Tema 6.- Nociones preliminares: anillos, cuerpos. Anillos de polinomios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6.- Nociones preliminares: anillos, cuerpos. Anillos de polinomios"

Transcripción

1 Tema 6.- Nociones preliminares: anillos, cuerpos. Anillos de polinomios 6.1 Anillos y cuerpos Definición Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento neutro llamaremos normalmente cero (0). 2. La operación binaria es asociativa y tiene elemento neutro, que llamaremos normalmente uno (1). 3. La operación es distributiva a la derecha y a la izquierda respecto de la operación +, i.e. para todos x, y, z A, setiene(x + y) z = x z + y z, x (y + z) =x y + x z. Si además la operación es conmutativa, diremos que el anillo es conmutativo. Nota En general se usará la expresión sea A un anillo, sobreentendiendo las operaciones. La operación se notará normalmente por simple yuxtaposición. 2. En un anillo A se tiene 0 x = x 0= 0para todo x A. 3. Si en un anillo A se tiene 1 = 0, entonces A = {0}. 4. Para todo x, y A, esetienex( y) =( x)y = (xy). 5. Si A 1,...,A n son anillos, el producto cartesiano A 1 A n posee una estructura natural de anillo, donde las operaciones están definidas componente a componente. Ejemplo Z, Q, R, C son anillos conmutativos. La estructura de anillo de Z viene determinada por la de grupo aditivo: el producto de dos enteros xy coincide con el múltiplo de y con coeficiente x. Así pues, la estructura de anillo de Z no añade nada nuevo a la de grupo. Esto es falso para Q, R y C en los que, obviamente, la estructura multiplicativa no viene determinada por la aditiva. 2. El conjunto M(n) de las matrices n n sobre Q, R o C es un anillo, con respecto a la adición y la multiplicación ordinaria de matrices. No es conmutativo. 1

2 3. En el grupo (Z n, +) (ver ejemplo 9.1.3, 5) podemos definir un producto de la siguiente manera: (a, b) Z n Z n a b := resto de la división de ab entre n. De esta forma Z n es un anillo. Definición Sea A un anillo. Una unidad es un elemento que posee un simétrico multiplicativo (a la izquierda y a la derecha), que llamaremos inverso. El conjunto de las unidades de A es un grupo para el producto y se notará A. Un cuerpo es un anillo conmutativo tal que todo elemento distinto de cero es una unidad, i.e. A = A {0}. (En algunos textos también se llaman cuerpos aquellos anillos no necesariamente conmutativos tales que todos sus elementos no nulos son unidades. En otros textos a estos anillos se les llama anillos de división). Ejemplo Las unidades de Z son 1, 1. Los anillos Q, R, C son cuerpos. 2. El grupo de las unidades del anillo M(n, k) conk = Q, R ó C es GL(n, k). Definición Sea A un anillo. Un subanillo de A es un subconjunto B A que es un subgrupo de (A, +), que es estable para la operación ytal que 1 B. Si A es un cuerpo, diremos que B es un subcuerpo de A si es un subanillo y además x 1 B para todo x B {0}. Apartirdeahorasólotrabajaremos con anillos conmutativos. Así pues, la palabra anillo significará siempre anillo conmutativo. Definición Sea A un anillo. Un elemento x A se llamará undivisor de cero si y sólosiesdistintodeceroyexistey A, y 0,talquexy =0. Un anillo sin divisores de cero se llama un dominio de integridad. Unelemento x A se llamará nilpotente si es distinto de cero y existe un entero n>0tal que x n = 0. En un dominio de integridad se da la propiedad cancelativa por el producto de elementos no nulos: a 0,ab= ac b = c. Ejemplo Las unidades no son divisores de cero. Así, todo cuerpo es un dominio de integridad. 2. Z es un dominio de integridad. 3. El anillo Z 4 no es un dominio de integridad. El anillo Z 3 es un cuerpo. 2

3 4. El elemento 2 es nilpotente en Z 4. Definición Sea A un anillo. Un ideal de A es un subconjunto I de A que verifica: 1. I es un subgrupo del grupo aditivo de A. 2. Para todo a I,x A se tiene xa I. Nota Sea I A un ideal de A. Setiene: 1. Si I contiene una unidad, entonces I = A. 2. Si A es un cuerpo, sus únicos ideales son {0} y A. 3. El grupo cociente A/I admite una estructura canónica de anillo. En efecto, basta ver que la fórmula (a + I)(b + I) =ab + I define una operación en A/I. Sia+I = a +I y b+i = b +I es a a I, y b b I. Así ab a b = ab ab + ab a b = a(b b )+(a a )b I, lo que prueba nuestro aserto. 4. Los ideales de Z y los subgrupos son la misma cosa, pues la estructura multiplicativa viene determinada por la aditiva. Definición Sea I un ideal de A. Decimos que I es primo si xy I implica que x I obieny I. Proposición Sea A un anillo, I ideal de A. Entonces A/I es dominio de integridad si y solamente si I es un ideal primo. Definición Si A es un anillo y S A no vacío. El ideal generado o engendrado por S es el menor ideal en A quecontieneas. Lo notaremos por (S) obien S. Esfácil ver que S = {x 1 a x n a n x 1,...,x n A, a 1,...,a n S}. Si S = {a} el ideal de llama principal. Todo ideal de Z es principal. Definición Sean A, B anillos, f : A B una aplicación. Se dirá que f es un homomorfismo de anillos si verifica: 1. Para todos x, y A, esf(x + y) =f(x)+f(y). 2. Para todos x, y A, esf(xy) =f(x)f(y). 3. f(1) = 1. 3

4 Un homomorfismo biyectivo se llama un isomorfismo. Proposición Sea f : A B un homomorfismo de anillos. Se tienen las siguientes propiedades: 1. ker(f) :={a A f(a) =0} es un ideal de A, yf es inyectivo si y sólo si ker(f) ={0}. 2. Si u A es una unidad, entonces f(u) es una unidad en B. Enparticular cualquier homomorfismo (de anillos) entre cuerpos es inyectivo. 3. Im(f) ={b B a A, f(a) =b} es un subanillo de B. Proposición Primer teorema de isomorfía. Sea f : A B un morfismo de anillos. Entonces A/ ker(f) esisomorfoaim(f). Proposición Segundo teorema de isomorfía. Sea A un anillo, I A un ideal, y B A un subanillo. Entonces B + I es un subanillo de A, I es un ideal de B + I, B I es un ideal de B, y existe un isomorfismo de anillos (B + I)/I = B/(B I). Proposición Tercer teorema de isomorfía. Sea A un anillo y sean I,J ideales de A con i J. Entonces J/I es un ideal de A/I y A/J = (A/I)/(J/I). 6.2 Anillos de polinomios Sea Z + el conjunto de enteros no negativos. Si A es un anillo, llamamos A[X] al conjunto de funciones f : Z + A tales que f(n) = 0para todo n Z + salvo un número finito de ellos. Definimos las operaciones (f + g)(n) =f(n)+g(n) (fg)(n) = n m=0 f(m)g(n m). A[X] tiene estructura de anillo con ellas (ejercicio). A[X] sedenominaelani- llo de polinomios en la indeterminada X y coeficientes en A. Nótese que la indeterminada X no aparece en la definición de A[X]. Para ver que nuestra definición coincide con la que estamos acostumbrados, definimos X como una función sobre Z + de la forma { 1 si m =1 X(m) = 0si m 1 4

5 Entonces la función X n {}}{ = X... X verifica { X n 1 si m = n (m) = 0si m n n Entonces todo elemento f A[X] se puede escribir de manera única como f = n 0 f(n)x n donde la suma se refiere a un número finito de sumandos, donde no se anula f. Observemos que la función X 0 identifica la función 1 : Z + A definida por { 1 si m =0 1(m) = 0si m>0 Se tiene que a n X n b n X n = c n X n n 0 n 0 n 0 donde c n = n a m b n m. m=0 El grado de f(x) eselmayorn tal que a n es no nulo. Si grado(f(x)) = n escribiremos f(x) = n k=0 a kx k.elcoeficientea n se denomina coeficiente líder de f(x). Si es igual a 1, decimos que f(x) es un polinomio mónico. Asignamos grado(0) =, y por conveniencia en el manejo de fórmulas establecemos que <ny + n = para cualquier n Z +.S De forma completamente análoga se puede definir el anillo de polinomios en varias variables A[X 1,...,X n ]=A[X 1,...,X n 1 ][X n ], y todo elemento de este anillo se puede escribir f(x 1,...,X n )= a i1...i n X i1 1 Xin n. finita Definición Sea A un anillo y k un subcuerpo de A (i.e. k es un subanillo de A que es un cuerpo). Dado un polinomio f(x) =a d X d + + a 0 k[x] y dado α A definimos el valor de f(x) enα como: f(α) =a d α d + + a 0 A. Diremos que α es una raíz (o un cero) def(x) sif(α) =0. Proposición (Propiedad universal de los anillos de polinomios) Sea φ : A B un homomorfismo de anillos y b B. Entonces existe un único homomorfismo de anillos Φ : A[X] B tal que Φ(X) =b y Phi(a) =φ(a) para todo a A. 5

6 Ejemplo Si en la definición anterior tomamos A = k[x] yα = X + a, con a k, el homomorfismo de sustitución f(x) k[x] f(x + a) k[x] es de hecho un automorfismo de anillos. Por ejemplo, sea k = Q; la sustitución de X por X 1 lleva al polinomio X 2 + X +1sobre (X 1) 2 +(X 1) + 1 = X 2 X +1, y la sustitución de X por X + 1 lleva a X 2 X +1sobre (X +1) 2 (X +1)+1=X 2 + X +1. Lema Sea A un anillo y f(x),g(x) A[X]. Entonces 1. grado(f(x)+g(x)) max{grado(f(x)), grado(g(x))}. 2. grado(f(x)g(x)) grado(f(x)) + grado(g(x)). 3. La igualdad se tiene en el caso anterior si los coeficientes líderes de f(x) y g(x) no son divisores de cero. En particular, cuando A es un dominio de integridad. Corolario Si A es un dominio de integridad, entonces 1. A[X] es un dominio de integridad. 2. Las unidades de A[X] son las unidades de A. Nota Sea f(x) =a 0 + a 1 X a n X n A[X] yg(x) =b 0 + b 1 X +...b m 1 X m 1 + X m un polinomio mónico, de grado m 1. Si n m, seaq 1 (X) =a n X n m. Entonces f 1 (X) =f(x) g(x)q 1 (X) tiene grado menor o igual que n 1. Si grado(f 1 (X)) m, repetimos el proceso con f 1 (X). Tras un número finito de pasos llegamos a un polinomio f s (X) de grado estrictamente menor que m. Si llamamos q(x) =q 1 (X)+...+ q s (X) y r(x) =f(x) q(x)g(x) obtenemos una ecuación f(x) =g(x)q(x)+r(x) donde grado(r(x)) < grado(g(x)). Este proceso no es más que la tradicional división de polinomios. Proposición Algoritmo de división. Sea A un anillo, f(x),g(x) A[X] cong(x)mónico. Entonces existen unos únicos q(x),r(x) A[X] con grado(r(x)) < grado(g(x)) tales que f(x) =g(x)q(x)+r(x). 6

7 Decimos que g(x) divide a f(x) si en lo anterior se obtiene r(x) =0. Corolario Sea A un anillo y a A. Entonces para cualquier f(x) A[X] existeq(x) A[X] talque f(x) =(X a)q(x)+f(a). Corolario Sea f(x) A[X] ya A. Entonces f(a) = 0siy solamente si X a divide a f(x). Corolario Sea A un dominio de integridad y f(x) 0 A[X] un polinomio de grado n. Entonces existen a lo más n raíces de f(x) ena. Corolario Sea A un dominio de integridad y f(x),g(x) A[X] de grado menor o igual que n. Sif(a) =g(a) paran + 1 valores distintos de a A, entonces f(x) =g(x). Definición Sea f(x) A[X] un polinomio no nulo y a A una raíz de f(x). Entonces X a divide a f(x) ena[x]. Al máximo entero s>0tal que (X a) s f(x) se le llama la multiplicidad de a como raíz de f(x). Se dirá que a es una raíz simple de f(x) sis = 1. En caso contrario se dirá quees múltiple. Definición Sea A un anillo y f(x) =X n + a 1 X n a n 1 X + a n A[X]. Se define la derivada por la regla formal f (X) = d dx f(x) =nxn 1 +(n 1)a 1 X n a n 1. De la misma forma que en Cálculo elemental, se prueban las siguientes propiedades de la derivación de polinomios: 1. (f(x)+g(x)) = f (X)+g (X). 2. Si a A, es(af(x)) = af (X). 3. (f(x)g(x)) = f (X)g(X)+f(X)g (X) Las derivadas de orden superior f (i) (X) se definen como las derivadas sucesivas de f(x). Proposición Sea k el cuerpo Q, R o C, f(x) k[x] un polinomio no nulo y α k una raíz de f(x). La multiplicidad de la raíz α de f(x) es el entero s tal que f (i) (α) = 0, para todo i =0, 1,...,s 1yf (s) (α) 0(por derivada de orden cero se entiende el polinomio). Definición Sea A un dominio de integridad. Diremos que A es un dominio euclídeo si existe una aplicación δ : A \{0} N tal que: 7

8 1. Si a, b A \{0} y a b, entonces δ(a) δ(b). 2. (División entera con resto respecto de δ) Dados D, d A, d 0,existen c, r A tales que D = dc + r y r =0obienδ(r) <δ(d). Por el comentario anterior es obvio que Z y k[x] son dominios euclídeos, para δ(a) = a en el primer caso, y δ(f) = grado(f) en el segundo. En la segunda propiedad de la definición no se exige que el cociente c yel resto r sean únicos. De hecho después veremos ejemplos en los que no se da esta unicidad. 8

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +,

Más detalles

Tema 8.- Anillos y cuerpos

Tema 8.- Anillos y cuerpos Tema 8.- Anillos y cuerpos Definición.- Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones internas y binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2017 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b Capítulo 3 Anillos Hemos utilizado estructuras en las que hay dos operaciones, como la suma y el producto en Z. El objeto más básico de este tipo es un anillo, cuyos axiomas son bastante parecidos a los

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

Tema 1. Anillos e ideales. Operaciones. Divisibilidad Tema 1. Anillos e ideales. Operaciones. Divisibilidad y factorización. La parte correspondiente a Anillos e ideales. Operaciones se corresponde con el capítulo 1 del libro Atiyah, M.F., Macdonald, I.G.,

Más detalles

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc Anillos y Cuerpos Anillos Sea un conjunto R con dos operaciones internas que llamaremos suma (+) y producto ( ). Diremos que (R, +, ) es un anillo si verifica: (R, +) es un grupo abeliano. (R, ) es un

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Cuerpos Finitos XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Cuerpos y extensiones de cuerpos Un cuerpo (F, +, ) es un conjunto no vacío en el que se han definido dos operaciones

Más detalles

Extensiones algebraicas. Cuerpos de descomposición.

Extensiones algebraicas. Cuerpos de descomposición. Temas 10-11.- 10-11.1 Extensiones algebraicas. Cuerpos de descomposición. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K k. Si K k es una extensión y E K es un subconjunto,

Más detalles

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13

ÍNDICE INTRODUCCIÓN... 9 INSTRUCCIONES PARA EL LECTOR... 13 ÍNDICE INTRODUCCIÓN 9 INSTRUCCIONES PARA EL LECTOR 13 CAPÍTULO 1 GENERALIDADES TEOREMA DE LAGRANGE I Grupos 17 II Subgrupos 25 III Orden de un grupo 36 IV Índice de un subgrupo 40 Ejercicios correspondientes

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Tarea 1 de Álgebra Conmutativa (Lista larga)

Tarea 1 de Álgebra Conmutativa (Lista larga) Instrucciones: Entregar solo los ejercicios marcados con. 1. ( ) 2. ( ) (i) (Principio de substitución) Sea A-álgebra B via ϕ : A B y b 1,..., b n B. Demuestra que existe un único morfismo de anillos conmutativos

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 2: Anillos e ideales. Divisibilidad y factorización. 2.1. Anillos, subanillos

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Anillos de Galois XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Definición y primeras propiedades Un anillo asociativo A se llama anillo de Galois (denotado GR por sus siglas

Más detalles

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Anexo: CUERPOS FINITOS Mayo de 2017 Anexo: CUERPOS FINITOS A.1. Algunas

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero.

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero. Introducción al Álgebra (curso 00-003) 1 0. Enteros 1. Para los números enteros a y b que se citan, halla su máximo común divisor y mínimo común múltiplo, así como enteros n y m tales que na + mb sea el

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

8.1. Extensiones algebraicas. Grado.

8.1. Extensiones algebraicas. Grado. 1 Tema 8.-. Extensiones algebraicas. Cuerpos de descomposición. Elemento primitivo. 8.1. Extensiones algebraicas. Grado. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Anillos 2 Cuerpos e ideales 3 El anillo cociente 3 Más sobre anillos e ideales Anillos Sea R un conjunto de elementos

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

Ceros en extensiones.

Ceros en extensiones. 1. EXTENSIONES DE CUERPOS. Varios son los objetivos de este tema. El primero de ellos, resultado debido a Kronecker, es probar que todo polinomio con coeficientes en un cuerpo tiene una raíz en un cuerpo

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Tema 2: Introducción a la teoría de grupos

Tema 2: Introducción a la teoría de grupos Tema 2: Introducción a la teoría de grupos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2018 Olalla (Universidad de Sevilla) Tema 2: Introducción

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 1: Grupos y subgrupos. Teorema de estructura. 1.1. Introducción Definición

Más detalles

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss.

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. 7.1 Divisibilidad Definición 7.1.1. Sea A un dominio de integridad. 1. Sean a, b A, cona 0. Sediráquea divide a b, oquea es un divisor

Más detalles

Álgebra Básica. Eugenio Miranda Palacios Leyes de composición. Estructuras algebraicas.

Álgebra Básica. Eugenio Miranda Palacios Leyes de composición. Estructuras algebraicas. Álgebra Básica Eugenio Miranda Palacios 3. Anillos conmutativos 3.1. Leyes de composición. Estructuras algebraicas. Sean A, M conjuntos. Definición 3.1. Una operación binaria o ley de composición interna

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

6.1 Teorema de estructura de los módulos finitamente generados

6.1 Teorema de estructura de los módulos finitamente generados Tema 6.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones: ecuaciones lineales con coeficientes enteros, formas canónicas de Jordan 6.1 Teorema de estructura de

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2001 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2002 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Estructuras Algebraicas 1 Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad

Más detalles

Polinomios (lista de problemas para examen)

Polinomios (lista de problemas para examen) Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Capítulo 1. Teoría de anillos Definición de anillo

Capítulo 1. Teoría de anillos Definición de anillo Capítulo 1 Teoría de anillos 1.1. Definición de anillo Un anillo intuitivamente no es más que un conjunto en el que podemos sumar, restar y multiplicar con las propiedades habituales excepto que la multiplicación

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 1 de julio de 2013 Resolución Primera parte Ejercicio. 1. (A) Dado F C[X] tal que (F, F ) = 1, prueba que C[X]/(F ) es un anillo reducido, esto es, sin elementos nilpotentes no

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Módulos noetherianos y Artinianos Zarate Sebastian 8 de julio de 2015 Índice 1. Preliminares 1 1.1. Grupos................................... 1 1.2. Anillos...................................

Más detalles

El cuerpo de los números complejos como cuerpo de ruptura

El cuerpo de los números complejos como cuerpo de ruptura El cuerpo de los números complejos como cuerpo de ruptura El cuerpo algebraicamente cerrado de los números complejos es una extensión del cuerpo de los números reales, cuerpo al que estrictamente contiene

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA I

MÉTODOS MATEMÁTICOS DE LA FÍSICA I MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas

Más detalles

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA:

NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA: NOTAS DE TRABAJO, 6 ÁLGEBRA CONMUTATIVA: Álgebra conmutativa computacional Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 2013 2014 Primera redacción: Octubre 2013. Introducción

Más detalles

Álgebra II Primer Cuatrimestre 2007

Álgebra II Primer Cuatrimestre 2007 Álgebra II Primer Cuatrimestre 2007 Práctica 5: Módulos, II 1. Localización de módulos 1.1. Localización de módulos. Sea A un anillo, S A un subconjunto central multiplicativamente cerrado y sea M un A-módulo

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

I. ANILLOS DE POLINOMIOS

I. ANILLOS DE POLINOMIOS I. ANILLOS DE POLINOMIOS 1. Si a k, probar que el morfismo natural k k[x]/(x a) es un isomorfismo, y que dados elementos diferentes a 1,..., a n k, tenemos un isomorfismo de k-álgebras k[x]/((x a 1 )...

Más detalles

Cuerpo de Fracciones de un Anillo Íntegro

Cuerpo de Fracciones de un Anillo Íntegro Cuerpo de Fracciones de un Anillo Íntegro René A Hernández Toledo 1997 * Cuando se desarrollan los sistemas numéricos a partir los conjuntos, primeramente se construyen los números naturales. A partir

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

Dado un conjunto A, llamamos operación binaria interna o ley de composición interna a cualquier función de A A en A. [1] [1] [0]

Dado un conjunto A, llamamos operación binaria interna o ley de composición interna a cualquier función de A A en A. [1] [1] [0] Contents 2 Operaciones y estructuras algebraicas. 2 2.1 Propiedades...................................................... 4 2.2 Elementos Particulares.............................................. 7 2.3

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

3. Grupos. Manuel Palacios. Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza

3. Grupos. Manuel Palacios. Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza 3. Grupos Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Contents 3 Grupos 7 3.1 Introducción y definición............................. 7 3.1.1

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas.

CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. CONJUNTOS CPR. JORGE JUAN Xuvia-Narón Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. Un conjunto está formado por una serie de elementos susceptibles de poseer

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Apartado A1 del Anexo: Algunas estructuras algebraicas interesantes Mayo

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

Anexo: El anillo de polinomios K[x].

Anexo: El anillo de polinomios K[x]. El anillo de polinomios K[x] 1 Anexo: El anillo de polinomios K[x]. 1. Construcción del anillo de polinomios K[x]. Dado un cuerpo K, se define m K[x] = { a i x i a i K, i = 0,..., m, m N {0}}, i=0 donde

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Anillos de polinomios 3 Mínimo Común Divisor y Mínimo Común Múltiplo Algoritmo de Euclides Algoritmo

Más detalles

Teoría de Anillos y Campos

Teoría de Anillos y Campos Teoría de Anillos y Campos Presentación 2: anillos, homomorfismos e ideales Luis Felipe González Rivas UANL 21 de agosto de 2018 Contenido 1 Anillos 2 Homomorfismos 3 Ideales Luis Felipe González Rivas

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal

Gabriela Jeronimo, Juan Sabia y Susana Tesauri. Álgebra lineal Gabriela Jeronimo, Juan Sabia y Susana Tesauri Álgebra lineal Buenos Aires, agosto de 2008 Prefacio El álgebra lineal es una herramienta básica para casi todas las ramas de la matemática así como para

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea V un c.a.a.

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles