre estimador y estimació. Utilizamos el térmio estimador cuado os referimos a ua variable aleatoria que depede de la iformació de la muestra y cuyas realizacioes proporcioa ua aproximació al valor descoocido del parámetro poblacioal. Los valores que toma la fució estimador, para las diferetes realizacioes o muestras cocretas, será las estimacioes. Se llama estimació a u valor específico del estimador. - -

3 6.3 Las características fudametales de los dos métodos que vamos a utilizar e la iferecia estadística para obteer el valor del parámetro poblacioal: estimació y cotrastació de hipótesis Estimació putual. E ua estimació putual se utiliza u solo úmero o valor para determiar ua estimació del parámetro poblacioal descoocido. E la estimació putual se asume que el estadístico es u bue estimador del parámetro descoocido. Obviamete cualquier estadístico o sirve, es ecesario que satisfaga ciertas propiedades: Estimació por itervalos de cofiaza. E u itervalo de cofiaza se idica u rago o recorrido, detro del cual se podría ecotrar el parámetro poblacioal descoocido, y el ivel de cofiaza de que el itervalo cotega este parámetro poblacioal. Cotrastació de hipótesis. Ua hipótesis estadística es ua cojetura relativa a algua característica de la població, que puede ser cierta o o. Las hipótesis estadísticas se puede cotrastar co la iformació extraída de las muestras, y tato si se acepta como si se rechaza se puede cometer u error. La hipótesis formulada co iteció de rechazarla se llama hipótesis ula y se represeta por H 0. Rechazar H 0 implica aceptar ua hipótesis alterativa (H 1 ). E este caso los pasos a seguir so los siguietes, platear las hipótesis, escoger u estadístico cocreto, coocer la distribució de este estadístico y decidir, co los datos de la muestra, si estamos caracterizado a la població. 6.4 Objetivo y características fudametales de la estimació putual. E ua estimació putual se utiliza u solo úmero o valor para determiar ua estimació del parámetro poblacioal descoocido. E la estimació putual se asume que el estadístico es u bue estimador del parámetro. Obviamete cualquier estadístico o sirve, es ecesario que satisfaga ciertas propiedades, que se aalizará e el próximo apartado

4 Parámetros poblacioales Estadísticos putual muestrales-estimació Media Variaza i 1 i1 x i x i x S i 1 i1 x i 1 x x i Proporció p úmero de éxitos e pruebas pˆ x úmero de éxitos e pruebas 6.5 Propiedades de los estimadores putuales. 1. Estimador isesgado o cetrado y de variaza míima. Cota de Cramer-Rao. Se dice que u estimador es isesgado o cetrado si la media de la distribució muestral del estadístico muestral coicide co el parámetro a estimar. Es decir, si repetimos el proceso de muestreo muchas vedes e promedio el valor que se obtiee de u estimador isesgado será igual al parámetro poblacioal. U estimador es isesgado cuado o existe sesgo etre la esperaza del estimador y el parámetro poblacioal, o sea, la esperaza del estimador es el propio parámetro. E( ˆ ) Sesgo ˆ E ˆ 0 Para obteer u estimador isesgado de variaza míima, hay que determiar las variazas de todos los estimadores isesgados de θ y seleccioar el que posea la variaza más pequeña. La cota de Cramer Rao permite obteer ua cota iferior de la variaza. C. C. R 1 Lf ( x, ) E Siedo f(x,θ) la fució de verosimilitud. La media, la variaza y las proporcioes muestrales so estimadores isesgados de los - 4 -

5 correspodietes parámetros poblacioales. Parámetro Poblacioal Estimador isesgado X p S pˆ X o debemos olvidar que la variaza muestral la hemos defiido S i1 X i 1 X, para que podamos obteer u estimador isesgado. -Defiició de Error Cuadrático Medio. Para realizar comparacioes de eficiecia de u estimador respecto a u parámetro poblacioal lo hacemos a través del Error Cuadrático Medio (E.C.M): E. C. M ˆ E ˆ Si desarrollamos el cuadrado obteemos: ˆ ˆ ˆ E. C. M Var sesgo Por lo que vemos que está compuesto de dos catidades o egativas. El E.C.M. ivolucra las dos propiedades más importates de u estimador, la variaza debe ser los más pequeña posible y la distribució del muestreo debe cocetrarse alrededor del parámetro. Estimador eficiete. U estimador es eficiete si se cumple que: E ˆ Es isesgado Posee variaza míima. Para calcular si el valor adquirido por la variaza es míimo, usamos la cota de Cramer-Rao. Si se tiee dos estimadores isesgados, que sigue las mismas distribucioes, para u - 5 -

6 mismo tamaño muestral, se dice que uo es más eficiete que el otro cuado su variaza es meor. estimador 1 Var estimador Var El estimador 1 será más eficiete que el estimador. Al ser estimadores isesgados ambas distribucioes muestrales tiee la misma media, luego será más homogéea la distribució que posee meor variaza. 3. Estimador cosistete. La cosistecia de u estimador está relacioada co el comportamieto del estimador cuado el tamaño de la muestra aumeta. Es decir, a medida que el tamaño de la muestra aumeta la iformació que os proporcioa sobre la població será mayor. Se dice que u estimador es cosistete cuado al aumetar el tamaño de la muestra, el valor medio de la distribució muestral del estadístico muestral tiede al parámetro a estimar. lim E estadístico parámetro a estimar Así cuado el tamaño de la muestra aumeta la iformació es más completa y la variaza del estimador suele ser meor, por tato la distribució muestral de ese estimador tederá a ecotrarse más cocetrada alrededor del parámetro que pretedemos estimar. 4. Estimador suficiete. Este cocepto de suficiecia fue itroducido por Fisher e 19, y puede decirse que: Diremos que u estadístico suficiete para u parámetro poblacioal descoocido cuado recoge toda la iformació que la muestra cotiee sobre el parámetro. Dicho de otra forma: Ua vez que sabemos el valor que ha tomado el estadístico, la muestra x x,, ya o puede proporcioaros mas iformació sobre dicho parámetro. Esto 1-6 -

7 equivale a decir que, si el estadístico es suficiete, la distribució de probabilidad de la muestra codicioada a que coocemos el valor del estadístico, ha de ser idepediete del parámetro. 6.6 Estimador ivariate. U estimador es ivariate si se verifica que el estimador de ua fució del parámetro es igual a la fució del estimador del parámetro. fˆ f ˆ Por ejemplo si la variaza muestral es estimador de la variaza poblacioal, si el método de estimació es ivariate, la desviació típica muestral será estimador de la desviació típica poblacioal. Existe estimadores ivariates a cambios de orige, cambios de escala, o cambios de orige y escala. Estimadores C. orige C. escala x o ivariate o ivariate s Ivariate o ivariate s Ivariate o ivariate correlació Coeficiete Ivariate Ivariate 6.7 Estimador robusto. U estimador es robusto cuado pequeños cambios e las hipótesis de partida del procedimieto de estimació cosiderado, o produce variacioes sigificativas e los resultados obteidos. Para estimacioes de la media poblacioal, o coociedo la desviació típica muestral, utilizamos el estadística T- Studet co ( 1) grados de libertad, y co u tamaño de muestra relativamete grade: - 7 -

8 x t s 1 Ate pequeñas variacioes e la distribució sustaciales e los procedimietos basados e este estadístico. (, ), o se produce cambios Si realizamos pequeñas variacioes e la distribució, sí se produce cambios sustaciales para procedimietos que se realice sobre la variaza poblacioal, basados e el estadístico Métodos de obteció de estimadores. Los pricipales métodos de estimació de parámetros de u modelo probabilístico o de coeficietes de u modelos matemático so los siguietes Método de los mometos Método de máxima verosimilitud Míimos cuadrados Para la estimació de parámetros de distribucioes de probabilidad, los métodos empleados so los dos primeros, mietras que el segudo se usa pricipalmete e los estudios de regresió Método de los mometos. Es el método más secillo y atiguo. Se suele utilizar para obteer ua primera aproximació de los estimadores. Se iguala tatos mometos muestrales, como parámetros se tega que estimar. Propiedades de los estimadores obteidos por el método de los mometos: - Si los parámetros descoocidos so mometos poblacioales, etoces los estimadores obteidos será isesgados y asitóticamete ormales - Bajo codicioes bastates geerales, los estimadores obteidos será cosistetes

9 6.8..Método de la máxima verosimilitud. E esecia el método cosiste e seleccioar como estimador del parámetro, de u modelo probabilístico, a aquél valor que tiee la propiedad de maximizar el valor de la probabilidad de la muestra observada. Es decir, ecotrar el valor del parámetro que maximiza la fució de verosimilitud. Propiedades de los estimadores obteidos por el método de máxima verosimilitud: - Los estimadores de máxima verosimilitud so cosistetes. - E geeral o so isesgados, pero si o so isesgados so asitóticamete isesgados (el estimador ˆ coverge al parámetro θ, y e el límite coicide co su valor medio, que es el parámetro θ). - Todo estimador de máxima verosimilitud o es eficiete, pero sí so asitóticamete eficietes. - So asitóticamete ormales. - So suficietes

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación.

Como se ha podido apreciar en los módulos anteriores, La estadística trata con recolección de datos, su análisis e interpretación. Uiversidad Técica Federico Sata María Departameto de Matemática Reato Allede Olivares 7. QUINTO MÓDULO 7. Iferecia Estadística Como se ha podido apreciar e los módulos ateriores, La estadística trata co

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. TEMA : INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA...- CONCEPTOS FUNDAMENTALES. Iferecia estadística. Ua iferecia es ua extesió de lo particular a lo geeral. La iferecia iductiva es u proceso co riesgo ya

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

Parte 2. Estadística inferencial

Parte 2. Estadística inferencial Parte. Estadística iferecial. Distribucioes muestrales Recordemos que el objetivo de la Estadística es hacer iferecias acerca de los parámetros de ua població co base e la iformació coteida e ua muestra.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Tema 7: Estimación puntual.

Tema 7: Estimación puntual. Estadística 68 Tema 7: Estimació putual. 7.1 Itroducció a la Iferecia Estadística. E los temas ateriores se ha hecho éfasis e la teoría de la probabilidad y e determiados modelos probabilísticos. E este

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO 7.. Itroducció Geeralmete, las poblacioes tiee tamaños que hace que estudiarla e su totalidad sea poco práctico desde diversos putos de vista; costo, tiempo, tipo

Más detalles

Muestreo Estratificado.

Muestreo Estratificado. Muestreo Estratificado. 1.- Itroducció: Para aplicar este diseño, se precisa que la població esté dividida e subpoblacioes, estratos, que o se solape. Se seleccioa ua muestra probabilística e cada estrato

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Contrastes de hipótesis

Contrastes de hipótesis Cotrastes de hipótesis Ejercicio º 1.- E u determiado istituto asegura que las otas obteidas por sus alumos e las pruebas de acceso a la Uiversidad tiee ua media igual o superior a 7 putos. Pero la media

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Estimación e Intervalos de Confianza.

Estimación e Intervalos de Confianza. Capítulo 5 Estimació e Itervalos de Cofiaza. Co la ayuda de muestras aleatorias simples y co el uso de los estadísticos estamos ya e disposició de describir auque de maera somera, dos de los métodos fudametales

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Diseños de Investigación y análisis de datos

Diseños de Investigación y análisis de datos Diseños de Ivestigació y aálisis de datos Tema : ETIMACIÓN DE PARÁMETRO CONTRATE DE HIPÓTEI... Itroducció.. Objetivos.3. Distribucioes muestrales.3.. Distribució muestral de la media.3.. Distribució muestral

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

PRUEBAS ESTADÍSTICAS CON LA DISTRIBUCIÓN CHI-CUADRADO

PRUEBAS ESTADÍSTICAS CON LA DISTRIBUCIÓN CHI-CUADRADO PRUEBAS ESTADÍSTICAS CON LA DISTRIBUCIÓN CHI-CUADRADO. BONDAD DE AJUSTE Las pruebas de bodad de ajuste tiee por objetivo determiar si los datos se ajusta a ua determiada distribució, esta distribució puede

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

i, de N = n. Tomaremos n Muestreo sistemático.

i, de N = n. Tomaremos n Muestreo sistemático. ESTADÍSTICA 0 INTRODUCCIÓN Desde la atigüedad, siempre ha despertado el iterés de los goberates coocer la població y riquezas que se hallaba bajo su potestad. No e vao, la palabra Estadística procede del

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Inferencia. (Teoría y problemas) I. Espejo Miranda. M. A. López Sánchez. A. Sánchez Navas C. Valero Franco

Inferencia. (Teoría y problemas) I. Espejo Miranda. M. A. López Sánchez. A. Sánchez Navas C. Valero Franco Iferecia Estadística (Teoría y problemas) I. Espejo Mirada F. Ferádez Palací M. A. López Sáchez M. Muñoz Márquez A. M. Rodríguez Chía A. Sáchez Navas C. Valero Fraco c Servicio de Publicacioes. Uiversidad

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS...

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS... 6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES... 7 6. INTRODUCCION...7 6. PARÁMETROS Y ESTADÍSTICOS...8 6.3 DISTRIBUCIÓN DEL PROMEDIO MUESTRAL...9 6.4 DISTRIBUCIÓN DE LA FRECUENCIA

Más detalles

CAPÍTULO 9: ESTIMACIÓN. INTERVALOS DE CONFIANZA 1. MUESTREO ESTADÍSTICO

CAPÍTULO 9: ESTIMACIÓN. INTERVALOS DE CONFIANZA 1. MUESTREO ESTADÍSTICO 166 CAPÍTULO 9: ESTIMACIÓN. INTERVALOS DE CONFIANZA 1. MUESTREO ESTADÍSTICO Mediate la iferecia estadística se iteta coocer algo acerca de las características de la població e su cojuto mediate la geeralizació

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles